
CHAPTER

..."'...
...

2

Iteration,
Induction,
and
Recursion

The power of computers comes from their ability to execute the same task, or
different versions of the same task, repeatedly. In computing, the theme of itemtion
is met in a number of guises. Many concepts in data models, such as lists, are forms
of repetition, as "A list either is empty or is one element followed by another, then
another, and so on." Programs and algorithms use iteration to pedorro repetitive
jo~ without requiring a large number of similar steps to be specified individually,
as "Do the next step 1000 times." Programming languages use looping constructs,
like the while- and for-statements of C, to implement iterative algorithms.

Closely related to repetition is recursion, a technique in which a concept is
defined, directly or indirectly, in terms ofitself. For example, we could have defined
a list by saying "A list either is empty or is an element followed by a list." Recursion
is supported by many programming languages. In C, a function F can call itself,
either directly from within the body of F itself, or indirectly by calling some other
function, which calls another, and another, and so on, until finally some function
in the sequence calls F. Another important idea, induction, is closely related '-o
"recursion" and is used in many mathematical proofs.

Iteration, induction, and recursion are fundamental concepts that appear in
many forms in data models, data structu res , and algorithms. The following list
gives some examples of uses of these concepts; each will be covered in some detail
in this book.

l. Itemtive techniques. The simplest way to perform a sequence of operations
repeatedly is to use an iterative construct such as the for-statement of C.

2. Recursive progmmming. C and many other languages permit recursive func-
tions, which call themselves either directly or indirectly. Often, beginning pro-
grammers are more secure writing iterative programs than recursive ones, but
an important goal of this book is to accust.om the reader to thinking and pro-
granm1ing recursively, when appropriate. Recursive programs can be simpler
to write, analyze, and understand.

26 ITERATtON, INDUcnON, AND RECURSION

Notation: Tbe Summation and Product Symbols
An oversized Greek capital letter sigma is often used to denote a RUmmation, 88
in E:':. i. Tbis particular expression representa tbe RUIn of the integers from 1 to
n; tbat is, it &tanda for the SUIn 1 + 2 + 3 + . . . + n. More generally, we can 8UJD
any function /(i) of the summation index i. (Oí oourse, the index could be BOme
symbol other tban i.) Tbe expression E~=. /(i) stands for

/(0) + /(0 + 1) + /(0 + 2) + ... + /(b)

For example, E7:2 j2 standa for the 8UJD 4 + 9 + 16 + . . . + m2. Here, the function
/ is "squaring," and we used index j instead of i.

As a special case, if b < o, tben there are no terms in the sum E~=. /(i), and
the value of the expression, by convention, is taken to be o. If b = o, tben there is
exactly one term, tbat for i = o. Tbus, the value ofthe sum E~. /(i) is just /(0).

The analogous notation for products uses an oversized capital pi. Tbe expres-
sion n~=4 /(i) stands for tbe product /(0) x /(0 + 1) x /(0 + 2) x .. . x /(b); if

b < o, the product is taken to be l.

3. Pn}Ofs by induction. An important technique (or showing that a statement
is true is "proo(by induction." We sha1l cover inductive proofs extensively,
starting in Section 2.3. The following is the simplest (orm o(an inductive
proo(. We begin with a statement S(n) involving a variable n; we wish to
prove that S(n) is true. We prove S(n) by first proving a basis, that is, the
statement S(n) (or a particular value o(n. For example, we could let n = O and
prove the statement S(O). Secand, we must prove an inductive atep, in which
we prove that the statement S, (or one value o(its argument, (ollows from the
same statement S (or the previous values o(its argument; that is, S(n) implies
S(n + 1) for all n ?; O. For example, S(n) might be the (amiliar summation
formula

Basis

stepInductive

which saya that the sum oí the integers from 1 to n equa1s n(n + 1) /2. The basis
oould be 5(1) - that is, Equation (2.1) with 1 in place of n - wbich is just the
equality 1 = 1 x 2/2. The inductive step is to show that ¿:':l i = n(n + 1)/2
implies that ¿'::¡ i = (n + 1)(n + 2)/2; the former is 5(n), wbich is Equation
(2.1) itself, while the latter is 5(n + 1), wbich is Equation (2.1) with n + 1
replacing n everywhere n appears. SectiOD 2.3 will show us how to oonstruct
proofs such as this.

Prools 01 program correctness. In oomputer science, we often wish to prove,
formally or informally, that a statement 5(n) about a program is true. The
statement 5(n} might, for example, describe what is true on the nth iteration
of some loop or what is true for the nth recursive can to some function. Proofs
of this sort are generally inductive proofs.

IrtductitlC definitions. Many important concepts of computer science, especially
t-hcw in,"olving data models, are best defined by an induction in which we give

4.

5.

.
Lí =n(n+ 1)/2
i=al

(2.1)

~

.
)

&

1

1

i
i

.
2.1 What This Chapter Is About++++

.
f

.
t
"
e
)
e
:1
!l
e
s
:1

J

~

s
e
2
:1
1
t 2.2 Iteration

~.

e
n
S

y
e

L

27SEC. 2.2 ITERATlON

a basis rule defining the simplest example or examples of the concept, and an
inductive rule or roles, where we build larger instantes of the concept froro
smaller ones. For instante, we noted that a list can be defined by a basis rule
(an empty list is a list) together with an inductive rule (an element followed
by a list is also a list).

6. Anal,'Í8 o/ ronning time. An important criterion for the "goodness" of an
aigorithm is how long it takes to ron on inputs of various sizes (its "running
time"). When the algorithm involves recursion, we use a formula called a
recun-ence equation, which is an inductive definition that predicts how long the
algorithm takes to ron on inputs of different sizes.

Each of these subjects, except the last, is introduced in tbis chapterj the running
time of a program is the topic of Chapter 3.

lo this chapter we meet the following major concepts.

... Iterative programmiog (Sectioo 2.2)

... Inductive proofs (Sections 2.3 and 2.4)

... Inductive definitions (Sectioo 2.6)

... Recursive programming (Sections 2.7 and 2.8)

... Proving the correctness of a program (Sections 2.5 and 2.9)

In addition, we spotlight, through examples oí these concepts, several interesting
and important ideas from computer science. Among these are

... Sorting algorithms, including selection sort (Section 2.2) and merge sort (Sec-
tion 2.8)

... Parity checking and detection of errors in data (Section 2.3)

.. Arithmetic expressions and tbeir transformation using algebraic laws (Sections
2.4 and 2.6)

.. Balanced parentheses (Section2.6)

Each beginning programmer learns to use iteration, employing some kind of looping
construct such as the for- or while-statement oí C. In this section, we present al1
example oí an iterative algorithm, called "selection sort." In Section 2.5 we shall
prove by induction that this algorithm does indeed sort, and we shall analyze its
running time in Section 3.6. In Section 2.8, we shall show how recursion Cal1 help
us devise a more efficient sorting algorithm using a technique called "divide alld
conquer ."

28 ITERA110N. INOUcnON. ANO RECURSION

Common Tbemes: Self-Deflnition and Basis-Induction

As you study thÍB chapter, you should be alert to two themes that ron through the
various concepts. Tbe first is self-definition, in which a concept ÍB defined, or built,
in terms oí itself. For example, we mentioned that a IÍBt can be defined as being
empty or as being an element íollowed by a listo

The second theme ÍB ba8is-induction. Recursive functiOD8 usually have SOlDe
sort oí test íor a "basis" case where no recursive calls are made and an "inductive"
case where one or more recursive calls are made. Inductive proofs are well known
to consÍBt oí a basÍB and an inductive step, as do inductive definitioD8. This basis-
induction pairing ÍB 80 important that these words are highlighted in the text to
introduce each occurrence oí a basis case or an inductive step.

There is no paradox or circularity involved in properly used selí-definition,
because the self-defined subparts are always "smaller" than the object being defined.
FUrther, after a finite number oí 8tep6 to srnaller parts, we arrive at the basis case,
at which the selí-definition ends. For example, a list L is built from an element and
a list that is one element shorter than L. When we reach a list with zero elements,
we have the basis case oí the definition oí a IÍBt: "The empty list is a list."

As another example, if a recursive function woro, the arguments oí the ca11
rnust, in sorne sense, be "smaller" than the arguments oí tbe calling copy oí the
function. Moroover, after sorne number oí recursive calls, we must get to arguments
that are so "small" that the function does not make any more recursive calls.

Sorting
To sort a list oí n elements we need to
appear in nondecreasing order.

Example 2.1. Suppose we are given the Iist ofintegers (3,1,4,1,5,9,2,6,5).
We sort tbis list by permuting it into the sequence (1,1,2,3,4,5,5,6,9). Note that
sorting not ooly orders the valu~ so that each is either less than or equal to the one
that follows, but it also preserves the number of occurrences of each value. Thus,
the sorted list has two 1 's, two 5's, and one each of the numbers tbat appear once
in the originallist. +

+

We can sort a list of elements of any type as long as the elements have a "less-
than" order defined on them, which we usually represent by the symbol <. For
example, if the values are real numbers or integers, then the symbol < stands for the
usualless-than relation on reals or integers, and if the values are character strings,
we would use the lexicographic order on strings. (500 the box on "Lexicographic
Order.") Sometimes when the elements are complex, such as structures, we might
use only a part of each element, such as one particular field, for the comparison.

The comparison o .$: b means, as always, that either o < b OT o and b are tbt'
salDe value. A list (al,a2,." ,a,.) is said to be sorteA if al .$: 02 .$:$: On; that

is, if the values are in nondecreasing order. Sorting is the operation of taking éUl
arbitrary list (al, a2,. . . , on) and producing a list (bl,~,. .., bn) such that

Sorted list

the elements oí tbe list so tbat tbey

.
~

t
,,~,

.

..
t

1 Proper prefix
t

,
e
. Empty string

;

,.

).
Iot

.e

s,
:e

..
>r
le
s,
ic
~t

le
at
~

SECo 202 ITERATION 29

Lexicographic arder
Tbe usual way in which two character strings are compared is according to their
le%icogruphic order. Let CIC2... Ck and d1d2... dm be two strings, where ead1 of the
c's and d's repr~nts a single character. Tbe lengths of the strings, k and m, need
not be the same. We assume that there is a < ordering on characters; for example,
in C characters are small integers, so character coDStants and variables can be used
as integers in arithmetic expressions. Thus we can use the conventional < relation
on integers to ten which of two characters is "less than" the other. This ordering
includes the natural notion that lower-case letters appearing earlier in the alphabet
are "less than" lower-case letters appearing later in the alphabet, and the sanle
holds for upper-case letters.

We mar then define the ordering on character strings called the le%icographic,
dictionary, or alphabetic ordering, as foUows. We say CI C2 . . . Ck < di d2 . . . dm if
either of the foUowing holds:

1. Tbe first string is a proper prefix of the second, which means that k < m and
for i = 1,2,..., k we have Ci = d.. According to this rule, bat < batter. As
a special case of this rule, we could have k = O, in which case the first string
has no characters in it. We shaU use t:, the Greek letter epsilon, to denote the
empty string, the string with zero characters. When k = O, rule (1) says that
t: < s for any nonernpty string s.

2. For sorne value of i > O, the first i - 1 characters of the two strings agree, but
the ith character of the first string is less than the ith character of the second
string. Tbat is, Cj = dj for j = 1,2,...,i -1, and Ci < d.. According to
this rule, hall < base, because the two words first differ at position 3, and at
that position hall has an 1, which precedes the character s found in the third
position of base.

l. List(bl,~,...,bn)issorted.

2. Li~ (bl,~,..., bn) is a permutation oí the originallist. That is, each value
appears in list (al,~,.", an) exactly as many times as that value appears in
list (bl,~,...,bn).

A sorting algorithm takes as input an arbitrary list and produces as output a sorted
list that is a permutation oí the input.

Example 2.2. Consider the list oí words

base, ball, mound, bat, glove, batter

Given this input, and using lexicographic order, a sorting algorithm would produce
this output: ball, base, bat, batter, glove, mound. +

Selection Sort: An Iterative Sorting AIgorithm

Suppose we have an array A oí n integers that wc wish to sort into nondecreasing

..

30 ITERA110N. INDUC'nON. AND RECURSION

Convention Regarding Names and Values

We can think of a variable as a box witb a oame and a value. When we refer to a
variable, such as abc, we use the constant-widtb, or "computer" font for its oame,
as we did in tbis sentence. Wben we refer to tbe value of tbe variable abc, we shall
use italics, as abc. To summarize, abc refers to the oame of the box, and abc to its
contenu.

order. We may do so by iterating a step in which a smallest element 1 not ya part of

the sorted portíon oí the array is found and exchanged with the element in the first
positíon oí tbe unsorted part oí the array. In tbe first iteration, we find ("aelect") a
smal1est element among the values found in the ful1 array A[O. .n-l] and exchange
it witb A[O].2 In tbe second íteration, we find a smalIest element in A[l. .n-l] and
exchange it with A [1]. We continue these iterations. At tbe start of the i + 1st
iteration, A [O. . i -1] contains the i smallest elements in A sorted in nondecreasing
order, and tbe remaining elements of the array are in no particular order. A picture
of A just before tbe i + 1st iteration is shown in Fig. 2.1.

Fig. 2.1.

In the i + 1st iteration, we find a smallest element in A[i. .n-l] and exchange
it with A [i]. Thus, alter the i + 1st iteration, A [O. . i] contains the i + 1 smallest
elements sorted in nondecreasing arder. After the (n - l)st iteration, the entire

alTay is sorted.
A C function for selection sort is shown in Fig. 2.2. This function, whose name

is SelectionSort, takes an alTay A as the first argumento The second argument,
n, i8 the length of array A. .

Lines (2) through (5) select a smallest element in the unsortOO part of the alTay,
l[i. .n-l]. We begin by setting the value of index small to i in line (2). The for-
loop of liDes (3) through (5) consider all higher indexes j in turn, and small is set to
j if A[j] has a smaller value than any ofthe arrayelements in the range A[i. .j-l].
As a result, we set the variable amall to the index of the first occurrence of the
smallest element in A[i. .n-l].

Alter choosiog a value for the iodex saa.ll, we exchange the elemeot in that
position with the element in A [i], in liDes (6) to (8). If small = i, the exchange
is pedonned. but has no effect 00 the array. Notice that in order to swap two
elemeots, we need a temporary place to store ooe oí them. Thus, we move the value

1 We say 80 smallest element" rather than 8the smallest element" bec&U8e there may be 8eveT&l
occurrences of the smallest value. Ir so, we shall be happy with any of thc-. occurrences.

2 1"0 deBCribe a ranr,e of elemeots within an alTay, - adopt a conveotion from the langu~e
PascaI. If A is an array, then A[i. .j] denotes thOBe elements of A with indexes from i to j,
inclusive.

IT~rT ~TI
o i n-l.. " ,~ ~

before the i + 1st iteration of ~Iection sort.Picture o(array just

L

~

a
e,
~l
ts

-
of
st
a

ge
ld
st

¡¡g
re

ge
~t
re

De

lt,

'Y,

)(-

to
J.
be

at

ge
.yo
ue

ral

oge

. j,

SEC. 2.2 ITERATlON 31

int n)(lnt !D.void SelectionSort
{

int i. j. amal1. telDp;
for (i = o; i < n-l; i++) {

/* aet 88811 to the index of the firat occur- */
/* rence of the smal1eat e1ement remaining */
aaal1 . i;
for (j . i+l; j < n; j++)

if (A[j] < A[amall])
amall = j;

/* vhen ve reach here. amall ia the index of */
/* the firat amal1eat e1ement in A[i..n-l]; */
/* ve nov exchange A[amal1] vith A[i] */
temp = A [amall] ;
A [amall] = A [i] ;
A[i] = temp;

}

(1)

(2)
(3)
(4)
(5)

(6)
(7)
(8)

}

Fig. 2.2. lterative selection sort.

in A[small] to temp at line (6), moVe the value in A[i] to A[amall] at line (1),
and finally move the value originally in A[small] from temp to A[i] at line (8).

Example 2.3. Let os study the behavior of SelectionSort on varioos inputs.
First, let os look at what happens when we run SelectionSort on an array with
no elements. When n = O, the body of the for-loop of line (1) is not executed, so
SelectionSort does "nothing" gracefully.

Now let us consider the case in which the array has only one elemento Again,
the body of the íor-loop oí line (1) is not executed. That response is satisfáctory,
because an array consisting oí a single element is always sorted. The cases in which
n is O or 1 are important boun.iary conditions, on which it is important to check
the performance oí any algorithm or programo

Finally, let os run SelectionSort on a small array with four elements, where
A[O] through A [3] are

O 1 2 3
A 140[301201101

We begin the outer loop with i = O, and at line (2) we set amall to O. Lines (3) to
(5) íorm an inner loop, in which j is set to 1, 2, and 3, in turno With j = 1, the
test ofline (4) succeeds, since A[l], which is 30, is less than A[small], which is A[O],
or 40. Thus, we set small to 1 at line (5). At the second iteration of liDes (3) to
(5), with j = 2, the test of line (4) again succeeds, since A[2] < A[l], and so we set
small to 2 at line (5). At tbe last iteration of liDes (3) to (5), with j = 3, the test
of line (4) succeeds, since A[3] < A[2], and we set small to 3 at line (5).

We now fall out of the inner loop to line (6). We set temp to 10, which is
A[small], then A [3] to A[O], or 40, at line (7), and A[O] to 10 at line (8). Now, the

+

,

32 ITERATION, INOUCTlON, ANO RECURSION

Sorting on Keys
\
\

When we sort, we apply a comparison operation to the values being sorted. Often
the comparison is made only on specific parla ol the values and the part used in the
comparison is called the key.

For example, a course roster might be an arfar A ol C structures of the forro

struct STUDENT {
int studentID;

char *name;
char grade;

} A[MA1];

We might want to sort by student ID, or name, or grade; each in tUfO would be
the key. For example, if we wish to sort structures by student ID, we would use the

comparison

A[j].studentID < A[small].studentID

at line (4) of SelectionSort. The type of array A and temporary temp used in the
swap would be struct STUDENT, rather than integer. Note that entire structures
are swapped, not just the key fields.

