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Abstract. A large number of computer tasks can be modeled as the
search for an object near a given query. From multimedia databases
to learning algorithms, data mining and pattern recognition, the met-
ric space model of proximity and retrieval can be used as a searching
paradigm.

For metric space indexing the permutation based approach consist in
saving the order in which a set of reference objects (the permutants) is
seen by every element of the database. Adding up the relative displace-
ments with respect to the query is an excellent predictor of proximity,
and is called the Spearman ρ distance.

In this paper we show how to represent the permutation as a binary
vector, using just one bit for each permutant (instead of log k in the
plain representation). Hamming distance can be used then to predict
proximity. We tested this approach with many real life metric databases
obtaining a recall close to the Spearman ρ (or even better in some ex-
amples), and speedup from 2 to 4 times faster.

1 Introduction

A metric space is composed by an universe of objects U, and a distance function
d : U× U→ R, following for any objects x, y, z ∈ U:

1. Strict positiveness: d(x, y) > 0, excepting for the identity of indiscernibles,
or the reflexivity property: d(x, y) = 0 ⇐⇒ x = y.

2. Symmetry: d(x, y) = d(y, x).
3. The triangle inequality: d(x, z)+ d(z, y) ≥ d(x, y), which gives the searching

facilities.

It’s common to found distance function which are really expensive to compute
(i.e. comparing fingerprints, searching by content in multimedia, etc), yielding to
the necessity of a reduction in the number of distance computations during the
the search process. Indexing metric spaces is devoted to create algorithms and
structures for efficiently solve queries in metric spaces. There’re two main search
kinds, for a given database S ⊆ U which is finite with size |S| = n, the problem
is to perform searches efficiently of the form (q ∈ U, r ∈ R)d = {x ∈ S | d(q, x) ≤
r}, called range queries. The focus of the brief index is the k Nearest Neighbors,
kNNd(q) searches for short. The kNN retrieves the k closest elements to q in



S, formally it retrieves the set R ∈ S such that |R| = k and ∀u ∈ R, v ∈ U− S
it follows d(q, u) ≤ d(q, v).

In general, metric indexes uses the metric properties of d to allow fast searches
over S, There exists many indexes, ranging from general solutions to specialized
ones. We will cover a really small subset of them, used in the literature as
canonical examples and comparison points.

Burkhard and Keller introduces the BKTree (BKT) [1], uses the triangle
inequality to prune elements. The BKT is designed for discrete distances (con-
tinuos distances can be discretized in order to be useful). The BKT is an L-ary
tree created recursively, as primitive build operation we choose some p ∈ S and
then: 1) If the BKT is empty, p is the new root’s tree. 2) If the root node ex-
ists, then l = d(p, root) and p will try to repeat step 1 with the l-th subtree of
the current root. A general bucket b, can be applied allowing b elements in the
leafs instead only one element. Searching for (q, r)d can be searched using the
hierarchical structure discarding children not matching i− r ≤ d(q, pi) ≤ i + r.
The kNN searches can be constructed systematically from range searches using
branch and bound [2, 3], starting with r = ∞ and closing r under evidence of
smaller radius. This procedure is optimal for BKT [2].

The Approximating and Eliminating Searching Algorithm (AESA) [3] is a
simple and efficient algorithm for similarity searching, it reaches the extreme
of pivot’s based algorithms (in fastness and space usage). The AESA algorithm
achieves O(1) searching time, at cost of O(n2) space and construction time.
It maintains a matrix of n(n − 1)/2 cells, storing all the distances between
element pairs in S. In the searching procedure for (q, r)d, a random p ∈ S is
chosen, the distance d(q, p) is calculated and all the elements s ∈ S not matching
d(p, q) − r ≤ d(p, s) ≤ d(p, q) + r are discarded from the result set. The search
process finish when all the surviving elements are inside the desired range. The
O(n2) space cost is a really big restriction moderate n. As in the BKT, the kNN
search can be built over range searches and branch and bound.

For a deeper and extended study over indexing and searching in metric
spaces, please reefer to [2–4].