Since it is tiroe-consuming to swap whole structures, a more efficient approach
is to use a second array of pointers to STUDENT structures and sort only the pointers
in the second arfar. The structures themselves remain stationary in the first arfar.
We leave this version ol selection sort as an exerclse.

first iteration of the outer loop is complete, and array A appears as

O 1 2 3
A 1101301201401

Tbe second iteration oí the outer loop, witb i = 1, sets small to 1 at line (2).
The inner loop sets j to 2 initiaUy, and since A[2] < A[l], line (5) sets sllall to 2.
With j = 3, the test oí Une (4) íails, since A[3) ?: A[2]. Hence, small = 2 when we
reach line (6). Lines (6) to (8) swap A[1] witb A[2], leaving tbe array

O 1 2 3

~, l1ol~l.~I401

Although the array now happens to be sorted, we still iterate the outer loop once
more, with i = 2. We set small to 2 at line (2), and the inner loop is executed only
with j = 3. Since the test of line (4) fails, small remains 2, and at liDes (6) through
(8), we "swap" A [2] with itself. The reader should check that the swapping has no
effect when small = i. ..

Figure 2.3 shows how the function SelectionSort can be used in a complete
program to sort a sequence of n integers, provided that n S 100. Line (1) reads and
stores n integers in an array A. If the number of inputs exceeds MAX, only the first
MAl integers are put into A. A message warning the user that the number of inputs
iR too large would be useful here, but we omit it.

.

...

,

33ITERATIONSEC. 2.2

Lines (4) and (5) print theLine (3) calls SelectionSort
integers in sorted order.

to sort the 8ITay.

~

#define MAl 100
int A [MAl] ;

int n);void SelectionSort(int A[].

main()
{

int i. ni
/* read and atore input in A */
for (n = O; n < MAl t.t. acanf("~d". U[n]) != EOF; n++)

.
SelectionSort(A.n); /* 80rt A */
for (i = O; i < ni i++)

printf("~d\n". A[i]); /* print A */

}

void SelectionSort(int AD . int n)

{
int i. j. amall. temp;
for (i . Oi i < n-1i i++) {

aaall . ii
for (j . i+1i j < ni j++)

if (A[j] < A[aaall])
amall . j i

temp a A [amall] ;
A[amall] a A[i] i
A[i] . tempi

(1)
(2)
(3)
(4)
(5)

}
}

Fig. 2.3. A sorting program using selection sort.

EXERCISES

2.2.1: Simulate the function SelectionSort on an array containing the elements

a) 6.8, 14. 17. 23

b) 17,23.14,6.8
c) 23,17,14,8,6

How many comparisons and swaps oí elements are made in each case?

2.2.2**: What are the minimum and maximum number oí (a) comparisons and
(b) swaps that SelectionSort can make in sorting a sequence oí n elements?

"

34 ITERATION,INDUCTION, AND RECURSION

2.2.3: Write a C function that takes two linked lists of characters as arguments and
returns TRUE ií the first string precedes the second in lexicographic order. Hint:
Implement the algorithm for comparing character strings that was described in
this section. Use recursion by having the function call itself on the tails of the
character strings when it finds that the first characters of both strings are the same.
Altematively, one can develop an iterative algorithm to do the same.

2.2.4*: Modify your program from Exercise 2.2.3 to ignore the case of letters in

comparisons.

2.2.5: What does selection sort do if a1l elements are the same?

2.2.6: Modify Fig. 2.3 to perform selection sort when array elements are not inte-
gers, but rather structures of type struct STUDENT, as defined in the box "Sorting
on Keys." Suppose that the key field is studentID.

2.2.7*: Further modify Fig. 2.3 so that it sorts elements of an arbitrary type T.
You may assume, however, that there is a function key that takes an element of type
T as argument and retums the key for that element, of some arbitrary type K. Also
assume that there is a function lt that takes two elements of type K as arguments
and returns TRUE if the first is "less than" the second, and FALSE otherwise.

2.2.8: Instead of using integer indexes into the array A, we could use pointers to
integers to indicate positions in the array. Rewrite the selection sort algorithm of
Fig. 2.3 using pointers.

2.2.9*: As mentioned in the box on "Sorting on Keys," if the elements to be sorted
are large structures such as type STUDENT, it makes sense to leave them stationary
in an array and sort pointers to these structures, found in a second array. Write
this variation of selection sort.

2.2.10: Write an iterative program to print the distinct elements of an integer array.

2.2.11: Use the ¿ and n notations described at the beginning of this chapter to
express the following.

a) The sum oí the odd integers from 1 to 377

b) The sum of the squares of the even integers from 2 to n (assume that n is even)

c) The product of the powers of 2 from 8 to 2k

2.2.12: Show that when small = i, liDes (6) through (8) of Fig. 2.2 (the swapping
steps) do not have any effect on array A.

.

..."'... 2.3 Inductive...
Mathematical induction is a useful technique Cor proving that a staternent S(n) is
true Cor all nonnegative integers n, or, more generally, Cor all integers at or above
some lower limito For example, in the introduction to this chapter we suggested
that the staternent E7=1 i = n(n + 1)/2 can be proved true Cor all n ?: 1 by an
induction on no

Now, let S(n) be sorne al'bitrary statement about an integer n. In the sirnplest
form of an inductive proof of the staternent S(n), we prove two facts:

Proofs

~

lnductive

hypothesis

SEC. 2.3 INDUCrlVE PRl>OFS 3S

Naming the Induction Parameter

It is often useful to explain an induction by giving the intuitive meaning of the
variable n in the statement 5(n) th&t we are proving. H n has no special meaning,
as in Example 2.4, we simply say "The proof is by induction on n." In other cases,
n mar have a physical meaning, as in Example 2.6, where n is the number of bits
in the code words. There we can say, "The proof is by induction on the number of
bita in the code words."

1. The basis case, which is frequently taken to be 5(0). However, the basis can be
5(k) for any integer k, with the understanding that then the statement 5(n)
is proved only for n ~ k.

2. The inductive step, where we prove that for all n ~ O [or for all n ~ k, if the
basis is 5(k)], 5(n) implies 5(n + 1). In this part of the proof, we assume
that the statement 5(n) is true. 5(n) is called the inductive hypothesis, and
assuming it to be true, we must tben prove tbat 5(n + 1) is true.

/-~~~ ... r-~V-~~-~V
Fig. 2.4. In an inductive proof, each instance of the statement S(n)

is proved using the statement for tbe next lower vaJue of n.

Figure 2.4 illustrates an induction starting at O. For each integer n, there is
a statement 5(n) to proveo The proof for 5(1) uses 5(0), the proof for 5(2) uses
5(1), and so on, as represented by the arrows. The way each statement depends on
the previous one is uniformo That is, by om proo/ o/ the inductive step, we prove

each o/ the steps implied by the a~ws in Fig. !

n
STATEMENT S(n): ¿2i = 2n+l - 1 for any n ?; O.

i=O
Tbat is, tbe sum of tbe powers of 2, from tbe Otb power to tbe ntb power, is 1 less
than tbe (n + l)st power of 2.3 For example, 1 + 2 + 4 + 8 = 16 - 1. Tbe proof
proceeds as follows.

BASIS. To prove tbe basis, we substitute O for n in the equation S(n). Then S(n)
becomes

3 S(n) can be proved without induction, using the formula for the 8um of a gt'Ometric series.

Howe\'er, it will aerve .. a simple example oC the technique oí mathematical induction.
fUrtht'r, the proofs of t~ formulas for the sum of a geom~tric or arithmetic 8f'ries that you
have probably seen in high !K:hool are ratht'r informal, and ~tri("tly ~peaking. mathetnaticaJ
induction should be uMOCi to pnJVf! thc-. formulas.

36 ITERA110N, INDUCTlON, ANO RECURSION

(2.2)

There is onIy one term, for i = O, in the summation on the left side oí Equation
(2.2), so that the left side of (2.2) sums to 2", or l. The right side of Equation (2.2),
which is V - 1, or 2 - 1, also has value l. Thus we have proved the basis of S(n);
that is, we have shown that this equality is true for n = O.

INDUCTION. Now we must prove the inductive step. We assume that S(n) is true,
and we prove the same equality with n + 1 substituted for n. Tbe equation to be
proved, S(n + 1), is

To prove

Tbis sum is almost tbe SalDe as tbe sum on tbe left sirle of S(n), which is

except tbat (2.3) alBO has a term for i = n + 1, tbat is, tbe term 2"+1
Since we are allowed to assume tbat tbe inductive bypotbesis S(n) is true in

OUT proof of Equation (2.3), we sbould contrive to use S(n) to advantage. We do so
by breaking tbe sum in (2.3) into two parts, one of wbich is tbe suro in S(n). Tbat
is, we separate out tbe last term, wbere i = n + 1, and write

Now we can make use oí S(n) by
in Equation (2.4):

n+l~ 2' = 2n+l - 1 + 2n+l (2.5)

,=0
When we simplify the right sirle of Equation (2.5), it becomes 2 x 2n+l - 1, or
2n+2 - l. Now we see that the summation on the left sirle of (2.5) is the same as
the left sirle oí (2.3), and the right sirle oí (2.5) is equal to the right sirle oí (2.3).
We have thus proved the validity oí Equation (2.3) by using the equality S(n); that
prooí is the inductive step. The conclusion we draw is that S(n) holds íor every
nonnegative value oí n. .

Why Does Proof by Induction Work?

In an inductive proof, we first prove that S(O) is true. Next we show that if S(n)
is true, then S(n + 1) holds. But why can we then conclude that S(n) is true for
all n ~ O? We shall offer two "proofs." A mathematician would point out that

o
L 2' = 21 - 1
i=O

(2.3)

(2.3), we begin by considering the 00 the left side,

"

L2i
i=O

n+l nL 2i = L 2i +2"+1
0=0 i=O

(2.4)

its right sirle 2n+l - 1 for ~':' 2', 'L..t=Osubstituting

\

2)

~

!),
&);

le,
be

3)

in
so
at

or
as
J).
at
ry

n)
Or
at l

SEC. 2.3 INDU(':'rIVE PROOFS 37

m

¿2i = 2m+l_1
i=O

We tben litera1ly substitute tbe desired expression, n + 1 in tbis case, for each
occurrence of m. Tbat gives us

,,+1¿ 2' = 2(,,+1)+1 - 1
i=O

When we simplify (n + 1) + 1 to n + 2, we have (2.3).
Note that we should put parentheses around the expression substituted, to

avoid accidentally changing the arder of operations. For example, had we substi-
tuted n + 1 for m in the expression 2 x m, and not placed the parentheses around
n+l, we would have gotten 2 xn+l, r~er than the correct expression 2 x (n+l),

which equals 2 x n + 2.

each of our "proofs" that induction works requires an inductive proof itself, and
therefore is no proof at all. Technically, induction must be accepted as axiomatic.
Nevertheless, many people find the following intuition useful.

In what follows, we assume that the basis value is n = O. That is, we know
that 5(0) is true and that for al1 n greater than O, if 5(n) is true, then 5(n + 1) is
true. Similar arguments work if the basis value is any other integer.

First "proof": Iten¡tion o/ !he inducti11e step. Suppose we want to show tbat
5(a) is true for a p~rticu1ar nonnegative integer a. H a = O, we just invoke the
truth of the basis, 5(0). Ha> O, then we argue as follows. We know that 5(0) is
true, from the basis. The statement "5(n) implies 5(n + 1)," with O in place of n,
says "5(0) implies 5(1)." Since we know that 5(0) is true, we now know that 5(1)
is true. Similarly, if we substitute 1 for n, we get "5(1) implies 5(2)," and so we
alBO know that 5(2) is true. Substituting 2 for n, we have "5(2) implies 5(3)," so
that 5(3) is true, and so on. No matter what the value of a is, we eventually get to

5(a), and we are done.

Second "proof": Least counterexample. Suppose 5(n) were not true for at least
one value of n. Let a be the least nonnegative integer for which 5(a) is falseo H
a = O, then we contradict the basiR, 5(0), and so a must be greater than O. But if
a> O, and a is the least nonnegative integer for which 5(a) is false, then 5(a - 1)

must be true. Now, the inductive step, with n replaced by a-1, tells us that S(a-1)
implies 5(a). Since 5(a-l) is true, S(a) must be true, another contradiction. Since
we assumed there were nonnegative values of n for which S(n) is false alld derived
a contradiction, S(n) must therefore be true for any n ~ O.

.

38 ITERATION,INOUCTlON, ANO RECURSION

Error-Detecting Codes

We shall now begin an extended example of "error-detecting codes," a concept that
is interesting in its own right and also leads to an interesting inductive proof. When
we transmit information over a data network, we code characters (letters, digits,
punctuation, and so on) into strings of bits, that is, O's and 1 's. For the moment let
us assume that characters are represente<! by seven bits. However, it is normal to
transmit more than seven bits per character, and an eighth bit can be used to help
detect sorne simple errors in transmission. That is, occasionally, one of the O's or 1 's
gets changed because of noise during transmission, and is received as the opposite
bit; a O entering the transmission line ernerges as a 1, or vice versa. It is useful Ü
the cornrnunication system can tell when one of the eight bits has been changed, so
that it can signal for a retransmission.

To detect changes in a single bit, we rnust be sure that no two characters are
represented by sequences of bits that differ in only one position. For then, ü that
position were changed, the result would be the code for the other character, and
we could not detect that an error had occurred. For example, ü the code for one
character is the sequence of bits 01010101, and the code for another is 01000101,
then a change in the fourth position frorn the left turns the former into the latter.

One way to be sure that no characters have codes that differ in only one position
is to precede the conventional 7-bit code for the character by a parity bit. ti the
total number of 1 's in a group of bits is odd, the group is said to have odd parity. ti
the number of 1 's in the group is even, then the group has even parity. The coding
scherne we select is to represent each character by an 8-bit code with even parity;
we could as well have chosen to use only the codes with odd parity. We force the
parity to be even by selecting the parity bit judiciously.

Parity bit

.. Example 2.5. The conventional
"American Standard Code for .
ter A is 1000001. That sequence
and so we prefix it by O to get
which differs from the 7-bit

ASCII

seven has an even number of 1 's,
1. The conventional code for C is 1000011,

for A only in the sixth position. However, this
code has odd parity, and 80 we prefix alto it, yielding the 8-bit code 11000011
with even pa..;ty. Note that after prefixing the parity bits to the codes for A and C,
we have 01000001 and 11000011, which differ in two positions, namely the first and
seventh, as seen in Fig. 2.5. +

Fig. 2.5.

We can always pick a parity bit to attach to a 7-bit code so that the number of
1 's in the 8-bit code i8 even. We pick parity bit O if the 7-bit code for the character
at hand has even parity, and we pick parity bit 1 if the 7-bit code has odd parity.
In either case, the number of 1 '8 in the 8-bit code is even.

""" '

A: O 1 O O G O O 1

C: 1 1 O O O O 1 1

We can choose the initial parity bit so the 8-bit code always has even parity.

.

t
o
"
.t
o
P
8
e
if
o

e
.t
d
e

j; 'J.

~

n

e

f.f

g
,..
e

+ Example 2.6. We shall prove the following by induction on n..f
,..
~
~,

Error-detecting
code

8

1."
d.

I{

r

J.

I

.l-

SEC. 2.3 INDUC11VE PROOFS 39

~

No two sequences of bits that each have even parity can differ in only one
position. For if two such bit sequences differ in exactly one position, then one has
exactly one more 1 than the other. Thus, one sequence must bave odd parity and
the otber even parity, contradicting OUT assumption that both have even parity. We
conclude that addition of a parity bit to make tbe number of l's even serves to
create an error-detecting code for characters.

The parity-bit scheme is quite "efficient," in tbe sense tbat it allows us to
transmit many different characters. Note that there are 2ft different sequences of n
bits, since we mar choose either of two values (O or 1) for tbe first position, either
of two values for the second position, and so on, a total of 2 x 2 x . .. x 2 (n factors)
possible strings. Thus, we might expect to be able to represent up to ~ = 256

characters with eight bits.
However, witb the parity scheme, we can choose only seven of the bits; the

eighth is then forced upon us. We can thus represent up to 27, or 128 characters,
and still detect single errors. That is not so bad; we can use 128/256, or half, of
the possible 8-bit codes as legal codes for characters, and stiU detect an error in one

bit.
Similarly, if we use sequences of n bits, choosing one of them to be the parity

bit, we can represent 2ft-l characters by taking sequences of n - 1 bits and prefixing
the suitable parity bit, whose value is determined by the otber n - 1 bits. Since
there are 2n sequences of n bits, we can represent 2n-l/2n, or half tbe possible
number of characters, and stiU detect an error in any one of the bits of a sequence.

Is it possible to detect errors and use more than half the possible sequences of
bits as legal codes? OUT next example tells us we cannot. The inductive proof uses
a statement tbat is not true for O, and for wbich we must choose a larger basis,
namely 1.

STATEMENT S(n): If C is any set oí bit strings oí length n that is error detecting
(i.e., if there are no two strings that differ in exactlyone position), then C
contains at most 2n-l strings.

This statement is not true for n = O. 8(0) says tbat any error-detecting set of strings
of length O has at most 2-1 strings, that is, half a string. Technically, the set C
consisting of only the empty string (string with no positions) is an error-detecting
set of length O, since there are no two strings in C that differ in only one position.
Set C has more than half a string; it has one string to be exacto Thus, 8(0) is false.
However, for all n ?; 1, 8 (n) is true, as we shall see.

BASIS. The basis is 8(1); that is, any error-detecting set of strings oflength one has
at most 21-1 = 20 = 1 string. There are only two bit strings of length one, the string
O and the string 1. However, we cannot have both of them in an error-detecting
set, because they differ in exactly one position. Thus, every error-detecting set for
n = 1 must have at most one string.

INDUCTION. Let n ?: 1, aIld assume that the indu<."tive hypothesis - all error-

detecting set of strings of lcngth n has at most 2n-l strings - is true. W(' must

I

40 ITERATION, INDUC'J10N, AND RECURSJON

show, using this assumption, that any error-detecting set C of strings with length
n + 1 has at most 2ft strings. Thus, divide C into two seta, Co, the set of strings in
C that begin with O, and C1, the set ofstrings in C that begin with 1. For instante,
suppose n = 2 and C is the code with strings of length n + 1 = 3 constructed using
a parity bit. Then, as shown in Fig. 2.6, C consista of the strings 000, 101, 110, and
011; Co consists of the strings 000 and 011, and C1 has the other two strings, 101
and 110.

Consider the set Do consisting of those strings in Co with the leading O removed.
In OUT example above, Do contains the strings 00 and 11. We claim that Do cannot
have two strings differing in only one bit. The reason is that if there are two such
strings - sayal a2 . . . an and bl ~ . . . bn - then restoring their leading O's gives us
two strings in Co, Oala2'" an and Obl~... bn, and these strlngs would differ in only
one position as well. But strings in Co are also in C, and we know that C does not
have two strings that differ in only one position. Thus, neither does Do, and so Do
is an error detecting seto

Now we can apply the inductive hypothesis to conclude that Do, being an
error-detecting set with strings of length n, has at most 2n-l strings. Thus, Co has
at most 2n-l strings.

We can reason similarly about the set Cl. Let Dl be the set of strings in Cl,
with their leading 1 's deleted. DI is an error-detecting set with strings of length
n, and by tbe inductive hypothesis, Dl has at most 2n-l strings. Thus, Cl has at
most 2n-l strings. However, every string in C is in either Co or Cl. Therefore, C
has at most 2n-l + 2n-l, or 2n strings.

.

We have proved that S(n) implies S(n + 1), and so we may conclude that S(n)
is true for all n ::?: 1. We exclude n = O from the claim, because the basis is n = 1,
not n = O. We now see that the error-detecting sets constructed by parity check
are as large as possible, since they have exactly 2n-1 strings when strings of n bits
are used. ...

The set C is split into COI the strings beginning with O, and CI,
the strings beginning with 1. Do and DI are formed by

deleting the leading O's and 1 's, respectively.

Fig. 2.6.

I

'fiiangular
number

t

L

SECo 2.3 INDUC1'\VE PROOFS 41

How to Invent Inductive Proofs
Tbere is no "crank to turn" tbat is guaranteed to give you an inductive proof oí any
(true) statement S(n). Finding inductive proofs, like finding proofs of any kind, or
like writing programs tbat work, is a task witb intellectual challenge, and we can
only offer a few words oí advice. If you examine tbe inductive steps in Examples 2.4
and 2.6, you will notice tbat in each case we bad to rework tbe statement S(n + 1)
tbat we were trying to prove so tbat it incorporated the inductive bypotbesis, S(n),
plus sometbing extra. In Example 2.4, we expressed the sum

1 + 2 + 4 + . . . + 2n + 2n+I

as tbe sum

1+2+4+...+2n

wbich tbe inductive hypotbesis tells us sometbing about, plus the extra term, 2n+I.
In Example 2.6, we expressed tbe set C, witb strings of length n + 1, in terms

of two sets of strings (which we called Do and DI) of length n, so that we could
apply tbe inductive bypothesis to these sets and conclude tbat both of these sets

were of limited size.
Of course, working with tbe statement S(n + 1) so that we can apply tbe

inductive bypotbesis is just a special case of the more universal problem-solving
adage "Use wbat is given." The bard part always comes wben we must deal with
tbe "extra" palt of S(n+ 1) and complete tbe prooí of S(n+ 1) from S(n). However,
the íollowing is a universal rule:

... An inductive proof must at some point say ". . .and by tbe inductive bypotbesis
we know tbat... ." If it doesn't, tben it isn't a inductive proof.

EXERCISES

2.3.1: Show the following formulas by induction on n starting at n = l.
a) ~~=1 i = n(n + 1)/2.

b) E::l i2 = n(n+ 1)(2n+ l}J~.¡.,

c) ~~1 i3 = n2(n + 1)2/4.

d) E~=11/i(i + 1) = n/(n + 1).

2.3.2: Numbers of the form tn = n(n + 1)/2 are ca.lled triangular numbers, because
marbles arranged in an equilateral triangle, n on a side, will total ~~1 i marbles,
which we saw in Exercise 2.3.1(a) is tn marbles. For example, bowling pins are
arranged in a triangle 4 on a side and tbere are t4 = 4 x 5/2 = 10 pingo Show by

induction on n tbat ~;=1 tj = n(n + l)(n + 2)/6.

2.3.3: Identify tbe parity of each of the following bit. sequences as evcn or odd:

a) 01101
b) 111000111

,

42 ITERATlON, INDUCTION, AND RECURSION

c) 010101

2.3.4: Suppose we use
of strings C formed from O's, 1 's, and 2's is
difl'er in onlyone position. For example, {OO,
strlngs of length two, using the digits O, 1,
error-detecting set of strlngs oí length n using tbe
more than 3n-l strlngs.

2.3.5*: Show tbat for any n ~ 1, there is an error-detecting set of strings of lengtb
n, using the digits O, 1, and 2, that has 3n-l strings.

2.3.6*: Show that if we use k symbols, for any k ~ 2, then there is an error-
detecting set of strlngs of length n, using k different symbols as "digits," with kn-l
strings, but no such set of strings with more than kn-l strings.

2.3.7*: If n ~ 1, the number of strlngs using the digits O, 1, and 2, with no two
consecutive places holding the SalDe digit, is 3 x 2n-l. For example, there are 12
such strings of length three: 010, 012, 020, 021, 101, 102, 120, 121, 201, 202, 210,
and 212. Prove this claim by induction on the length of the strings. Is the formula
true for n = O?

2.3.8*: Prove that the ripple-carry addition algorithm discussed in Section 1.3
produces the correct answer. Hint: Show by induction on i that alter considering
the first i places from the right end, the sum of tbe tails of length i for the two
addends equals the number whose binary representation is the carry bit followed by
the i bits of answer generated so far.

2.3.9*: The formula for the sum of n
is

,,-1L ari = (ar" - a)
i:zO (r - 1)

Prove this formula by induction on n. Note that you must assume r ~ 1 for the
formula to boldo Wh~re do you use that assumption in your proof?

2.3.10: The formula for the sum of an arithmetic series with first term a and
increment 6, that is, a, (a + 6), (a + 26),..., (a + (n - 1)6), is

..-1
La + 6i = n(2a + (n - l}b)/2
,=o

a) Prove this formula by induction on n.

b) Show how Exercise 2.3.1(a) is an example of this formula.

2.3.11: Give two informal proofs that induction starting at 1 "works," although
the statement 8(0) may be falseo

2.3.12: Show by induction on the length of strings that the code consisting of the
odd-parity strings detects errors.

digits - 8&Y o, 1, and 2 - to code symbols. A set
en-or detecting if no two strings in C
11,22} is an error-detecting set with

and 2. Show that for any n ~ 1, an
digits O, 1, and 2, cannot have

series a, ar, ar2,..., ar"-l

.

-t
...
.-

b
o
e Arithmetic

series

b

~
2

1,
~ Geometric

series

1
~
)
,

Error-correcting

code

SECo 203 INDUCTIVE PROOFS 43

Arithmetic and Geometric Sums
There are two formulas from high-scl1oo1 algebra that we sha1l use frequently. They
each have interesting inductive proofs, which we ask the reader to provide in Exer-

cises 2.3.9 and 2.3.10.

An arithmetic series is a sequence of n numbers of the forro

a, (a + b), (a + 2b),..., (a + (n - l)b)

The first term is a, and each term is b larger than the one before. The SUJO of these
n numbers is n times the average of the first and last terms; that is:

..-1
La + bi = n(2a + (n -1)6)/2
i=O

For example, consider the sum of 3 + 5 + 7 + 9 + 11. There are n = 5 terms, the
first is 3 and the last 11. Thus, the sum is 5 x (3 + 11)/2 = 5 x 7 = 35. You can
clleck that this sum is correct by adding the five integers.

A geometric series is a sequence of n numbers of the fono

2 -3 n-l
a,ar,ar ,ar-,...,ar

Tbat is, tbe first tenn is a, and each successive term is r times tbe previous termo
Tbe formula for tbe sum of n tenns of a geometric series is

,,-1
¿Mi =
i=O

(arA - a)

~=1)-
Here, r can be greater or less than 1. If r = 1, the above formula does not work,
but all terms are a so the sum is obviously ano

As an example of a geometric series sum, consider 1 + 2 + 4 + 8 + 16. Here,
n = 5, the first term a is 1, and the ratio r is 2. Thus, the sum is

(1 x ~ - 1)/(2 - 1) = (32 - 1)/1 = 31

asyou mar c-Jleck. ForanotberGample, consider 1 + 1/2+ 1/4+ 1/8+ 1/16. Again
n = 5 and a = 1, but r = 1/2. The sum is

(1 X (!)5 -1)/(! -1) = (-31/32)/(-1/2) = 1tl

2.3.13..: If no two strings in acode differ in fewer than three positions, then we
can actually correct a single error, by finding the unique string in the code that
differs froro the received string in only one position. It turns out that there is a
code of 7-bit strings that corrects single errors and contains 16 strings. Find such a
codeo Hint: Reasoning it out is probably best, but if you get stuck, write a program
that searches for such acode.

2.3.14.: Does the even parity code detect any "double errors," that is, changes in
two different bits? Can it correct any single errors?

,

44 ITERATlON, INOUCTlON, ANO RECURSION

.:. 2.4

In the examples seen so lar, we have proved that S(n + 1) is true using only S(n)
as an inductive hypothesis. However, since we prove our statement S for values of
its parameter starti~ at the basis value and proceeding upward, we are entitled to
use S(i) for all values of i, from the basis value up to n. This forro of induction is
called complete (or sometimes perfect or strong) induction, while the simple forro of
induction oí Section 2.3, where we used only S(n) to prove S(n + 1) is sometimes
called weak induction.

Let us begin by considering how to pedorro a complete induction starting with
basis n = O. We prove that S(n) is true for all n ?: O in two steps: e

1. We first prove the basis, S(O).

Strong and
weak induction

2. As an inductive hypothesis, we assume all of S(O), S(1),. . ., S(n) to be true.
From tbese statements we prove that S(n + 1) bolds.

As for weak induction described in tbe previous section, we can alBO pick some
value a otber tban O as tbe basis. Tben, for tbe basis we prove S(a), and in tbe
inductive step we are entitled to assume only S(a),S(a + 1),..., S(n). Note that
weak induction is a special case of complete induction in which we elect not to use
any of the previous statements except S(n) to prove S(n + 1).

Figure 2.7 suggests how complete induction works. Each instance of tbe state-
ment S(n) can (optionally) use any of the lower-indexed instances to its right in its

proof.

into which the simple inductions
template.

Say you are going to prove S(n) by
the constant of the basisj usually io

intuitively what n means, e.g.,

-

,

+

SEC. 2.4 COMPLETE INDUC'nON 45

~

Fig.2.7. Complete induction aIlows each instance to ~ onc, BOrne, or
aI1 of the previous instances in its proaf.

Inductions Witb More Tban One Basis Case
When perfonning a complete inductioo, there are times when it is useful to have
more than one basis case. If we wish to prove a statement S(n) lor al1 n ~ io, then
we could treat oot ooly io as a basis case, but a1so sorne oumber 01 consecutive
integers above io, say io, io + 1, io + 2, . . . ,jo. Tben we must do the 10Uowing two

steps:

1. Prove each 01 tbe basis cases, tbe statements S(io), S(io + 1),..., S(1o).

2. As an inductive hypotbesis, assume al1 01 S(io), S(io + 1),..., S(n) hold, for
some n ~ io, and prove S(n + 1).

Example 2.1. Our first example of a complete induction is a simple ooe that
uses multiple basis cases. As we shall see, it is ooly "complete" in a limited sense.
To prove S(n + 1) we do not use S(n) but we use S(n - 1) ooly. In more general
complete inductions to foUow, we use S(n), S(n - 1), and manyother instances 01

the statement S.
Let us prove by induction on n the 10Uowing statement lor all n ~ 0.4

STATEMENT S(n): There are integers a and b (positive, negative, or O) such that
n = 2a + 36.

"
BASIS. We shall take both O and 1 88 basis ~.

i) For n = O we mar pick a = O and b = O. Surely O = 2 x O + 3 x O.

ii) For n = 1, pick a = -1 and b = 1. Then 1 = 2 x (-1) + 3 x 1.

INDUCTION. Now, we mar assume S(n) and prove S(n + 1), for any n ?: l. Note
that we mar assume n is at least the largest of the consecutive values for which we
have proved the basis: n ?: 1 here. Statement S(n + 1) says that n + 1 = 2a + 3b
for sorne integers a and b.

The inductive hypothesis says that al1 of S(O), S(l),..., S(n) are true. Note
that we begin the sequence at O because that was the Jowest oí the consecutive basis
cases. Since n ?: 1 Cal} be assumed, we know that n -1 ?: O, and therefore, S(n -1)
is true. This statement says that there are integers a and b such that n - 1 = 2a + 36.

4 Actually, tbis ~ment is tme for all n, positive or negative, but tbe Calle of n~ative n
requires a 8ec:ond induction which we leave a.'I éUI I'xercisc.

a and b (positive, negative, or O) such that

4

.

46 ITERATION.INOUC'I10N. ANO RECURSION

Since we need a in the staternent S(n+ 1), Jet us restate S(n-l) to use different
llames for the integers and say there are integers a' and b' such that

n - 1 = 2a' + 3b' (2.6)

If we add 2 to both Birles of (2.6), we have n + 1 = 2(a' + 1) + 3b'. If we then Jet
a = a' + 1 and b = b', we have the staternent n + 1 = 2a + 3b for sorne integers a
and b. This staternent is S(n + 1), so we have proved the induction. Notice that in
this proaf, we did not use S(n), but we did use S(n - 1). .

J ustifying Complete Induction

Like the ordinary or "weak" induction discussed in Section 2.3, complete induction
can be justified intuitively as a proof technique by a "Ieast counterexample" argu-
mento Let the basis cases be S(io), S(io + 1),..., SUo), and suppose we have shown
that for any n ?: jo, S(io), S(io+ 1),... ,S(n) togetber imply S(n+ 1). Now, suppose
S(n) were not true for at least one value of n ?: io, and let b be the smallest integer
equal to or greater than io for which S(b) is falseo Then b cannot be between io and
jo, or the basis is contradicted. Furtber, b cannot be greater tban jo. Ir it were, all
of S(io), S(io + 1),... ,S(b - 1) would be true. But the inductive step would then
tell us that S(b) is true, yielding the contradiction.

Norma! Forms for Arithmetic Expressions

We shall now explore an extended example concerning the transformation of arith-
metic expressions to equivalent forms. It offers an illustration of a complete induc-
tion that takes full advantage of the fact that tbe statement S to be proved may be
assumed for aIl arguments from n downward.

By way of motivation, a compiler for a programming ianguage may take ad-
vantage of the algebraic properties of arithmetic operators to rearrange the arder
in which the operands of an arithmetic expression are evaluated. The goal is of this
rearrangement is to find a way for the computer to evaluate the expression using
less time than the obvious evaluation arder takes.

In this section we consider arithmetic expressiODS containing a single associative
and commutative operator, like +, and examine what rearrangements of operands
are possible. We shall prove that if we have any expression involving onIy the
operator +, then the value of the expression is equal to the value of any other
expression with + applied to the salDe operands, ordered and/or: grouped in any
arbitrary way. For example,

(a3 + (a4 + al)) + (a2 + as) = al + (a2 + (a3 + (a4 + as)))

We shall prove this claim by performing two separate inductions, the first oí which
is a complete induction.

Example 2.8. We shall prove by complete induction on n
operands in an expression) the statement

+ (the number of

.

It

.) AS80ciative law

!t
o
D

.0

l-

O

;e

~

d

11

O

Commutative
law

1-

:-
.e

1-

~

is

g

'8
\8
~e
~

y

b

If

SEC. 2.4 COMPL"".E INDUCTlON ..7

Associativity and Commutativity
Reca1l tbat tbe associ4tive law for addition says that we can add three values either
by adding tbe first two and then adding tbe third to tbe result, or by adding the first
to the result of adding the second and thirdj tbe result will be the same. Formally,

(El +~)+& =EI +(~+E3)

where El, ~, and & are any arithmetic expressions. For inst<U1ce,

(1 + 2) + 3 = 1 + (2 + 3)

Here, El = 1, ~ = 2, and & = 3. Also,

((xy) + (3z - 2)} + (y + z) = xy + ((3z - 2) + (y + z)}

Here, El = xy, ~ = 3z - 2, and & = y + z.
Also recall that the commutative law for addition says that we can suro two

expr~ions in either order. Fom1ally,

El +~ = ~+EI
For example, 1 + 2 = 2 + 1, and xy + (~z - 2) = (3z - 2) + xy.

STATEMENT S(n): If E is an expressioil involving the operator + and n operands,
and a is one of tbose operands, then E can be transforrned, by using the
associative and cornrnutative laws, into an expression of the form a + F,
where F is an expression involving all the operands of E except a, grouped
in sorne arder using the operator +.

Statement S(n) only holds for n ?: 2, since there must be at least one occurrence
of the operator + in E. Thus, we shall use n = 2 as our basis.

BASIS. Let n = 2. Then E can be only a + b or b + a, for some o~and b other
than a. In the first case, we let F be the expression b, and we are done. In the
second case, we note that by the commutative law, b + a can be transformed joto
a + b, and so we mar again Jet F = b.