===
Permutantes
===
From a wider point of view, exists important spaces where the metric prop-

erties are not achieved, but the similarity search problem is still present. For
example, when the triangle inequality is not kept (i.e. formally known as pseudo-
metric spaces) the search capabilities can’t be fully exploited by techniques based
on metric spaces. The permutation index allows kNN searches in pseudo-metric
spaces, because it’s independent of the triangle inequality. Our technique ef-
fectively inherits this property allowing faster searches and smaller indexes in
metric and pseudo-metric spaces, with an small (even nothing) recall’s footprint
against the permutation index.

The paper’s organization is as follows: The Section 1 is devoted to an intro-
ductory overview to the problem and the previous work. The Section 2 explains



in detail the construction of the brief permutations, and the achieved character-
istics. In order to show the efficiency and effectivity of the method, we provide
experimental evidence over four well known spaces (documents, string’s dictio-
nary, image’s color histograms, and audio fingerprints), the Section 3 is dedicated
to this purpose. Finally, the Section 4 summarizes the remarkable points of the
paper, our contributions, and a list of opened questions that will direct our future
work.

2 The Brief Permutations

Algorithm 1 Bit-encoding of the permutation P under the module m

Encode(Permutation P , Positive Integer m)

1: Let P−1 be the inverse P .
2: C ← 0|P | {Bit string of size |P |, initialized to zeros}
3: for all i from 0 to |P | − 1 do
4: p ← P [i]
5: if |i− p| > m then
6: C ← C|(1 << i)
7: end if
8: end for
9: return C

Algorithm 2 Bit-encoding of the permutation P under the module m using
permutation of the center
EncodePermCenter(Permutation P , Positive Integer m)

1: Let P−1 be the inverse P
2: C ← 0|P | {Bit string of size |P |, initialized to zeros}
3: M = |P |

4

4: for all i from 0 to |P | − 1 do
5: p ← P [i]
6: I ← i
7: if b I

M
c 6= 0 then

8: I ← I + M
9: end if

10: if |I − p| > m then
11: C ← C|(1 << i)
12: end if
13: end for
14: return C



Algorithm 3 Construction of the Index
Construction(Permutants Ψ , Database S, Distance d, Positive Integer m)

1: D = [ ] {A list to store the bit-encodings}
2: C ← 0|P | {Bit string of size |P |, initialized to zeros}
3: for all s ∈ S do
4: P ← Compute the permutation of s under Ψ and d.
5: Let P−1 be the inverse of P .
6: D ← D + [Encode(P−1, m)]
7: end for
8: I ← Construct a metric space index for Hamming over D
9: return I

Algorithm 4 Procedure to search kNN for q

SearchKNN(Index I, Permutants Ψ , Distance d, Object q, Positive Integer
m, Positive Integer k, Positive Integer Cand)

1: P ← Get permutation for q under Ψ and d.
2: Let P−1 be the inverse P .
3: h ← Encode(P, m).
4: R ← Retrieve the kNN for h with metric index I using k = Cand {Remember that

R ⊆ S}.
5: Res ← [ ]
6: for all s ∈ R do
7: Res ← Res + [(d(s, q), s)]
8: end for
9: Res ← sort Res by the first argument in the tuple, keep the smallest k results.

10: return Res



The encoding is made in two phases: the permutation transformation, and
the permutation encoding. The first phase is omitted because the lack of space,
and the definition given in previous sections should be sufficient. We use C
programming language like syntax for bitwise operations (i.e. ’&’ for and, ’|’ for
or, ’<<’ for left shift, ’>>’ to right shift, and ’∧’ for xor). We start in zero the
indexing of bit sequences and permutations.

The Algorithm 1 shows the algorithm for condensing the permutation in-
formation into bit strings. In the Algorithm 1 we can notice that for bigger m
(e.g m ≤ |P |) the permutants in the center of the inverse are punished without
reason. In order to reduce this effect, we should permute the center of the in-
verse, for example let Π = 1234 then we should transform using the permutation
Γ = 2143 when encoding 2 and 3. This can be easily and efficiently implemented
for any number of permutants with a few modifications to the original procedure,
see the Algorithm 2. As we show experimentally in the next Section, this variant
achieves better recalls than the naive encoding. In the following algorithms any
reference to Encode is valid for the EncodePermCent procedure.