INDUCTION. Let E have n + 1 operands, and assume that S(i) is true for i =
2,3, . . . , n. We need to prove the inductive step for n ~ 2, so we mar assume
that E has at least three operands and therefore at least two occurrences of +.
We can write E as El + ~ for some expressions El and E2. Since E has exactly
n + 1 operands, and El and ~ must each have at least one of these operands, it
follows that neither El nor ~ can have more than n operands. Thus, the inductive
hypothesis applies to El and ~, as long as they have more than one operand each
(because we started with n = 2 as the basis). There are four cases we must consider,
depending whether a is in El or E2, and on whether it is or is not the only operand

in El or ~.
a) El is a by itself. An example of this case occurs when E is a + (b + c); here El

is a and ~ is b + c. In this C(ISC, E2 serves as F; that is, E is already of the

form a + F.

.

lTERATION, INDUCTION, AND RECURSION48

b) El has more tban one operand, and o is 8Il1ong tbem. For instante,

E= (c+(d+o») +(b+e)

where El = c + (d + a) and ~ = b + e. Here, since El has no more than
n operands but at least two operands, we can apply the inductive hypotbesis
to teU us tbat El can be transformed, using the commutative and associative
laws, into o+Es. Thus, E can be transformed into (0+&)+&. We apply the
associative law and see tbat E can furtber be transformed into o + (Es + ~).
Thus, we mar choose F to be E3 + ~, which proves the inductive step in
tbis case. For our ex8ll1ple E above, we mar suppose tbat ~ = c + (d + o)
is transformed by the inductive hypothesis into 0+ (c + d). Tben E can be
regrouped into 0+ (c + d) + (b + e»).

c) ~ is o alone. For instance, E = (b+c)+o. In tbis case, we use the commutative
law to transform E into o + El, which is of the desired form if we let F be El'

d) ~ has more than one operand, including a. An example is E = b + (a + c).
Apply tbe commutative law to transform E into ~ + El' Then proceed as

in case (b). HE = b + (o + c), we transform E mst into (o + c) + b. By the
inductive hypothesis, a + c can be put in the desired form; in fact, it is already
tbere. The associative law then transforms E into a + (c + b).

In a1l four cases, we have transformed E to the desired formo Thus, tbe inductive
step is proved, and we conclude that S(n) for a1l n'~ 2. +

... Example 2.9. The inductive proof of Example 2.8 leads directly to an algo-
rithm that puts an expression into the desired formo As an example, consider the
expression

and suppose that v is the operand we wish to "pull out," that is, to play the role oí
a in the tran8Íormation oí Example 2.8. Initially, we have an example oí case (b),
with Et = x + (z + v), and ~ = w + y.

Next, we must work on the expression El and "pulI out" v. El is an example oí
case (d), and so we first apply the commutative law to transíorm it into (z + v) + x.
As an instance oí case (b), we must work on tbe expression z + v, which is an
instance oí case (c). We thus tran8Íorm it by the commutative law into v + z.

Now El has been tran8Íormed into (v+ z) + x, and a further use oí the associative
law tran8Íorms it to v+(z+x). That, in tum, transforms E into (v+(z+x»)+(w+y).
By the associative law, E can be tran8Íormed into v + ((z + x) + (w + y»). Thus,
E = v + F, where F is the expression (z + x) + (w + y). The entire sequence oí
transíormations is summarlzed in Fig. 2.8. +

Now, we can use the statement proved in Example 2.8 to prove our original
contention, that any two expressions involving the operator + and the sanle list
of distinct operands can be transformed one to the other by thc ~sociative and
commutative laws. This proof is by weak induction, as discussoo in SectiOlI 2.3,
rather than complete induction.

E= (%+(z+v)} +(10'+1/)

,

n
i8
,'e
le
).
n
1)
-e ... Example 2.10. Let us prove the following

e

i.

l.
.
e
y

e

.
"

f
. .
~
.
.

,

+

SEC. 2.4 COMPLETE INDV<."ON 49

(s + (z + ti») + (., + ,)
(z + ti) + z) + (w + ,)
(tI+z)+s) +(.,+,)
(ti + (z + s») + (., + ,)
ti + «z + s) + (., + ,»)

Fig. 2.8. Using the commutatiw ud a880ciatiw laws, ~ can "pullout"
any operand, such as ti.

by inductioo 00 n, tbestatem en t

STATEMENT T(n): If E and F are expressioDS involving the operator + and the
salDe set of n distinct operands, then it is possible to transform E into F by
a sequence of applications of the associative and commutative laws.

BASIS. If n = 1, then the two expressions must both be a single operand a. Since
they are the salDe expression, sureiy E is "transformable" into F.

INDUCTION. Suppose T(n) is true, for Bome n ~ 1. We shall now prove T(n + 1).
Let E and F be expressiODS involving the same ~t of n+ 1 operands, and let a be one
of these operands. Since n + 1 ~ 2, S(n + 1) - the statement from Example 2.8 -

must boldo Thus, we can transform E into a + El for some express ion El involving
the other n operands of E. Similarly, we can transform F into a + FI' for some
expression FI involving the salDe n operands as El' What is more important, in
tbis case, is that we can a1so perform the traosformatioDS in the opposite direction,
traosforming a + FI into F by use of the associative and commutative laws.

Now we invoke the inductive hypothesis T(n) on the expressions El and FI.
Eacl1 has the same n operands, and so the inductive hypothesis applies. That teUs
us we can transform El into Fl' and therefore we can transform a+EI into a+FI'
We mar thus perform the traosformations

E -+ +a+EI UsingS(n+1)
-+ . . . -+ a + FI Using T(n)
-+ ... -+ F Using S(n + 1) in reverse

to turn E into F. +

Example 2.11. Let os transform E = (x+y)+(w+z) into F = (w+z)+y)+x.
We begin by selocting an operand, say w, to "pull out." IC we check the cases in
Example 2.8, we see that Cor E we perlonn the sequence oC transformations

(x + y) + (w + z) -+ (w + z) + (x + y) -+ w + (z + (x + y)) (2.7)

while Cor F we do

{(w + z) + y) + x -+ (., + (z + y)) + x -+ w + {(z + y) + x) (2.8)

,

50 ITERA110N,INDUCTION, AND RECURSION

We now have the subproblem of transforming z + (x + 'J) into (z +~) + x. We
shall do so by «pulling out" x. The sequences of transformations are

z + (x + 'J) -+ (x +~) + z -+ x + (1/ + z) (2.9)

and

(z + 'J) + x -+ x + (z + 1/) (2.10)

Tbat, in turn, giV5 U8 a subproblem of transforming 1/ + z into z + 1/. We do so
by an application of the commutative law. Strictly speaking, we use the technique
of Example 2.8 to "pull out" 'J for each, leaving 'J + z for each expression. Then
the basis case for Example 2.10 tells us that the expression z can be "transformed"
into itself.

We can now transform z + (x + y) ioto (z + y) + x by the steps of line (2.9),
then applying the commutative law to subexpression 'J + z, and finally using the
transformation ofline (2.10), in reverse. We use these transformations as the middle
part of the transformation from (x + 'J) + (w + z) to {(w + z) + 'J) + x. FÍrst we
apply the transformations of line (2.7), and then the transformations just discussed
to change z + (x + 'J) into (z + 'J) + x, and finally the transformations of line (2.8)
in reverse. The entire sequence of transformations is summarized in Fig. 2.9. +

EXERCISES

2.4.1: "Pullout" froro the expression E = (u + ti) + ((w + (x + y)} + z) each of
the operands in tUfO. That is, start from E in each of the six parts, and use the
techniques of Example 2.8 to transform E into an expression of the forro u + El.
Then transform El into an expression of the forro ti + ~, and SO oo.

2.4.2: Use the technique of Example 2.10 to transform

a) w+(x+(y+z)} into (w+x)+y}+z
b) (v + w) + (x + y) + z} into (y + w) + (ti + z)} + x

2.4.3*: Let E be an expression with operators +. -, *. and /; each operator is
binary only; that is, it takes two operands. Show, using a complete induction on
the number of occurrences oí operators in E, that if E has n operator occurrences,
then E has n + 1 operands.

Binnryoperator

(% + W) + (ID + z) Expression E
(ID + z) + (% + W) Middle oí (2.7)
ID + (z + (% + W») End oí (2.7)
ID + (so + J) + z) Middle oí (2.9)
ID + (so + (y + .)) End oí (2.9)
ID + (so + (z + ,») Commutative law
ID + (z + W) +.2.') (2.10) in reverse
(ID + (z + y») + % Middle oí (2.8) in reverse
(UJ + z) + y) + % Expression F, end oí (2.8) in reverse

Fig. 2.9. Transforming one expression into another using the commutative
and ~iative laws.

.

'e

t)

J)

o
:e
n
..

).
'e
;e
-e
d

;)

..

IÍ

e
.

s
n
i,

SEC.2.4 COMPLETE INDUCTlON 51

A Template for AII Inductions

Tbe foUowing organizatioo of ioductive proofs covers complete indUctiODS with mul-
tiple basis cases. As a special case it includes tbe weak inductioos of Sectioo 2.3,
and it includes tbe common situation wbere there is ooly one basis case.

1. Specify tbe statement S(n) to be proved. Say that you are going to prove S(n)
by inductioo 00 n, for n ?: io. Specify what io is; often it is O or 1, but io could
be any integer. Explain intuitively what n represents.

2. State tbe basis case(s). These wiU be a1l tbe integers from io up to some integer
jo. Often jo = io, but jo could be larger.

3. Prove ead1 of the basis cases S(io),S(io + 1),... ,S(jo).

4. Set up the inductive step by stating tbat you are assuming

S(io),S(io + 1),... ,S(n)

(the "inductive bypotbesis") and that you want to prove S(n + 1). State that
you are assuming n ?: jo; that is, n is at least as great as the highest basis case.
Express S(n + 1) by substituting n + 1 for n in the statement S(n).

5. Prove S(n + 1) under the assumptions meotioned in (4). If the inductioo is
a weak, rather than complete, ind':Jctioo, then ooly S(n) will be used in the
proof, but you are free to use any or a1l of the statements of the inductive

hypothesis.

6. Conclude that S(n) is true for a1l n ~ io (but oot o~y ror smaIIer n).

2.4.4: Give an example of a binary operator tbat is commutative but not associa-
tive.

2.4.5: Give an example of a binary operator that is associative but not commuta-
tive.

2.4.6*: Consider an expressiol! E wb~ operaron are all binary. The length of E
is the number of symbols in E, counting an operator or a left or rigbt parenthesis as
one symbol, and aIso counting any operand such as 123 or abc as one symbol. Prove
tbat E must have an odd lengtb. Hint: Prove the claim by complete induction on
tbe length of the expression E.

2.4.7: Show that every negative integer can be written in tbe fonn 2a + 3b for some
(not necessarily positive) integers a and b.

2.4.8*: Show that every integer (positive or negative) can be written in the forro
5a + 7b for some (not necessarily positive) integers a and b.

2.4.9*: Is every proofby weak induction (M. in Section 2.3) aIso a proofby complete"
induction? Is every proof by complete induction aIso a proof by weak indurtion?

2.4.10*: We showed in this section how to justify complete indurtion by a lea.~t
counterexample argumento Show how complete induction can alllO be ju!ltitied by
an iteration.

.

ITERATlON, INDUCTI0N, AND RECURSION52

Truth in Advertising
There are many difficulties, botb theoretical and practical, in proving programs
correcto An obvious question is "What does it mean for a program to be 'correct'?"
As we mentioned in Chapter 1, most programs in practice are written to satisfy some
informal speclflcation. The specification itself mar be incomplete or inconsistent.
Even if there were a precise formal specification, we can show tbat no algoritbm
exists to prove that an arbitrary program is equivalent to a given specification.

However, in spite of these difficulties, it is beneficial to state and prove asser-
tions about programs. The loop invariants of a program are often the most useful
short explanation one can give of how the program works. F\1rther, the programmer
should have a loop invariant in mind while writing a piece of codeo Tbat is, there
must be a reason why a program works, and tbis reason often has to do witb an
inductive hypothesis tbat holds eacl1 time the program goes around a loop or each
time it performs a recursive callo The programmer should be able to envision a
proof, even though it mar be impractical to write out such a proof line by line.

.:. 2.5 Proving Properties of Programs

In this section we shall delve into an area where inductive proofs are essential:
proving that a program does what it is claimed to do. We shall see a tecllnique
for explaining what an iterative program does as it goes around a loop. H we
understand what the loops do, we generally understand what we need to know
about an iterative programo In Section 2.9, we sbaIl consider wbat is needed to
prove properties of recursive programs.

Loop Invariants

The key to proving a property of a loop in a program is selecting a loop invariant,
or inductive assemon, which is a statement S that is true each time we enter a
particular point in the loop. The statement S is then proved by induction on a
parameter that in sorne way measures the nurnber of times we have gone around
the loop. For example, the parameter could be the number of times we have reached
the test of a while-loop, it could be the value of the loop index in a for-loop, or it
could be some expression involving the program variables that is known to increase
by 1 for each time around the loop.

Inductive
assertion

+ Example 2.12. As an example, let us consider the inner loop ofSelectionSort
from Section 2.2. Th~ lines, with the original nwnbering from Fig. 2.2, are

(2) ama11 = i;
(3) for (j = i+l; j < n; j++)
(4) if (A[j] < A[ama11])
"(S) ama11 = j;

.

,

~

..
e
Q

11

~

e
n
b
a

-

1:
e
.e
.v
o

t,
a.
a
d
d
it
;e

t

SEC. 2.5 PROVING PROPERTlE.'i OF PRO(-:RAMS 53

Flowchart for the inner loop of SelectionSort.Fig.2.10.

Recall that the purpose oí these línes is to make amall equal to the index oí an
element oí A[i. .n-l] with the smallest value. To see why that claim is true,
consider the flowchart íor our loop shown in Fig. 2.10. This flowchart shows the
five steps necessary to execute the program:

1. First, we need to initialize small to i, as we do in line (2). .
2. At the beginning oí the íor-loop oí line (3), we need to initialize j to i + 1.

3. Then, we need to test whether j < n.
4. If so, we execute the body oí the loop, which consists oí lines (4) and (5).

5. At the end oí the body, we need to increment j and go back to the test.

In Fig. 2.10 we see a point just before the test that is labeled by a loop-invariant
statement we have called S(k); we shall discover momentarily what this statement
must be. The first time we reach the test, j has the value i + 1 and small has the
value i. The second time we reach the test, j has the value i + 2, because j has been
incremented once. Because the body (lines 4 and 5) sets small to i + 1 if A[i + 11
ís less than A[i], we see that amall is tbe index of whichever of A[i] and A[i + 1] is

smaller .5

5 In case of a tie, small will be i. In general, we shall pretend that no ties occur and talk about
"the smallest. element." when we really me&n "t.he first. occurrence of t.he smallest. el.,ment.."

,

54 ITERATlON. INOUCTlON, ANO RECURSION

Similarly, the third time we reach the test, the value of j is i + 3 and amall
is tbe index of tbe smallest of A [i. . i +2]. We shall thus try to prove the following
statement, which appears to be the general roleo

STATEMENT S(k): If we reach the test for j < n in tbe for-statement of line (3)
witb k as tbe value of loop index j, then the value of amall is the index of
tbe smallest of A [i . . k-l] .

Note that we are using tbe letter k to stand for one of tbe values that the variable
j assumes, as we go around the loop. That is less cumbersome than trying to use
j as tbe value of j, because we sometimes need to keep k fixed while tbe value of
j changes. Also notice tbat S(k) has the fonn "if we reach ... ," because for some
values of k we mar never readl the loop test, as we broke out of the loop for a
smaller value of tbe loop index j. If k is onc of those values, then S(k) is surely
true, because any statement of the forro "if A then B" is true when A is falseo

BASIS. The basis case is k = i + 1, where i is the value of tbe variable i at line
(3).6 Now j = i + 1 when we begin tbe loop. Tbat is, we bave just executed line
(2), which gives small tbe value i, and we have initialized j to i + 1 to begin the
loop. S(i + 1) says tbat small is tbe index of the smallest element in A[i. .i],
wbich means that tbe value of small must be i. But we just observed that line (2)
causes amall to bave the value i. Technically, we DlUSt also sbow that j can never
have value i + 1 except the first time we reach tbe test. Tbe reason, intuitively, is
tbat ead1 time around tbe loop, we increment j, so it wiIl never again be as low as
i + 1. (To be períectly precise, we sbould give an inductive proaf of tbe assumption
tbat j > i + 1 except tbe first time tbrough the test.) Thus, the basis, S(i + 1), has
been sbown to be true.

INDUCTION. Now let us assume as our inductive hypothesis that S(k) holds, for
some k ~ i + 1, and prove S(k + 1). First, if k ~ n, then we break out of the loop
when j has tbe value k, or earlier, and so we are sure never to reach the loop test
with the value of j equal to k + 1. In tbat case, S(k + 1) is surely true.

Thus, let us assume that k < n, so that we actually make the test with j eqUal
to k+1. S(k) says that amall indexes the smallest ofiCio .k-1], and S(k+1) says
that ama11 indexes the smallest of A[i. .k]. Consider what happens in the body of
the loop (lines 4 and 5) when j has the value k; there are two cases, depending on
whether tbe test of line (4) is true or noto

1. If A[k] is not smaller than the smallest of A [i. . k-1], then the value of sma11
does not change. In that case, however, small alSO indexes the smallest oí
A[i. .k], since A[k] is not the smallest. Thus, the conclusion of S(k + 1) is
true in this case.

2. If A[k] is smaller than the smallest of A[i] through A[k - 1], then amall is set
to k. Again, the conclusion oí S(k + 1) now
the smallest oí A [i. . k].

6 As lar as tbe loop of liDes (3) to (5) is concerned, i does not change. Thus. i + I is an

appropriate constant to use as the basis value.

holds, because k is tbe index of

,
~

1
Ig

J)
X

le
ie
or
.e
a
Iy

le
le
le
] .

2)
er
is
as
)0
as

()f

Jp

st

al.
ya
of
m

.

11
oí
ia

et
oí

~. 2.5 PROVlNG PROPE~ OF PROORAMS 55

Thus, in either case, 88&11 is the index of the smallest of A [1. . k]. We go around
the lar-loop by incrementing the variable j. Thus, just before the loop test, when
j bas tbe value k + 1, tbe conclusion of S(k + 1) balda. We have now shown that
S(k) implies S(k + 1). We bave completed tbe induction and conclude that S(k)
holds for all valu~ k :2: i + 1.

Next, we apply S(k) to make our claim about tbe inner loop oflin~ (3) tbrougb
(5). We exit tbe loop when tbe value of j reaches n. Since S(n) says that small
indexes tbe smallest of A[i. .n-1], we have an important conclusion about the
working of tbe inner loop. We sball see bow it is used in tbe next example. +

(i. o; i < n-1; i++) {
--.11 . i;

for (j . i+l; j < n; j++)

if (j[j] < &[.-.11])
8al1 . j;

~eap . A [smal1] ;

j[8IU.l1] . A[i];&[i] . ~8p; .

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

for

}

Tbe body of the SeleaionSort. function.Fig. 2.11.

Example 2.13. Now, Jet us consider the entire SelectionSort function, the
heart of which we reproduce in Fig. 2.11. A ftowchart for this code is shown in
Fig. 2.12, where "body" refers to liDes (2) through (8) of Fig. 2.11. Our inductive
assertion, which we refer to as T(m), is again a statement about what must be true
just before the test for termination of the loop. Informally, when i has the value
m, we have selected m of the smallest elements and sorted them at the beginning
of the array. More precisely, we prove the following statement T(m) by induction
onm.

STATEMENT T(m): If we reach the loop test i < n - 1 of line (1) with the value

of variable i equal to m, then

a) 1[0. .8-1] are in sorted orderj that is, A[O] ~ A[I] ~ ... ~ A[m - 1].

b) All of A[m. .n-1] are at least as great as any of A[O. .8-1].

+

BASIS. Tbe basis ~ is m = o. Tbe basis is true for trivial reasons. If we look
at the statement T(O), pan (a) says that A[O. . -1] are sorted. But there are no
elements in the range A[O],..., AI-l], and so (a) must be true. Similarly, part (b)
of T(O) says that al} of A [O. . n-1] are at least as large as any of A [O. . -1]. Since
there are no elements of the latter description, part (b) is also truco

\

56 ITERATION,INDUC110N, ANO RECURSION

Fig. 2.12. Flow-chart for the entire sele"ction sort function.

INDUCTlON. For the inductive step, we assume that T(m) is true for some m?; O,
and we show that T(m + 1) holds. As in Example 2.12, we are trying to prove a
statement of the form "ir A then B," and such a statement is true whenever A is
falseo Thus, T(m + 1) is true if the assumption that we reach the for-loop test with
i equal to m + 1 is falseo Thus, we mar assume that we actually reach the test with
i having the value m + 1; that is, we mar assume m < n-l.

When i has tbe value m, the body of the loop finds a smallest element in
A[m. .n-l] (as proved by the statement S(m) of Example 2.12). This element is
swapped with A[m] in liDes (6) through (8). Part (b) of the inductive hypothesis,
T(m), ~ ~ the element chosen must be at least as large as any of A[O. .m-l].
Moreover, those elements were sorted, so now all of A [i. . mJ are sorted. That proves
part (a) of statement T(m + 1).

To prove part (b) ofT(m+ 1), we see that A[m] wasjust selected to be as small
as any ofA[m+l. .n-l]. Part (a) ofT(m) tells us that A[O. .m-l] were already as
small as any of A[m+l. .n-l]. Thus, alter executing the body of liDes (2) through
(8) and incrementing i, we know that all of A[m+l. .n-l] are at least as large as
any of A[O. .m]. Since now the value of i is m + 1, we have shown the truth oí the
statement T(m + 1) and thus have proved the inductive step.

Now, let m = n-l. We know that we exit the outer for-loop when i has the
value n -1, so T(n -1) will hold after we finish this loop. Part (a) of T(n - 1) says
that aU oí A [O. .n-2] are sorted, and part (b) says that A[n - 1] is as large as any
of the other elements. Thus, after the program terminates the elements in A are in
nonincreasing arder; that is, they are sorted. ...

~

"

While-loop
termination

Factorial"

~

S

1

1

~

s
't

..

J
I
1
S
e

e
s
V
1

SECo 2.5 PROVING PROPERTIES OF PR<X.RAMS 57

Loop Invariants for While-Loops

When we have a while-loop of the forol

while «condition»
<body>

it usua1ly makes sense to find the appropriate loop invariant for tbe point just
before the test of the condition. Generally, we try to prove the loop invariant holds
by induction on the number of times around the loop. Then, when the condition
becomes false, we can use the loop invariant, together with the falsebood oí tbe
condition, to conclude something useful about what is true after the while-loop

terminates.
However, unlike for-loops, tbere mar not be a variable wbose value counts the

number of times around the while-loop. Worse, while the for-loop is guaranteed to
iterate only up to the limit of the loop (for example, up to n - 1 for the inner loop
of the SelectionSort program), tbere is no reason to believe that the condition of
tbe while-loop will ever become falseo Thus, part of the proof of correctness for a
while-loop is a proof that it eventua1ly terminates. We usually prove termination
by identifying some expression E, involving the variables of the progran1, such that

1. The value of E decreases by at least 1 each time around the loop, and

2. The loop condition is false if E is as low as some specified constant, such as O.

Example 2.14. Tbe factorial function, written n!, is defined as tbe product of
tbe integers 1 x 2 x . .. x n. For example, 1! = 1, 2! = 1 x 2 = 2, and

5! = 1 x 2 x 3 x 4 x 5 = 120

Figure 2.13 sbows a simple program fragment to compute n! for integers n ~ 1.

8canf("Xd", in);
i = 2;
fact.1;
while (i <= n) {

fact = fact*i;

i++;
}
printf("Xd\n"

+

(1)
(2)
(3)'
c(4) .'
(5) 1
(6)

fact);('1)

Fig. 2.13. Factorial program fragmento

To begin, let us prove that the while-loop of lines (4) to (6) in Fig. 2.13 must
terminate. We shall choose E to be the expression n - i. Notice that each time
around the while-loop, i is increased by 1 at line (6) and n remains unchanged.
Therefore, E decreases by 1 each time around the loop. Moreover, when E is -1
or less, we have n - i :s: -1, or i ?: n + 1. Thus, when E becomes negative, the
loop condition i :s: n will be false and the loop will terminate. We don't know how
large E is initially, since we don't know what value OfD will be read. Whatever that
value is, however, E will eventually reach as low as -1, and the loop will tcnninate.

'"

58 ITERATION, INDUCTION, AND RECURSION

the
do. The appropriate loop-invarlant
value of the variable i, is

STATEMENT S(j): If we reach the loop ~ i .$: n with the
value j, then the value of the variable fact is (j - 1)!.

BASIS. The basis is S(2). We reach the test with i having value 2 only when we
enter the loop from the outside. Prior to the loop, liDes (2) and (3) of Fig. 2.13 set
fact to 1 and i to 2. Since 1 = (2 - 1)!, the basis is proved.

INDUCTION. Assume S(j), and prove S(j + 1). If j > n, then we break out of the
while-loop when i has the value j or earlier, and thus we never reach the loop ~
with i having the value j + l. In that case, S(j + 1) is trivially true, because it is
of the forlO "If we reach"

Thus, assume j .$: n, and consider what happens when we execute the body of
the while-loop with i having the value j. By the inductive hypothesis, before line
(5) is executed, fact has value (j - 1)!, and i has the value j. Thus, alter line (5)
is executed, fact has the value j x (j - 1)!, which is j!.

At line (6), i is incremented by 1 and so attains the value j + 1. Thus, when we
reach the loop ~ with i having value j + 1, the value of fact is j!. The statement
S(j + 1) says that when i equals j + 1, fact equals «(j + 1) - 1)!, or j!. Thus, we
have proved statement S(j + 1), and completed the inductive step.

We already have shown that the while-loop will terminate. Evidently, it ter-
minates when i first attains a value greater than n. Since i is an integer and is
incremented by 1 each time around the loop, i must have the value n + 1 when the
loop terminates. Thus, when we reach line (7), statement S(n + 1) must boldo But

Thus, the program prints n!, as wethat statement says that fact has the value nI.
wished to proveo

As a pr~tical matter, we should point out that on any computer the f~torial
program in Fig. 2.13 wiIl print n! as an answer for very few values of n. Tbe problem
is tbat the f~torial function grows so rapidly tbat tbe size of t~e answer quick1y
exceeds the maximum size of an ioteger 00 any real computer. ...

RCISESEXE

2.5.1: What is an appropriate loop invariant for the following program fragment,
whicl1 seta sum equal to the sum oí the

Prove your loop invariant by induction on i, and use it to prove that the program
works as intended.

2.5.2: The following fragment computes the sum ofthe integ(,Is in array A[O. .n-l]:

Fig. 2.13 does what it is ioteoded to
whicll we prove by ioductioo 00 thestatement,

i having the

from 1 to n?integers
scanf ("'/.d" ,in) ;
SUID = O;
for (i = 1; i <= n; i++)

SUID = SUID + i;

"

~

2.5.6: Show by induction on the number oí times around the loop oí Fig. 2.10 that
j > i + 1 after the first time around.

.:. 2.6 Recursive Definitions

lnductive In a recursive, or inductive, definition, we define one or more classes oí closely
deflnition related objects (or íacts) in terms oí the objects themselves. The definition must

not be meaningless, like "a widget is a widget oí sorne color," or paradoxical, like
"something is a glotz ií and only ií it is not a glotz." Rather, a recursive definition
involves

l. One or more basis ndes, in which some simple objects are defined, and

2. One or more inductive ndes, whereby larger objects are defined in tenns of
smaller ones in the collection.

.L

SEC. 2.6 RECURSIVE DEFINITIONS 59

sum . o;

for (i = o; i < n; i++)

sum = sum + A[i];

What is an appropriate loop invariant? Use it to show that the fragment works as

intended.

2.5.3*: Consider the foUowing fragment:

scanf("Xd". in);
x = 2;
for (i = 1; i <= n; i++)

x = x . x;

An appropriate loop invariant for the point just before the test for i ~ n is that ir
we reach that point with the value k for variable i, then x = 22"-1. Prove that this
invariant holds, by induction on k. What is the value of x after the loop terminates?

SUID = O;

scanf ("Xd" J tx);
vhile (x >= O) {

SUID = SUID + X; .

scanf ("Xd" J b);

}

Fig. 2.14. Summing a list of integersterminated by a negative integer.

2.5.4*: The fragment in Fig. 2.14 reads integers until it finds a negative integer,
and then prints the accumulated sumo What is an appropriate loop invariant for
the point just before the loop test? Use the invariant to show that the fragment
performs as intended.

2.5.5: Find the largest value of n for which the program in Fig. 2.13 works on your
computer. What are the implications of fixed-Iength integers for proving programs
correct?

I

60 ITERATION, INDUCTlON, AND RECURSION

Example 2.15. In the previous section we defined the factorial function by an
iterative algorithm: multiply 1 x 2 x ... x n to get n!. However, we can a1so define
the value of n! recursively, as follows.

BASIS. 1! = 1.

INDUCTION. n! = n x (n - 1)!.

For example, the basis tells us that 1! = 1. We can use this fact in the inductive
step witb n = 2 to find

2! = 2 x 1! = 2 x 1 = 2
With n = 3, 4, and 5, we get

3! = 3 x 2! = 3 x 2 = 6
4! = 4 x 3! = 4 x 6 = 24
5! = 5 x 4! = 5 x 24 = 120

and so oo. Notice that, although it appears that the term "factorial" is defined in
terms of itself, in practice, we can get tbe value of n! for progressively higher values
of n in terms of fue factorials for lower values of n oniy. Tbus, we bave a meaningful
definition of "factorial."

Strictly speaking, we sbould prove that our recursive definition of n! gives the

+

SalDe result as our original definition,

n!=lx2x."xR

To do so, we shall prove the following

STATEMENT S(n): nI, as defined recursively

The proo! will be by induction on n.

BASlS. S(l) clearly holds. The basis of the recursive definition tells us that 1! = 1,
and the product 1 x ... x 1 (i.e., the product of the integers "from 1 to 1") is
evidently 1 as well.

INDUCTION. Assume that S(n) holds; that is, n!, as given by the recursive defini-
tion, equals 1 x 2 x . . . x n. Then the recursive definition tells us that

(n + 1)! = (n + 1) x n!

If we use the commutative law for multiplication, we see that

(n + 1)! = n! x (n + 1) (2.11)

By the inductive hypothesis,

n!=1x2x",xn

Thus, we mar substitute 1 x 2 x ... x n for n! in Equation (2.11) to get

(n + I)!~ 1 x 2 x ... x n x (1/ + 1)

lx2x...xn.

l.-I

.
)

~

:1

.
:1

e

+ Example 2.16. In Section 2.2 we defined the notion of lexicographic order of
Lexicographic strings, and our definition was iterative in nature. Roughly, we test whether string
arder CI . . . Cn precedes string dI . . . dm by comparing corresponding symbols Ci and dt

from the left, until we either find an i for which Ci ~ d; or come to the end of one of
the strings. The following recursive definition defines those pairs of strings w and
x such that w precedes x in lexicographic order. Intuitively, the induction is on the
number of pairs of equal characters at the beginnings of the two strings involved.

BASIS. The basis covers those pairs of strings for which we can immediately resolve
the question of which comes first in lexicographic order. There are two parts of the
basis.

l. f < w for any string w other tharl f itself. Recall that f is the empty string, or
the string with no characters.

2. If C < d, where C alld d are characters, then ror any strings tV and x, we have
cw < dx.

~

,)

L

SEC. 2.6 RECURSJVE DEFINJTJONS 61

which is the statement S(n + 1). We have thereby proved the inductive hypothesis
and shown that our recursive definition of n! is the SalDe as our iterative definition."

Fig. 2.15. In a recursive definition, we construct objects in rounds, where
the objects constructed in one round may depend on objects

constructed in aI1 previous rounds.

Figure 2.15 suggests the general nature of a recursive definition. It is similar
in structure to a complete induction, in that there is an infinite sequence of cases,
each of which can depend on any or a1í of the previous cases. We start by applying
the basis rule or roles. On the next round, we apply the inductive rule or rules to
what we have already obtained, to construct new íacts or objects. On the following
round, we again apply the inductive rules to what we have, obtaining new facts or
objects, and so oo.

In Example 2.15, where we were defining the factoria.l, we discovered the value
oí 1! by fue basis case, 2! by one application oí the inductive step, 3! by two appli-
cations, and so oo. Here, the induction had the form of an "ordinary" induction,
where we used in each round only what we had discovered in the previous round.

,

62 ITERATION, INOUCTlON, ANO RECURSION

INDUCTION. If w < x for strings w and x, then for any character c ~ have

For instance, we can use the above definition to show that base < batter. By
rule (2) ofthe basis, with c = s, d = t, W = e, and x = ter, we have se < tter. If
we apply the recursive rule once, with c = a, W = se, and x = tter, we infer that
ase < atter. Finally, applying the recursive rule a second time with c = b, W =
ase, and x = atter, we find base < batter. That is, the basis and inductive steps
appear as foUows:

se < tter
ase < atter
base < batter

We can aIso show that bat < batter as foUows. Part (1) of the basis tells us
that l < ter. H we apply the recursive rule three times - with c equal to t, a,
and b, in tUfO - we make the foUowing sequence of inferences:

l < ter
t < tter
at < atter
bat < batter

Now we should prove, by induction on the number of characters that two strings
have in common at their left ends, that one string precedes the other according to
the definition in Section 2.2 if and only if it precedes according to the recursive

Expr~ssions

Arithmetic expressions of all kinds are naturally defined recursively. For the basis
of the definition, we specify what the atomic operands can be. For example, in C,
atomic operands are either variables or constants. Then, the induction tells us what
operators mar be applied, and to how many operands each is applied. For instante,
in C, the operator < can be applied to two operands, the operator symbol - can be

applied to one or two operands, and the function application operator, represented
by a pair of parenthesis with as many commas inside as necessary, can be applied
to one or more operands, as /(41, . . . , ~).

+ Example 2.17. It is common to refer to the following set of expressions ~
"arithmetic expressions."

BASIS. types of atomic operands are arithmetic cxpressions:The following

,

Infix operator

Unary, prefix
operator

SEC. 2.6 RECURSIVE DEFINITIONS 63

1. Variables
2. Integers
3. Real Dumbers

INDUCTION. H El and ~ are aritbmetic expressiODS. then the following are also
arithmetic expressions:

+EJ)
-Ea)
x Ea)

lEa)

l. (Et
2. (El
3. (Et
4. (Et

The operators +, -, x, and / are said to be binary operators, because they take two
arguments. They are alBO said to be infix operators, because they appear between
their two arguments.

AdditionaUy, we aUow a minus sigo to imply negation (change of sign) , as well
as subtraction. That pO68ibility is refiected in the fifth and last recursive rule:

5. If E is an arithmetic expression, then so is (-E).

An operator like - in rule (5), which takes only one operand, is said to be a unary
operator. It is a1so &&id to be a prefix operator, because it appears before its

2.16 illustrates some aritbmetic expressions and explains why each is an
expression. Note that sometimes parentheses are not needed, and we can omit them.
In the final expression (vi) of Fig. 2.16, the outer parentheses and the parentheses
around -(x + 10) can be omitted, and we could write y x -(x + 10). However, the

are essential, since y x -x + 10 is conventionally interpreted
is not an equivalent expression (try y = 1 and x = O, for

remaining
as (y x -x) + lO,
instance).7 +

Basis rule (1)
Basis rule (2)
Recursive rule (1) 00 (i) and (ii)
Recursive rule (S) 00 (iii)
Basis rule (1)

Recursive rule (3) 00 (v) and (iv)

i} .1:

ii} 10
iii} (.1: + lO) '.

iv} (-(.1: + 10»)
v} 11 ",

vi} (11 x (-(.1: + 10»)

Some sample arithmetic expressions.Fig. 2.16.