In our implementation the index construction is fairly simple, since we only
apply the bit-encoding transformation without really indexing, but any metric
index could be used to index the resulting hamming space. The basic algorithm
is show in Algorithm ??. Search procedure is really simple (see Algorithm 4), and
consists in searching for candidates in the hamming space, and a final reordering
of the result using the original distance.

3 Experiments

The tested databases were taken from the metric space library1 and the natix
project’s site2. Our implementation is available as open source from www.natix.
org, the indexes were written in Python3, and the distance functions were im-
plemented in C++, and jointed using SWIG4. All indexes are sharing the same
distance function’s implementation. The experiments were performed in a laptop
computer with Intel Core 2 at 2.4 GHz and 2GiB of RAM, running MacOS X
10.5.6. The presented indexes run in primary memory without using the proces-
sor’s parallel processing capabilities.

The chosen databases are representatives of four typical : documents and dic-
tionaries for textual information retrieval, color’s histogram vectors for multime-
dia information retrieval, and song fingerprints for music information retrieval.

Trying to kept a clear and simple document, we only provide a deep compar-
ison against the full permutation index. An exhaustive comparison between the
permutation’s index and other classical similarity search method is presented in
[5]. In order to maintain a well known reference, we compare against the per-
formance of the BKT the selected searches, but excluding it from the figures.
1 Metric space library www.sisap.org.
2 Natix web site is www.natix.org.
3 The python programming language www.python.org.
4 The swig’s website is www.swig.org.



The recalls are measured against the exact result given from sequential searching
and BKT. For the audio fingerprints, we use a ground truth for the performed
queries.

Number of permutants Permutants Brief permutants

128 29 1.8
256 57 3.5
512 112 6.9
1024 222 14
2048 443 28

Table 1. Practical index’s size for color’s histogram collection. In the practice, each
full permutant uses 16 bit, and 1 bit per brief permutant.

As an annotation for all the experiments, the Table 1 exemplifies the index’s
size reduction, which allows to kept in primary memory indexes for databases
16 times bigger than the permutation index (i.e. using the same number of
permutants), and improve the search’s speed (hamming can exploit the inherent
bit parallelism and use lookup tables). Actually, the Hamming space is really
simple and can be easily implemented in dedicated minimal processors, allowing
a new gamma of applications in small specialized devices.

3.1 Documents

A collection of 25157 short news articles in the TF × IDF format from Wall
Street Journal 1987 − 1989 files from TREC-3 collection. We use the angle be-
tween vectors as distance measure [6].

We extract 100 random documents from the collection for queries, avoiding
the indexation of queries. Each query searches for 30 nearest neighbors (the
BKT needs to check up to 98% of the database to get the entire result set).
The recall for the nearest neighbor is shown by the Figure 1(a), and Figure 1(b)
shows the recall for 30NN. Is necessary to notice that the number of distance’s
evaluations is the number of permutants plus the number of candidates, then
for a NN recall of 0.93 and 30NN recall of 0.82 we need to review only the
6% of the database. The recall for the brief permutations is tightly related with
the module, with best results for small modules with special attention in small
number of permutants for 0.3, whilst the number of permutants increases the
module effect decreases. We can see that module 0.5 is a good choice for any
number of permutants avoiding the necessity of optimizing the parameter for
most of the document retrieval applications. We can see in both recall Figures
that the brief index performs slightly better than the full permutants.

The Figure 1(c) shows the average real time per search needed for each
number of permutants.



3.2 Vectors

A set of 112544 color histograms (112-dimensional vectors) from an image database5.
We use the metric space library’s version which doesn’t kept the duplicated vec-
tors.

For this experiment, we choose randomly 200 histogram vectors and we apply
a perturbation of ±0.5 on one random coordinate. The search consist on finding
30NN under L2 distance. The BKT needs to review 65% of the database. This
is a hard space for the permutation transformation, achieving only a recall of
0.7 for 2000 checked candidates (equivalent to review a 2% of the database, but
unfortunately the recall growth is slow from this point, even augmenting the
number of permutants), the exact reasons of this behavior is unknown, and this
experiment shows that the behavior is inherited by the brief index.