7 Parentbeses are redundant wben tbey are implied by tbe conventional precedences of opera-
tors (unary minus bigbest, tben multiplication and division, tben addition and subtraction)
and by tbe convention of "left associativity," wbich saya that we group operators at the sam('
precedence level (e.g., a string of plusses and minuses) from the Jeft. These con\-entions
should be familiar from C, as wel1 as from ordinary aríthmetic.

,

64 ITERATlON,INDUcnON,

More Operator Terminology
A unary operator that appears alter its argument, as does the factorial operator! in
expressions like nI, is said to be a po.stji% operator. Operaton that take more tban
one operand can also be prefix or postfix operaton, if they appear before or alter all
their arguments, respectively. There are no examples in C or ordinary arithmetic oí
operators oí these types, although in Section 5.4 we shall discuss notations in which
all operators are prefix or postfix operaton.

An operator that takes three arguments is a terna,., operator. In C, ?: is
a ternary operator, as in the expression c?x:y meaning "if c then % else "." In
general, if an operator takes k arguments, it is said to be k-a,.,.

Postftx operator

Ternary

operator

Balanced Parentheses

Strings oí parentheses that can appear in expressiODS are called bolanced paTenthues.
For example, the pattern «(») appears in expression (vi) oí Fig. 2.16, and the
expression

(a+b) x «c+d) -e))

has the pattern «) (())). The empty string, E:, is also a string oí balanced paren-
theses; it is the pattern oí the expression x, íor example. In general, wbat makes a
string oí parenth~ balanced is tbat it is possible to match eacb left pal'eDtbesis
with a right parentbesis tbat appears somewbere to its right. Thus, a common
definition of "balanced parentbesis strings" consists oí two roles:

1. A balanced string has an equal number oí leít and right parentheses.

2. As we move from left to right along the string, tbe profile oí tbe string never
becomes negative, wbere tbe profile is the running total oí tbe number of left
parentbeses seen minus tbe number of rigbt pal'eDtheses seen.

Note tbat the profile must begin and end at O. For example, Fig. 2.17(a) shows tbe
profile oí «) «»), and Fig. 2.17(b) sbows tbe p'.ofile oí () «» ().

There are a number oí recursive definitions íor tbe notion of "balanced paren-
theses." Tbe íoUowing is a bit subtle, but we sha1l prove tbat it is equivalent to tbe
preceding, nonrecursive deflnition involving profiles.

BASIS. Tbe empty string is a string oí balanced parentheses.

INDUCTION. If x and y are strings oí balanced parentheses, tben (x)y is aIso a
string oí balanced parentheses.

Proftle

+ Example 2.18. By the basis, f is a balanced-parenthesis string. If we apply
the recursive rule, with x and y both equal to f, then we infer that () is balanced.
Notice that when we substitute tbe empty string for a variable, such as x or y. that
variable "disappears." Then we may apply the recursive rule with:

AND RECURSION

.

o
11

,f

t¡

P rofile- balanced

f

+ Example 2.19. First, let us prove part (1), that every balanced string is profile-
balanced. The proof is a complete induction that mirrors the induction by which

SEC. 2.6 RECURSIVE DEFINITIONS 65

3 '{ ..t~ c.,

2

1

O

(a) Profile of' (O (m) .

~

1.

o
() (()

(b) Profile of o (O) ().

Fig.2.11. Profiles of two strings of parenth~~.

1.

2.

3.

x = () and y = t:, to discover that «» is balanced.

x = t: and y = (), to find that () () is balanced.

x = y = () to infer that «» () is balanced.

As a final example, since we now know that «» and () () are balanced, we may
recursive role, respectiveIy, and show that «(»)()()let these be x and y

is balanced. .

We can that the
strings. To make things clearer, let us
the recursive definition simply as
the nonrecursive definition as profile-balanced.are those whose -- ends at O and '

things:

two definitions of "balanced" specify the same sets of
refer to strings that are balanced according to

balanced and refer to those balanced according to
That is, the profile-balanced strings

never goes negative. We need to show two

show

profile

1. Every balanced string is profile-balanced.

2. Every profile-balanced string is balanced.

inductiveaims two examples.Tbese are the oí the proofs iD the Dext

the class of balanced strings is defined. That is, we prove

STATEMENT S(n): ti string w is defined to be balanced by n applications oí the
recursive rule, then w is profile-balanced.

,

66 ITERATlON, INOUCTlON, ANO RECURSION

BASIS. The basis is n = O. The only string that can be shown to be balanced
without any application of the recursive rule is E, which is balanced according to
the basis rule. Evidently, the profile of the empty string ends at O and does not go

negative, 80 E is profile-balanced.

INDUCTION. Assume that S(i) is true for i = 0,1,..., n, and consider an instance
of S(n + 1), that is, a string w whose proof oí balance requires n + 1 uses of the
recursive rule. Consider the last such use, in which we took two strings x and 1/,
already known to be balanced, and formed w as (x)y. We used the recursive rule
n + 1 times to forro w, and one use was the last step, which helped form neither
x nor y. Thus, neither x nor y requires more than n uses of the recursive rule.
Therefore, the inductive hypothesis applies to both x and 1/, and we can conclude

that x and y are profile-balanced.

Fig. 2.18. Constructing the profile of w = (z)y.

The profile oí w is as suggested in Fig. 2.18. It first goes up one level, in
response to the first left parenthesis. Then comes the profile oí x, raised one level,
as indicated by the dashed line. We used the inductive hypothesis to conclude that
x is profile-balanced; thereíore, its profile begins and ends at level O and never goes
negative. As the x portion oí w's profile is raised one leve! in Fig. 2.18, that portion
begins and ends at level 1 and never goes below level 1.

The explicitly shown right parenthesis between x and y lowers the profile oí w
to O. Then comes the profile oí y. By the inductive hypothesis, y is profile-balanced.
Thus, the y portion oí w's profile does not go below O, and it ends the profile oí w

at O.
We have now constructed the profile oí w and see that it meets the condition

íor a profile-balanced string. That is, it begins and ends at O, and it never becomes
negative. Thus, we have proved that ií a string is balanced, it is profile-balanced. ..

Now we shall address the second direction oí the equivalence between the two
definitions oí "balanced parentheses." We show in the next example that a profile-

balanced string is balanced.

Example 2.20.
by complete induction on the length of the string of parentheses.
ment is

+

~q i1

profile
oís profile

of,
l "

..) ,

1

(f

We prove part (2), that "profile-balanced" implies "balanced,"
Tbe fom1al state-

\

.
;t

8
.

SECo 2.6 RECURSIVI-: DEFINITIONS 67

Proofs About Recursive Definitions

Notice that Example 2.19 pro~ an assertion about a class of recursively defined
objects (the balanced strings of parentheses) by induction on the number of times
the recursive rule is used to establish tbat the object is in the defined class. That
is a very common way to deal with recursively defined conceptsj in fact, it is one
of the reasons recursive definitions are useful. As another illustration, in Example
2.15, we showed a property of the recursively defined factorial values (that n! is the
product of the integers from 1 to n) by induction on n. But n is also 1 plus the
number of times we used the recursive rule in the definition of n!, so the proof could
also be considered an induction on the number of applications of the recursive rule.

STATEMENT S(n): If a string w oflength n is profile-balanced, then it is balanced.

BASIS. If n = O, tben the string must be f. We know tbat f is balanced by tbe
basis rule of tbe recursive definition.

INDUCTION. Suppose tbat profile-balanced strings of length equal to or less tban
n are balanced. We must prove S(n + 1), that profile-balanced strings of length
n + 1 are also balanced.8 Consider such a string w. Since w is profile-balanced, it
cannot stan witb a rigbt parentbesis, oÍ' its profile would immediately go negative.
Tbus, w begins witb a left parentbesis.

Let us break w into two parts. Tbe first part starts at the beginning of w and
ends where tbe profile oí w first becomes O. The second part is the remainder oí
w. For example, the profile oí Fig. 2.17(a) first becomes O at the end, so ií w =
«) «»), tben tbe first part is tbe entÍre string and tbe second part is l. In Fig.
2.17(b), wbere w = () «» (), the first part is (), and tbe second part is «» ().

Tbe first part can never end in a left parentbesis, because tben tbe profile
would be negative at tbe position just before. Tbus, the first part begins witb a
left parenthesis and ends witb a rigbt parenthesis. We can tbereíore write w as
(x)y, wbere (x) is tbe first part and y is tbe second parto Both x and y are sborter
tban w, so if we can show tbey are profile-balanced, then we can use tbe inductive
bypothesis to infer tbat tbey are balanced. Tben we can use the recursive rule in
the definition oí "balanced" to show tbat w = (x)y is balanced.

It is easy to see that y is profile-balanced. Figure 2.18 a1so illustrates the
relationship between tbe profiles of w, x, and y here. Tbat is, tbe profile of y is
a tail of the profile of w, beginning and ending at height O. Since w is profile-
balanced, we can conclude tbat y is also. Sbowing tbat x is profile-balanced is
almost the samé. The profile of x is a part of the profile of Wj it begins and ends
at level 1 in the profile of w, but we can lower it by one level to get the profile of
x. We know that the profile oí w never reaclles O during tbe extent oí x, because
we picked (x) to be the shortest prefix of w tbat ends with the profile oí w at level
O. Hence, the profile of x within w never reaches level O, and the profile of x itself
never becomes negative.

We have now sbown botb x and y to be profile-balanced. Since they are each

8 Note that all profile-balanced strings happen to be of even length, 80 if n + 1 is odd, we art'
not saying anything. However, we do not need the ewnness of n for the proof.

\

68 lTERATION. INDUCTION. AND RECURSION

sborter tban w, tbe inductive bypotbesis applies to tbem, and tbcy are each bal-
anced. Tbe recursive rule defining "balanced" says tbat if x and y are balanced,
tben so is (x)y. But w = (x)y, and so w is balanced. We bave DOW completed tbe
inductive step and sbown statement S(n) to be true for all n ~ o. ...

EXERCISES

2.6.1*: Prove that the definitions of lexicographic order given in Example 2.16
and in Section 2.2 are the salDe. Hint: The proof consists of two palts, and each
is an inductive proof. For the first part, suppose that w < x according to the
definition in Example 2.16. Prove the following statement S(i) by induction on i:
"If it is necessary to apply the recursive rule i times to show that w < x, then w
precedes x according to the definition of 'lexicographic order' in Section 2.2." The
basis is i = O. The second part of the exercise is to show tbat if w precedes x in
lexicographic order according to the definition in Section 2.2, then w < x according
to the definition in Example 2.16. Now the induction is on the number of initial

positions that w and x have in common.

2.6.2: Draw the profiles of the following strings of parentheses:

a) «() ((»
b) ()(»«()
c) «()(»()(»
d) «)«)«»»
Which are profile-balanced? For tbose tbat are profile-balanced, use the recursive
definition in Section 2.6 to sbow that tbey are balanced.

2.6.3*: Show that every string of balanced parentheses (according to tbe recursive
definition in Section 2.6) is the string oí parentbeses in some arithmetic expression
(see Example 2.17 for a definition of arithmetic expressions). Hint: Use a proof by
induction on the number of times the recursive rule of the definition of "balanced
parentheses" is used to construct the given string of balanced parentbeses.

2.6.4: Tell wbether eacl1 of the following C operators is prefix, postfix, or infix, and
whether they are unary, binary, or k-ary for some k > 2:

a) <
b) t;
c) %

2.6.5: If you are familiar with the UNIX file system or a similar system, give a
recursive definition of the possible directory /file structures.

2.6.6*: A certain set S of mtegers is defined recursively by tbe following roles.

BASIS. O is in S.

INDUCTION. If i is in S, tben i + 5 and i + 7 are in S.

a) What is the largest integer not in 5?

\

j,;;.

SEC. 2.7 RECURSIVE FUNCTIONS 69

" b) Let j be your answer to part (a). Prove that aU integers j + 1 and greater are
't :' in S. Hint: Note the similarity to Exercise 2.4.8 (although here we are dealing
.. ~ with only nonnegative integers).

~
2.6.7*: Define recursiveIy the set of even-parity strings, by induction on the length
of the string. Hint: It helps to define two concepts simultaneously, both the even-
parity strings and the odd-parity strings.

5 2.6.8*; We can define sorted lists of integers as follows.

:¡ BASIS. A Iist consisting of a single integer is sorted.
e
. INDUCTION. If Lis a sorted list in which the last element is a, and if b ~ a, then
IJ L followed by b is a sorted listo
e
.1
g Prove that this recursive definition of "sorted list" is equivalent to our original,
J nonrecursive definition, which is that the list consist of integers

al ~ a2 ~ . . . ~ a,.

Remember, you need to prove two parts: (a) If a list is sorted by the recursive
definition, then it is sorted by the nonrecursive definition, and (b) if a list is sorted
by the nonrecursive definition, then it is sorted by the recursive definition. Part (a)
can use induction on the number of times the recursive rule is used, and (b) can
use induction on the length of the listo

2.6.9**: As suggested by Fig. 2.15, whenever we have a recursive definition, we~ can classify the objects defined according to the "round" on which each is gener-

ated, that is, the number of times the inductive step is applied before we obtain
~ each object. In Examples 2.15 and 2.16, it was fairly easy to describe the results
1 generated on each round. Sometimes it is more challenging to do so. How do you
¡ characterize the objects generated on the nth round for each of the following?
1 a) Aritbmetic expressions like those described in Example 2.17. Hint: Ifyou are

familiar with trees, which are the subject of Chapter 5, you might consider the
r tree representation of expressions.

b) Balanced parenthesis strings. Note that the "number of applications USed'"
as discussed in Example 2.19, is not the same as the round on which a string
is discovered. For example, «» () uses the inductive rule three times but is
discovered on round 2.

L

.:. 2.7 Recursive Functions

A recursive function is one that is called from within its own body. Often, the call is
Direct and directi for example, a function F has a call to F within itself. Sometimes, however,
indirect the call is indirect: some function Fl calls a function F2 directly, which calls F3
recursion directly, and so on, until some function F,. in the sequence calls Fl.

There is a common belief that it is easier to learn to program iteratively, or
to use nonrecursive function calls, than it is to learn to program recursively. While
we cannot argue conclusively against that point of view, we do believe that recur-
sive programming is easy once one has had the opportunity to practice the style.

,, ~~,~,-

70 ITERATlON, INDUCTlON, ANO RECURSION

More Trutb in Advertising
A potential disadvantage oí using recursion is that function cal1s on some machines
are time-consuming, so that a recursive program may take more time to ron than an
iterative program íor the same problem. However, on many modero machines func-
tion calls are quite efficient, and so this argument against using recursive programs
is becoming less important.

Even on machines with slow function-calling mechanisms, one can profile a
program to find how muro time is spent on each part oí the programo One can then
rewrite the parts oí the program in which the bulk oí its time is spent, replacing
recursion by iteration ií necessary. That way, one gets the advantages oí recursion
throughout most oí the program, except íor a small fraction oí the code where speed
is most critical.

Recursive programs are often more succinct or easier to understand than their iter-
ative counterparts. More importantly, some problems are more easily attacked by
recursive programs than by iterative programs.9

Often, we can develop a recursive algorithm by mimicking a recursive definition
in the specification oí a program we are trying to implemento A recursive function
that implements a recursive definition will have a basis part and an inductive parto
Frequently, the basis part checks íor a simple kind oí input that can be solved by
the basis oí the definition, with no recursive call needed. The inductive part oí the
function requires one or more recursive calls to itself and implements the inductive
part J)í the definition. Some examples should clarify these points.

Profiling

Example 2.21. Figure 2.19 gives a recursive function that computes n! given a
positive integer n. This function is a direct transcription oí the recursive definition
of n! in Example 2.15. That is, line (1) oí Fig. 2.19 distinguishes the basis case from
the inductive case. We assume that n ?: 1, so the test of line (1) is really asking
whether n = 1. If so, we apply the basis rule, 1! = 1, at line (2). If n > 1, then we
apply the inductive rule, n! = n x (n -1)!, at line (3).

+

(1)
(2)

(3)

For instance, if we call fact(4), the

9 Such problerns often involve sorne kind of search. For instance, in Chapter 5 we shall see
sorne recursive algorithms for searching trees, algorithms that have no convenient iterative
analog (although there are equivalent iterative algorithms using stacks).

int fact(int n)

{
if (n <= 1)

return 1; /* basis */

el..
return n*fact(n-1); /* induction */

}

to compute n! for n ~ 1.functionFig. 2.19. Recursive

result is a call to fact (3), which calls

Size of

arguments

SE<::. 2.7 RECURSIVE FUNCTlONS 71

~~

Defensive Programming

The program oí Fig. 2.19 iUustrates an important point about writing recursive
programs so that they do not ron off into infinite sequences of caUso We tacitly
assumed that f act would never be caUed with an argument lesa than 1. Best, of
course, is to begin fact with a test that n ?: 1, printing an error rnessage and
returning sorne particular value such as O if it is noto However, even if we believe
very strongly that t act will never be called with n < 1, we shaU be wise to include in
the basis case all th~ "error cases." Tben, the function fact called with erroneous
input wiU simply return tbe value 1, wbich is wrong, but not a disaster (in fact, 1
is even correct for n = O, since O! is conventionally defined to be 1).

However, suppose we were to ignore tbe error cases and write line (1) oí Fig.
2.19 as

if (n == 1)

Then ifwe caUed tact(O), it would look like an instance ofthe inductive case, and
we would next call fact(-l), tben fact(-2), and so on, terminating with failure
when the computer ran out of space to record the recursive calls.

fact(2), which calls fact(l). At that point, fact(l) applies the basis rule, be-
cause n ~ 1, and returns the value 1 to fact(2). Tbat call to fact completes
line (3), retuming 2 to fact(3). In tum, fact(3) returns 6 to fact(4), which
completes line (3) by retuming 24 as the answer. Figure 2.20 suggests the pattem
of calls and retumBo +

Ca1l.l.

fact(4)
Call.l.

t Return 24
fact(4)

~

t Return 6
fac~(3)fact(3)

Call.!.

~

t Retum 2

~

fact(2) fact(2)
can ... t Return 1

fact(l)

Calls and returns r5ulting &om call to fac~(4).Fig.2.20.

We can picture a recursion muro as we have pictured inductive proofs and
definitions. In Fig. 2.21 we have assumed that there is a notion of the "size" oí
argumenta for a recursive function. For example, for tbe function fact in Example
2.21 the value oí the argument n itaelf is tbe appropriate size. We shall say more
about the matter oí size in Section 2.9. However, let us note here that it is essential
for a recursion to make only ca1ls involving argumenta of smaller size. Also, we
must reach the basis case - tbat is, we must tenninate the recursion - when we

reach some particular size, which in Fig. 2.21 is size O.
In the case of the function tact, tbe calls are not as general as suggested by

Fig. 2.21. A ca11 to fac't (n) resulta in a direct ca11 to fact (n-1), but tact (n) does

72 rrERA110N, INDUCTION, AND RECURSION

not call f act with any smaller argument

Example 2.22. We can turn the functioo SelectionSort of Fig. 2.2 into a
recursive functioo recSS, if we express the underlyiog algorithm as folIows. Assume
the data to be sorted is in A[O. .0-1].

1. Pick a smallest elemeot from the tail of the array A, that is, from A [i. . n-1] .

2. Swap the elemeot selected in step (1) with A[i].

3. Sort the remaioder of the array, A[i+1. .n-1].

We can express selectioo sort as the foIlowing recursive algorithm.

BASIS. If i = n - 1, then only tbe last element of tbe array remains to be sorted.
Sioce any ooe elemeot is already sorted, we need not do anything.

INDUCTION. If i < n - 1, then find the smallest elemeot in A[i. .n-1], swap it
with A [i], and recursively sort A [i + 1 . . n-1] .

+

The entire algorithm is to períorm the above recursion starting with i = O.
H we see i as the parameter in the preceding induction, it is a case oí backward

induction, where we start with a high basis and by the inductive rule salve instances
with smaller values of the parameter in terms of instances with higher values. That
is a perfectly good style of induction, although we have not previously mentioned
its possibility. However, we can also see this induction as an ordinary, or "forward"
induction on a parameter k = n - i that represents the number of elements in the

tail of the array waiting to be sorted.
In Fig. 2.22, we see the program for recSS (A, i ,n). The second parameter i is

the index of the first element in the unsorted tail oí the array A. The third parameter
n is the total number of elements in the array A to be sorted. Presumably, n is less
than or equal to the maximum size of A. Thus, a call to recSS (A, O ,n) will sort the
entire array A[O. .n-1).

In terms ofFig. 2.21, 8 = n-i is the appropriate notion of "size" for arguments
of the function recSS. The basis is 8 = 1 - that is, sorting one element, in which

case no recursive calls occur. The inductive step tells us bow to sort s elements by
picking the smallest and tben sorting tbe remaining 8 - 1 elements.

At line (1) we test for the basis case, in which there is only one element re-
maining to be sorted (again, we are being defensive, so tbat if we somebow make a

Backward
induction

m'~}.t

itself

SEC.2.7 RECURSNE FUNCTIONS 73

void recSS(int i[]. int i. int n)

{
int j. amall. temp;

(1) if (i < n-l) {/* basis is vhen i = n-l. in vhich case */
/* the function returns vithout changing A */

/* induction follovs */

(2) amall. i;
(3) for (j . i+l; j < n; j++)

(4) if (A[j] < A[amall])
(5) amall = j;
(6) temp = A [amall] ;

(7) A[amall] . A[i];
(8) A[i] = t8p;

(9) recSS(A. i+l. n);
a }
e }

Fig. 2.22. Recursive selection sort.

call with i :?: n, we shall not go into an infinite sequence oí calls). In the basis case,
we have nothing to do, so we just return.

The remainder oí the function is the inductive case. Lines (2) through (8) are
copied directly írom the iterative version oí selection sort. Like that program. thesel. liDes set small to the index oí the array i[i. .n-l] that holds a smallest element

and then swap this element with A [i]. Finally, line (9) is the recursive call, which
sorts the remainder oí the array. +t

EXERCISES

d 2.7.1: We can define n2 recursivelyas íoIlows.
I
t
i BASIS. For n = 1, 12 = 1.
n
e INDUCTION. H n2 = m, then (n + 1)2 = m + 2n + 1.

8 a) Write a recursive C íunction to implement this recursion.
r
s b) Prove by induction on n that this deflnition correctly computes n2.
e

2.7.2: Suppose that we are given array A[O. .4], with elements 10, 13,4,7,11, in

s that order. What are the contents oí the array A just beíore each recursive call to
1 recSS, according to the recursive function oí Fig. 2.22?

" 2.7.3: Suppose we define cells íor a linked Iist oí integers, as discussed in Section 1.3,

using the macro DefCell(int. CELL. LIST) oí Section 1.6. Recall, this macro
expands to be the íoIlowing type definition:

i

74 ITERATION, INDUCTlON, AND RECURSION

Divide-and-Conquer
One way of attacking a problem is to try to break it roto subproblems and then
salve the subproblems and combine their solutions into a solution for the problem
as a whole. The term ditlide-and-conquer is used to describe this problem-solving
technique. If the subproblems are similar to the original, then we may be able to
use the same function to salve the subproblems recursively.

There are two requirements for this technique to work. The first is that the
subproblems must be simpler than the original problem. The second is that af-
ter a finite number of subdivisions, we must encounter a subproblem that can be
sol ved outright. If these criteria are not met, a recursive algorithm will continue
subdividing the problem forever, without finding a solution.

Note that the recursive function recSS in Fig. 2.22 satisfies both criteria. Each
time it is invoked, it is on a subarray that has one fewer element, and when it is
invoked on a subarray containing a single element, it returns without invoking itself
again. Similarly, the factorial program of Fig. 2.19 involves cal1s with a smaller
integer value at eacll can, and the recursion stops when the argument of the call
reaches 1. Section 2.8 discusses a more powerful use of the divide-and-conquer
technique, called "merge sort." There, the size of the arrays being sorted diminishes
very rapidly, because merge sort works by dividing the size in hall, rather thansubtracting 1, at each recursive callo .

typedef 8truCt CELL *LIST;
atruct CELL {

int element;
LIST next;

};

Write a recursíve functíon find that takes an argument of type LIST and retums
TRu:E if some cell of the list contains the integer 1698 as its element and retums
FALSE if noto

2.7.4: Write a recursive function add that takes an argument of type LIST, as
defined in Exercise 2.7.3, and returns the SUIn of the elements on the listo

2.7.5: Write a version oí recursive selection sort that takes as argument
integers, using tbe cells mentioned in Exercise 2.7.3.

2.7.6: In Exercise 2.2.8 we suggested that one could generalize selection sort to use
arbitrary key and lt functions to compare elements. Rewrite the recursive selection
sort algorithm to incorporate this generality.

2.7.7*: Give a recursive algorithm that takes an integer i and produces the binary
representation of i as a sequence of O's and 1 '5, low-order bit first.

2.7.8*: The greatest common divisor (GCD) oí two ÍDtegers i and j is the largest
ÍDteger that divides both i and j evenly. For example, goo(24,30) = 6, and
goo(24,35) = 1. Write a recursive function that takes two ÍDtegers i and j, with
i > j, and returns goo(i,j). Hint: You mar use the íollowing recursive definition oí
goo. It assumes that i > j.

GCD

a list oí

SECo 2.8 MERGE SORT: A RECURSIVE SORTING ALGORrrHM 75

I ~ BASIS. If j divides i evenIy, tben j is tbe GCD of i and j.

INDUCTION.1f j does not divide i evenIy, let k be tbe remainder wben i is dividedn by j. Tben gcd(i,j) is tbe same as gcd(j,k).
n
.g 2.7.9..: Prove tbat tbe recursive definition of GCD given in Exercise 2.7.8 gives
o tbe Same result as tbe nonrecursive definition (largest integer dividing botb i and j

evenly).

~~ 2.7.10: Often, a recursive definition can be turned into an algoritbm fairly directly.
For example, consider tbe recursive definition of "less tban" on strings given inoe Example 2.16. Write a recursive function tbat tests whetber the first of two given

le strings is "less than" tbe otber. Assume tbat strings are represented by linked lists

h of characters.

is 2.7.11 *: From tbe recursive definition of a sorted list given in Exercise 2.6.8, create
If a recursive sorting algorithm. How does tbis algorithm compare with the recursive
~ selection 8Ort oí Example 2.22?
11

~

!8 ...:... 2.8 Merge Sort: A Recursive Sorting AIgorithm
D

We sball now consider a sorting algorithm, called merge sort, which is radically
~ different from selection 8Ort. Merge 8Ort is best described recursively, and it il-

Divide and lustrates a powerful use of the divide-and-conquer technique, in which we sort a
conquer list (al, a2,..., a,,) by "dividing" tbe problem into two similar problems oí hall tbe

size. In principie, we could begin by dividing tbe list into two arbitrarily chosen
equal-sized lists, but in tbe program we develop, we shall make one list out of tbe
odd-numbered elements, (al, a3, a5,'.') and tbe otber out oí the even-numbered
elements, (a2,~,~," .).10 We tben sort each of tbe balf-sized lists separately. To
complete tbe sorting of tbe original list of n elements, we merge tbe two sorted,

lB half-sized lists by an algorithm to be described in tbe next example.
lB In tbe next chapter, we sball see that tbe time required for merge sort grows

muro more slowly, as a function oí the length n oí the list to be sorted, tban does
the time required by selection sort. Tbus, even if recursive calls take some extracS time, merge sort is greatly preferable to selection sort wben n is large. In Chapter

3 we shall examine the relative performance of tbese two sorting algorithms.
)f

Merging
e To "merge" means to produce from two sorted lists a single sorted list containing
n all the elements oí tbe two given lists and no other elements. For example, given

the lists (1,2,7,7,9) and (2,4,7,8), tbe merger of these lists is (1,2,2,4,7,7,7,8,9).
Note tbat it does not make sense to ta1k about "merging" lists tbat are not already

y sorted.
One simple way to merge two lists is to examine them from the front. At

each step, we find tbe smaller oí tbe two elements at tbe current fronts oí the lists,
,1 choose that element as the next element on the combined list, and remove tbe chosen
d element from its list, exposing a new "first" element on tbat listo Ties can be broken
h
4' 10 Remember tbat "odd-numberedW and "ewn-numbered" refer to the positions of the elements

on tbe 1i8t, and not to the valUM of th- elements.

"' ""c. c"..~-~~~""""-~'"'" ..,'-,~-*'=--

76 ITERATlON, INDUCTlON, AND RECURSION

arbitrarily, aIthough we shaIl take from the first list when
both lists are the salDe.

Example 2.23. Consider merging the two lists

Ll = (1,2,7,7,9) and L2 = (2,4,7,8)

Tbe first elements of tbe lists are 1 and 2, respectiveIy. Since 1 is smaller, we clloose
it as tbe first element of tbe merged list M and remove 1 from Ll. Tbe new Ll is
tbus (2,7,7,9). Now, botb Ll and L2 bave 2 as their first elements. We can píck
eitber. Suppose we adopt tbe policy tbat we always píck tbe element from Ll in
case of a tie. Tben merged list M becomes (1,2), list Ll becomes (7,7,9), and L2
remains (2,4,7,8). Tbe table in Fig. 2.23 shows tbe merging steps untillists Ll
and L2 are botb exhausted. .

.

We shall find it easier to design a recursive merging algorithm if we represent
lists in the linked forro suggested in Section 1.3. Linked lists will be reviewed
in more detail in Chapter 6. In what folloW8, we shall assume that list elements
are integers. Thus, each element can be represented by a "cell," or structure of
the type struct CELL, and the list by a type LIST, which is a pointer to a CELL.
These definitions are provided by the macro DefCell(int. CELL. LIST), which
we discussed in Section 1.6. This use of macro DefCell expands into:

typedef struct CELL *LIST;
struct CELL {

int element;
LIST next;

};

The element field oí each cell contains an integer, and the next field contains a
pointer to the next cell on the list. H the element at hand is the last on the list,
then the next field contains the value NULL, which representa a null pointer. A list
oí integers is then represented by a pointer to the first cell on the list, that is, by
a variable oí type LIST. An empty list is represented by a variable with the value

Ll L, M

1,2,7,7,9 2,4,7,8 empty
2,7,7,9 2~4, 7,8 1
7,7,9 2,4,7,8 1,2
7,7,9 4,7,8 1,2,2
7,7,9 7,8 1,2,2,4
7,9 7,8 1,2,2,4,7
9 1,8 1,2,2,4,7,7
9 8 1,2,2,4,1,7,7
9 empty 1,2,2,4,7,7,7,8
empty empty 1,2,2,4,1,7,7,8,9

ExampleFig. 2.23.

the leading elements oí

SEC. 2.8 MERGE SORr: A RECURSIVE SORTING ALGORJTHM 77

LIST merge(LIST 1ist1. LIST 1ist2)

{
(1) if (1ist1 == NULL) return 1ist2;

(2) el se if (list2 == NULL) return 1ist1;

(3) el se if (listl->element <= list2->element) {
1* Here. neither list is empty. and the first list

has the smal1er first element. The ansver is the

first element of the first list folloved by the

merge of the remaining elements. *1
(4) list1->next a merge(list1->next. list2);

(5) return list1;

}
e1se { 1* 1ist2 has smaller first element *1

(6) list2->next = merge(list1. list2->next);
(7) return list2;

}
f }

Fig. 2.24. Recursive merge.

NULL, in place oí a pointer to the first elemento
Figure 2.24 is a C implementation oí a recursive merging algorithm. The íunc-

e tion merge takes two lists as arguments and returns the merged listo That is, the
! formal parameters 1istl and list2 are pointers to the two given lists, and the re-
i(turn value is a pointer to the merged listo The recursive algorithm can be described
1 as íollows.
1
1 BASIS. If either list is empty, then the other list is the desired resulto This rule is

implemented by liDes (1) and (2)" oí Fig. 2.24. Note that if both Iists are empty,
then list2 will be returned. But that is correct, since the value oí list2 is then
NULL and the merger oí two empty lists is an empty listot

i
g INDUCTION. If neither list is empty, then each has a first elemento We can refer
1 to the two first elements as list1->element and list2->element, that is, the

element fields oí the cells pointed to by list1 and list2, res¡)ectively. Fig 2.25
~ is a picture oí the data structure. The list to be returned begins with the cel1 oí

the smallest elemento The remainder oí the list is íormed by merging a1I but that
elemento

For example, línes (4) and (5) handle the case in which the first element oí list
1 is smallest. Line (4) is a recursive call to merge. The first argument oí this call is
li st 1- >next, that is, a pointer to the second element on the first list (or NULL if the
first list only has one element). Thus, the recursive caIl is passed the list consisting
oí all but the first element oí the first listo The second argument is the entire second

~ listo As a consequence, the recursive call to merge at line (4) will return a pointer
, to the merged list oí a1I the remaining elements and store a pointer to this merged
t list in the next field oí the first cell on list 1. At line (5), we return a pointer to
v that cell, which is now the first cell on the merged list oí a1I the elements.
e Figure 2.25 illustrates the changes. Dotted arrows are present when merge is

..

78 ITERATION, INDUCTlON, AND RECURSION

retum value

listl

list2

called. Solid arrows are created by merge. Specifically, the return value of merge is
a pointer to the ceIl of the smallest element, and the next field of that element is
shown pointing to the list returned by the recursive call to merge at line (4).

Finally, liDes (6) and (7) handle the case where the second list has the smallest
elemento The behavior oí the algorithm is exactly as in liDes (4) and (5), but the
roles oí the two lists are reversed.

Example 2.24. Suppose we call merge on tbe lists (1,2,7,7,9) and (2,4,7,8)
of Example 2.23. Figure 2.26 illustrates tbe sequence of calls made to merge, if we
read tbe first column downward. We omit tbe commas separating list elements, but
commas are used to separate tbe arguments of merge.

+

For instante, since the first element of list 1 is less than the first element of
list 2, line (4) of Fig. 2.24 is executed and we recursively merge all but the first
element of list 1. That is, the first argument is the tail of list 1, or (2,7,7,9), and
the second argument is the fulllist 2, or (2,4,7,8). Now the leading elements of
both lists are the SalDe. Since the test of line (3) in Fig. 2.24 favors the first list,
we remove the 2 from list 1, and OUT next call to merge has first argument (7,7,9)
and second argument (2,4,7,8).

The returned lists are indicated in the second column, read upward. Notice
that, unlike the iterative description of merging suggested by Fig. 2.23, the recursive

tomergedUst

..
.'

m

.. fc

lnductive step of merging algorithm.Fig.2.25.

CALL RF:roRN

aerge(12779. 2478) 122477789
aerge(2779. 2478) 22477789
aerge(779. 2478) 2477789
merge(779 , 478) 477789
aerge(779. 78) 77789
merge(79. 78) 7789¡ ,
merge(9. 78) 789
aerge(9. 8) 89
merge(9. NULL) O

Recursive caUs to _rge.Fig.2.26.

-; SEC. 2.8 MERGE SORT: A RECURSIVE SOIlTlNG ALGORITHM 79

algorithm asaembles tbe mergeci list &om tbe reaz, wbereas tbe iterative algoritbm
assembles it from tbe front. .

Splitting Lists
Anotber important task required for merge sort is splitting a list into two equal
parts, or into parts wbose lengtbs differ by 1 if tbe original list is of odd length.
One way to do this job is to count the number of elements on the list, divide by
2, and break the list at tbe midpoint. Instead, we shall give a simple recursive
function 8pli t tbat "dea1s" the elements into two lists, one consisting of the first,
third, and fifth elements, and so on, and the other consisting of the elements at
the even positions. More precisely, the function split removes the even-numbered
elements &om the list it is given as an argument and returns a new list consisting

s of the even-numbered elements.
8 The C code for function 8plit is shown in Fig. 2.27. Its argument is a list

t of the type LIST that was defined in connection with the merge function. Note
that the local variable pSecondCell is defined to be of type LIST. We really use

e pSecondCell as a pointer to the second ce1l on a list, rather than as a list itself;

but of course type LIST is, in fact, a pointer to a cell.
It is important to observe that split is a fWlction with a side effect. It removes

) the cells in tbe even positions from the list it is given as an argument, and it
asaembles these ceUs into a new list, which becomes the return value oí the function.

e
t

LIST 8plit(LIST li8t)

{
LIST pSecondCell;

(1) it (li8t .. NULL) return NULL;
(2) .lse it (li8t->n.xt .. NULL) r.turn NULL;

.lse { /. there are at leaat tvo cells ./

(3) pSecondCell. li8t->n.xt;
(4) list->next . pS.condCell->next;

(5) pSecondCell->next. 8plit(pSecondCell->next);
(6) return pSecondCell;

}
}

Fig. 2.21. Splitting a Iist into two equal pieces.