Even with this bad behavior, it’s an excelent approximation for achieving fast
searches for massive Multimedia Information Retrieval approaches [7].

In the Figure 2(a) the recall for different permutation’s number is presented,
even when the module controls the recall, a good option is to choose module 0.5,
for any number of permutations. The behavior is similar to the 30NN, as can be
seen in Figure 2(b).

The average time per search can be seen in Figure 2(c), we can see that
always the brief index is faster.

3.3 Dictionary

A common task in textual information retrieval is searching in dictionaries, cor-
recting misspelled words, OCR, etc. We use the metric space library’s English
dictionary with 69069 words. We choose the english dictionary to avoid encoding
particularities of other languages, but we expect the same behavior from other
non-agglutinant languages. We use the edit distance.

We randomly chooses 200 words as queries from the database. We perform
searches for 30NN. For the first NN (i.e the word as query) we have recall of
1.0 for more than 128 permutants, then a better effectivity measure is the recall
for 2NN (Figure 3(a)) and the full 30NN (Figure 3(b)). It’s necessary to notice
that there exists several possibilities at radius 1, but we show the recall for the
second NN given in the exact result. This gives a lower recall but gives a general
idea of what’s happening in the result set in addition to the 30NN recall.

In order to get the exact result for 30NN, the BKT needs to review 56% of
the database. The brief index needs to review 3% to get a recall of 0.97 for 2NN
and 0.84 for 30NN using our standard module 0.5. We get 1.0 recalls reviewing
6% of the database. The average search time is shown in Figure 4(b).

3.4 Audio Fingerprints

A database of 10254 MBSES [8] fingerprints using three byte’s frame for each
46 ms. The fingerprints were extracted from full songs of different genres and
5 The original database source is http://www.dbs.informatik.uni-muenchen.de/

~seidl/DATA/histo112.112682.gz



authors was used6. We use a non-metric distance called probabilistic pairing
psudo metric [9] which is defined as the minimum hamming distance from one
short sequence of length m against all m-grams inside a larger sequence. The
distance’s cost is O(m× (n−m + 1))

We use permutations of song excerpts of 20s, and queries of 20s.
The Figure 4(a) shows the recall given for brief index and full permutations.

We can see a recall of 0.83 for 512 permutants. The full permutation index has
a recall of 0.92, this means a ratio of 0.9 between brief permutations and full
permutations.

In Figure ?? we show the time taken per search. We must notice than BKT
can be used loosing some results because the distance function doesn’t follows the
triangle inequality, but we can get recalls bigger than 0.9 but we need to review
more than 40% of the database, resulting in 30 seconds per search. The brief
index needs to review 512 distance’s evaluations, and 1000 distances verification
(i.e. review 15% of the database). The verification is done using the transitivity
kept by the distance, using only 12 or 24 frames, reducing the final cost of the
query. This schema needs a non-metric index, and full permutations and brief
permutations can be used to reduce search costs.

4 Conclusions

– Necesitamos acelerar la busqueda secuencial para pesar las permutaciones
– Usar el indice metrico, reducir a vectores con solo los permutantes ”escen-

ciales” para generalizar el esquema de indice invertido metrico,probar con
una db gigante. Usar distancia de coseno para este punto, ademas del spear-
man rho.

– Optimizar hamming para secuencias largas
– Hemos visto que para modulo 0.5 se comporta bien en cualquier permutacion,

pero no es optimo, sacar una relacion exacta que diga que modulo debe
usarse.

– Enfatizar que el espacio es reducido en 16 veces (short int a bit) para imple-
mentaciones practicas.

– Poner en tablas los tamanios de los indices
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Fig. 1. Experiment results for brief index against full permutations using the docu-
ments TF × IDF collection and cosine’s angle as distance.
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Fig. 2. Results for brief index against full permutations using the color’s histogram
collection and L2 distance.
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Fig. 3. Results for brief index against full permutations for and english dictionary,
using edit distance.
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Fig. 4. Results for brief index against full permutations for the audio collection.