The splitting algorithm can be described inductively, as follows. It uses an
f induction on the lengtb of a list; tbat induction has a multiple basis case.
t
1 BASIS. If the list is of lengtb O or 1, then we do nothing. That is, an empty list
f is "split" into two empty lista, and a list of a single element is split by leaving

the element on tbe given list and returning an empty list oí tbe even-numbered
elements, of which there are DOne. Tbe basis is handled by liDes (1) and (2) oí Fig.
2.27. Line (1) bandles tbe case where list is empty, and line (2) handles tbe case

~ where it is a single elemento Notice tbat we are careful not to examine list->next
~ in line (2) unless we have previously determined, at line (1), tbat li8t is not NULL.

-., -~---,'~~ - .., -

80 n'ERA110N, INDUC'I10N, AND RECURSION

INDUCTION. Tbe inductive step applies wben tbere are at least two elements on
listo At line (3), we keep a pointer to tbe second cell of tbe list in the local variable
pSecondCell. Line (4) makes the next field of the first cell skip over tbe second
cell and point to the third cell (or become NULL if tbere are only two cells on the
list). At line (5), we call split recursively, on the list consisting of all but tbe first
two elements. The value returned by tbat call is a pointer to tbe fourtb element (or
NULL if tbe list is shorter tban tour elements), and we place tbis pointer in tbe next
field of the second cell, to complete the linking of the even-numbered elements. A
pointer to the second cell is returned by split at Une (6); that pointer gives us
access to tbe linked list of all the even-numbered elements of tbe originallist.

The changes made by split are suggested in Fig. 2.28. Original pointers are
dotted, and new pointers are solido We also indicate the number of the line that
creates each of the new pointers.

list

pSecondCell

retum value

The Sorting

The recursive sorting algoritbm is shown in Fig. 2.29. The algoritbm can be de-
scribed by the following basis and inductive step.

BASIS. H the list to be sorted is empty or of lengtb 1, just return the list; it is
already sorted.

INDUCTION. Ifthe list is oflength at least 2, use the function split at line (3) to
remove the even-numbered elements from list and use them to form another list,
pointed to by local variable SecondList. Line (4) recursively sorts the half-sized
lists, and returns the merger of tbe two lists.

Action of functionFig. 2.28. .plit.

Algorithm

Tbe basis is taken care oí by lines (1) and (2) oí Fig. 2.29.

SEC. 2.8 MERGE SORT: A RECURSIVE SORTING ALGORITHM 81
I

I

i.o LIST MergeSort(LIST 1iat)
: le {

d LIST SecondLiat;
le
rt (1) if (1iat -= NULL) return NULL;
Ir (2) elae if (1ist->next == NULL) return 1iat;
t else {
A /* at 1east tvo e1ementa on 1ist */
~ (3) SecondLiat = ap1it(list);

/* Note that as a aide effect, half
-e the e1ementa are removed from list */
~t (4) return merge(MergeSort(1ist), MergeSort(SecondList»;

}
}

Fig. 2.29. The merge sort algorithm.

+ Example 2.25. Let us use merge sort on the list of single-digit numbers

742897721

We again omit commas between digits for succinctness. First, the list is split into
two, by the call to sp1i t at line (3) of MergeSort. One of the resulting lists consists
of the odd positions, and the other the evens; that is, 1ist = 72971 and SecondList
= 4872. At line (4), these lists are sorted, resulting in lists 12779 and 2478, and

then merged to produce the sorted list 122477789.
However, the sorting of the two half-sized lists does not occur by magic, but

rather by the methodical application of the recursive algoritbm. lnitially, MergeSort
splits the list on which it is called, ifthe list has length greater tban 1. Figure 2.30(a)
shows the recursive splitting of the lists until each list is of length 1. Then the split
lists are merged, in pairs, going up the tree, until the entire list is sorted. This
process is suggested in Fig. 2.30(b). However, it is worth noting that the splits
and merges occur in a mixed order; oot aIl splits are followed by all merges. For
example, the first half Iisi, 72971, is completely split and merged before we begin
on the second half list, 4872. +

The Complete Program

Figure 2.31 contains the complete merge sort programo It is analogous to the
program in Fig. 2.3 that was based on selection sort. The function MakeList on

~ line (1) reads each integer from the input and puts it into a linked list by a simple, recursive algoritbm, which we shall describe in detail in the next section. Line (2)

oí the main program contains the call to MergeSort, which returns a sorted list to
PrintList. The function PrintLiat marches down the sorted list, printing each

ti elemento

EXERCISES
o

t, 2.8.1: Show the result of applying the function merge to the lists (1,2,3,4,5) and
d (2,4,6,8,10).

82 1TERA110N,

71

I \'
7

17

/\
,.

2.8.2: Suppose we start with the list (8,7,6,5,4,3,2, 1). Show the sequence of calls
to merge, aplit, and MergeSort that result.

2.8.3*: A multiwa'J merge sort divides a list into k pieces oí equal (or approximately
~ual) size, sorts them recursiveIy, and then merges a11 k Usts by comparing a11 their
respective first elements and taking the smallest. The merge sort described in this
section is for the case k = 2. Modify the program in Fig. 2.31 so that it becomes a

Multiway merge
sort

multiway merge sort for the case k = 3.

2.8.4*: Rewrite tbe merge sort program to use tbe functions lt
in Exerciae 2.2.8, to compare

2.8.5: Relate each of the functions (a) merge (b) split (c) MakeList to Fig. 2.21.
What is the appropriate notion of size for eacb of theae functions?

INDUCTlON. AND RECURStON

82791 47

\
2 27 4 7 8

1

(a) Splitting.

28179 47

/ I
49 2 1 8

1

(b)

and merging.Fig. 2.30.

andkey,described
type.of

SEC. 2.8 MERGE SORT: A RECURSIVE SORTING ALGORITHM 83

'include <stdio.h>

'include <stdlib.h>

typedef struct CELL .LIST;
struct CELL {

int element;
LIST next;

}; . ;;

LIST merge(LIST ¡1stI, LtST liat2) i
LIST split(LIST list);
LIST MergeSort(LIST list);
LIS! MakeList();

void PrintList(LIST list);

.-in()

{

LIST liat;

list = MakeList();

PrintList(MergeSort(list);
(1)
(2)

}

LIST MakeList()
{

int x;
LIST pNevCell;

if (scanf("%d". tx) == EOF) return NULL;

else {
pNevCell = (LIST) aalloc(sizeof(struct CELL»;

(3)

(4)
(5)
(6)
(7)

pNevCell->next = MakeList();

pNevCell->element = x;

return pNevCell,
)

)

void PrintList(LIST liat)

{
while (list ! = NULL) {

printf("~d\n", list->element);
list = list->next;

(8)
(9)

(W}

.}

Fig. 2.31(a). A sorting program using merge sort (start).

ITERATlON, INDUcrION, AND RECURSION84

Fig. 2.31(b). A sorting program using merge sort (conclusion).

+++ 2.9 Proving Properties of Recursive Programs
+

Ir we want to prove a certain property of a recursive function, we generally need to
prove a statement about the effect of one caIl to that function. For example, that
effect might be a relationship between the arguments and the retum value, such as
"the function, caIled with argument i, returns i!." Frequently, we define a notion of
the "size" of the arguments of a function and pedorm a proof by induction on this

LIST MergeSort(LIST 1ist)
{

LIST SecondList;

if (1ist == NULL) return NULL;
e18e if (1ist->next == NULL) return 1iat;

e1se {
SecondList = sp1it(1iat);

return merge(MergeSort(1ist). MergeSort(SecondLiat»;
}

}

LIST merge(LIST listl,
{

if (listl .. NULL) return liet2;
else if (list2 Z8 NULL) return listl;
else if (listl->eleaent <= list2->element)

listl->next list2);

LIST list2)

- merge(liatl->next,

return li8tl;

}.
8188 {

li8t2->next =
return li8t2;

merge(list.l. list2->next);

}
}

LIST aplit(LIST liat)

{
LIST pSecondCell;

if (list ~Z NULL) return NULL;

818e if (liat->next ~~ NULL) return NULL;

e1se {
pSecondCell. list->next;
list->next . pSecondCell->next;

pSecondCell->next = split(pSecondCell->next);

return pSecondCell;

}
}

SEC. 2.9 PROVING PROPEImES OF RECURSIVE PROGRAMS 85

Size of gire. Some of the many possible ways in which size of arguments could be defined
argumenta are

1. The value of some argumento For instance, for the recursive factorial program
of Fig. 2.19, the appropriate size is the value of the argument n.

2. The length of a list pointed to by some argumento The recursive function spli t
of Fig. 2.27 is an example where the length of the list is the appropriate size.

3. Some function of the arguments. For instance, we mentioned that the recursive
selection sort of Fig. 2.22 performs an induction on the number of elements in
the array that remain to be sorted. In terms of the arguments n and i, this
function is n - i + 1. As another example, the appropriate size for the merge
function of Fig. 2.24 is the sum of the lengths of the lists pointed to by the two
arguments of the function.

Whatever notion of size we pick, it is essential that when a function is called
with arguments of size s, it makes only function calls with arguments of sire s - 1 or
less. That requirement is so we can do an induction on the size to prove a property
of the programo F\1rther, when the size falls to some fixed value - say O - the
function must make no recursive calls. This condition is so we can start off our
inductive proof with a basis case.

. Example 2.26. Consider the factorial program ofFig. 2.19 in Section 2.7. The
statement to prove by induction on i, for i ?: 1, is

STATEMENT S(i): When called with the value i for the argument n, fact re-
t ..

urns l..

BASIS. For i = 1, the test at line (1) of Fig. 2.19 causes the basis, line (2), to be
executed. That results in the return value 1, which is 1!.

INDUCTION. Assume S(i) to be true, that is, when called with some argument
i?: 1, fact retums i!. Now, consider what happens when fact is called with i + 1
as the value of variable n. If i ?: 1, then i + 1 is at least 2, so the inductive case, line
(3), applies. The retum value is thus n x fact(n - 1); or, since the variable n has
the value i + 1, the result (i + 1) x fact(i) is retumed. By the inductive hypothesis,
fact(i) retums i!. Since (i + 1) xi! = (i + 1)!, we have proved the inductive step,
that fact, with argument i + 1, returns (i + 1)!. .

. Example 2.27. Now, let us examinethe function MakeList,oneofthe auxiliary
routines in Fig. 2.31(a), in Section 2.8. This function creates a linked list to hold
the input elements and retums a pointer to this listo We shall prove the following
statement by induction on n ?: O, the number of elements in the input sequence.

~,

86 ITERATION, INDUcrION, AND RECURSION

STATEMENT S(n): H Xl, X2, ..., X" is the sequence oí input elements, Makelist
creates a linked 1ist that contains Xl, X2, ..., X" and returns a pointer to this
listo

BASIS. The basis is n = O, that is, when the input sequence is empty. The test
for EOF in line (3) of MakeList causes the retum value to be set to NULL. Thus,
MakeList correctly retums an empty listo

INDUCTION. SUppose that S(n) is true for n ~ o, and consider what happens
when MakeList is caUed on an input sequence of n + 1 elements. Suppose we have
just read the first element Xl'

Line (4) of MakeList creates a pointer to a new cell c. Line (5) recursively caUs
Makelist to create, by the inductive hypothesis, a pointer to a linked list for the
remaining n elements, X2, X3, . . . , Xn. This pointer is put into the next field of c at
line (5). Line (6) puts Xl into the element field of c. Line (7) returns the pointer
created by line (4). This pointer points to a linked list for the n + 1 input elements,
XI,X2,...,Xn.

We have proved the inductive step and conclude that MakeList works correctly
on all inputs. +

+ Example 2.28. For our last example, let us prove the correctness oí the merge-
sort program oí Fig. 2.29, assuming that the functions split and merge perform
their respective tasks correctly. The induction will be on the length oí the list
that MergeSort is given as an argumento The statement to be proved by complete
induction on n ~ O is

STATEMENT S(n): If list is a list oí length n when HergeSort
HergeSort returos a sorted list oí the salDe elements.

BASIS. We take the basis to be both 8(0) and 8(1). When list is oí length O,
its value is NULL, and 80 the test oí line (1) in Fig. 2.29 8ucceeds and the entire
functioD returos NULL. Likewise, if list is oí length 1, the test oí line (2) 8ucceeds,
and the function retums listo Thus, MergeSort returos list when n is O or l.
This observatioD proves statements 8(0) and 8(1), because a 1ist oí length O or 1 is
already sorted.

INDUCTION. Suppose n ~ 1 and S(i) is true íor all i = 0,1,..., n. We must
prove S(n + 1). Thus, consider a list oí length n + 1. Since n ~ 1, tbis list is oí
lengtb at least 2, 80 we reach Une (3) in Fig. 2.29. Tbere, 8plit divides the list
into two lists oí length (n + 1)/2 if n + 1 is even, and oí lengths (n/2) + 1 and n/2
if n + 1 is odd. Since n ~ 1, none oí tbese lists can be as long as n + 1. Thus,
tbe inductive bypotbesis applles to them, and we can conclude tbat the half-sized
lists are correctly sorted by the recursive calls to MergeSort at line (4). Finally, tbe
two sorted lists are merged into one list, which becomes the retum value. We have
assumed tbat merge works correctly, and so the resulting retumed list is sorted. +

is caUed, then

li8t

this

test

bus,

pens
llave

calls
the

c at
nter
mts,

~y

'rge-
orm
Iist

Ilete

;hen

h o,
.tire
edI,
Ir l.
lis

aust
Bof
list
n/2
Ilus,
ized
the
lave
l. ...

.:. 2.10

SEC. 2.10 SUMMARY OF CHAPTER 2 87

DefCe11(int. CELL. LIST);

int sum(LIST L)
{

if (L == NULL) SUB - O;
e1s8 sum = L->e1ement + sum(L->next);

}

int findO(LIST L)
{

if (L == NULL) findO = FALSE;
else if (L->e1ement == O) findO = !ROE;
e1s8 findO = findO(L->next);

}

Fig. 2.32. Two recursive functions, SUID and findO.

EXERCISES

2.9.1: Prove that the function PrintList in Fig. 2.31(b) prints the elements on the
list that it is passed as an argumento What statement S(i) do you prove inductively?
What is the basis value for i?

2.9.2: The function SUDI in Fig. 2.32 computes the sum of the elements on its given
list (whose cells are of the usual type as defined by the macro DefCell of Section 1.6
and used in the merge-sort program of Section 2.8) by adding the first element to
the sum of the remaining elements; the latter sum is computed by a recursive call
on the remainder of the listo Prove that SWD correctly computes the sum of the list
elements. What statement S(i) do you prove inductively? What is the basis value
for i?

2.9.3: The functioo findO in Fig. 2.32 returns TRUE if at least one of the elements
on its list is O, and returns FALSE otherwise. It returos FALSE if the list is empty,
returns TRUE if the first element is O and otherwise, makes a recursive call on the
remainder of the list, and returos whatever answer is produced for the remainder.
Prove that f indO correctly determines whether O is present 00 the listo What
statement S(i) do you prove inductively? What is the basis value for i?

2.9.4.: Prove that the functions (a) merge of Fig. 2.24 and (b) split of Fig. 2.27
pedorro as claimed in Section 2.8.

2.9.5: Give an intuitive "least counterexample" proof of why inductioo starting
from a basis including both O and 1 is valido

2.9.6..: Prove the correctness of (your C implementation oí) the recursive GCD
algorithm of Exercise 2.7.8.

Surnrnary of Chapter 2

Here are the important ideas we should take from Chapter 2.

88 ITERATION,INDUCTlON, AND RECURSlON

Inductive proofs, recursive definitions, and recursive programs are closely re-
lated ideas. Each depends on a basis and an inductive step to "work."

In "ordinary" or "weak" inductions, successive steps depend on1y on the previ-
ous step. We frequently need need to perform a proof by complete induction,
in which each step depends on all the previous steps.

There are several different ways to sort. Selection sort is a simple but slow
sorting algorithm, and merge 80rt is a faster but more complex algorithm.

Induction is essential to prove that a program or program fragment works

correctIy.

Divide-and-conquer is a useful technique for designing some good algorithms,
such as merge sort. It works by dividing the problem into independent subparts
and then combining the results.

Expressions are defined in a natural, recursive way in terms of their operands
and operators. Operators can be classified by the number of arguments they
take: unary (one argument), binary (two arguments), and k-ary (k arguments).
AIso, a binary operator appearing between its operands is infix, an operator
appearing before its operands is prefix, and one appearing after its operands is
postfix.

..

..

+

.

..

+

...:... 2.11 Bibliographic Notes for Chapter 2

An excellent treatment of recursion is ~berts [1986]. For more on sorting algo-
rithms, the standard source Ís Knuth [1973]. Berlekamp [1968] tells about tech-
Diques - of which the error detection scheme in Section 2.3 Ís the simplest - for
detecting and correcting error! in streams of bita.

Berlekamp, E. R. [1968]. Algebraic Coding Tbeory, McGraw-Hill, New York.

Knuth, D. E. [1973]. Tbe Art of Computer Progr~mming, Vol. III: Sorting and
Searching, Addison-Wesley, Reading, Mass.

TbinkingRoberts, E. [1986]. Recursively, Wiley, New York.

~~~~


