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tet The List
Data Model

Like trees, lists are among the most basic of data models used in computer programs.
Lists are, in a sense, simple forms of trees, because one can think of a list as a binary
tree in which every left child is a leaf. However, lists also present some aspects that
are not special cases of what we have learned about trees. For instance, we shall talk
about operations on lists, such as pushing and popping, that have no common analog
for trees, and we shall talk of character strings, which are special and important
kinds of lists requiring their own data structures.

+*+ 6.1 What This Chapter Is About

We introduce list terminology in Section 6.2. Then in the remainder of the chapter
we present the following topics:

4 The basic operations on lists (Section 6.3).

4+ Implementations of abstract lists by data structures, especially the linked-list
data structure (Section 6.4) and an array data structure (Section 6.5).

4 The stack, a list upon which we insert and delete at only one end (Section 6.6).

4 The queue, a list upon which we insert at one end and delete at the other
(Section 6.8).

4 Character strings and the special data structures we use to represent them
(Section 6.10).

Further, we shall study in detail two applications of lists:

4 The run-time stack and the way C and many other languages implement re-
cursive functions (Section 6.7).
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4 The problem of finding longest common subsequences of two strings, and its
solution by a “dynamic programming,” or table-filling, algorithm (Section 6.9).

Basic Terminology

A list is a finite sequence of zero or more elements. If the elements are all of type
T, then we say that the type of the list is “list of T.” Thus we can have lists of
integers, lists of real numbers, lists of structures, lists of lists of integers, and so on.
We generally expect the elements of a list to be of some one type. However, since
a type can be the union of several types, the restriction to a single “type” can be
circumvented.

A list is often written with its elements separated by commas and enclosed in
parentheses:

(a1,az,---,an)

where the a;’s are the elements of the list.

In some situations we shall not show commas or parentheses explicitly. In
particular, we shall study character strings, which are lists of characters. Character
strings are generally written with no comma or other separating marks and with no
surrounding parentheses. Elements of character strings will normally be written in
typewriter font. Thus foo is the list of three characters of which the first is £ and

the second and third are o.

Example 6.1. Here are some examples of lists.

1. The list of prime numbers less than 20, in order of size:

(2, 3,5,7, 11,13, 17, 19)

2. The list of noble gasses, in order of atomic weight:

(helium, neon, argon, krypton, xenon, radon)

3. The list of the numbers of days in the months of a non-leap year:
(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)

As this example reminds us, the same element can appear more than once on a
list. 4+

Example 6.2. A line of text is another example of a list. The individual charac-
ters making up the line are the elements of this list, so the list is a character string.
This character string usually includes several occurrences of the blank character,
and normally the last character in a line of text is the “newline” character.
As another example, a document can be viewed as a list. Here the elements
of the list are the lines of text. Thus a document is a list whose elements that are
_themselves lists, character strings in particular. 4
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Example 6.3. A point in n-dimensional space can be represented by a list of n
real numbers. For example, the vertices of the unit cube can be represented by the
triples shown in Fig. 6.1. The three elements on each list represent the coordinates
of a point that is one of the eight corners (or “vertices”) of the cube. The first
component represents the z-coordinate (horizontal), the second represents the y-
coordinate (into the page), and the third represents the z-coordinate (vertical).

+
(0,1,1)
(1,1,1)
(0,0,1) f
\ (1,0,1)
R R
.-7(0,1,0) (1,1,0)
(0,0,0) (1,0,0)

Fig. 6.1. The vertices of the unit cube represented as triples.

The Length of a List

The length of a list is the number of occurrences of elements on the list. If the
number of elements is zero, then the list is said to be empty. We use the Greek
letter € (epsilon) to represent the empty list. We can also represent the empty list
by a pair of parentheses surrounding nothing: (). It is important to remember that
length counts positions, not distinct symbols, and so a symbol appearing k times
on a list adds k to the length of the list.

Example 6.4. The length of list (1) in Example 6.1 is 8, and the length of list
(2) is 6. The length of list (3) is 12, since there is one position for each month. The
fact that there are only three different numbers on the list is irrelevant as far as the
length of the list is concerned. 4

Parts of a List

If a list is not empty, then it consists of a first element, called the head and the
remainder of the list, called the tail. For instance, the head of list (2) in Example
6.1 is helium, while the tail is the list consisting of the remaining five elements,

(neon, argon, krypton, xenon, radon)

Su

Sul

Pre
sufl
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Elements and Lists of Length 1

It is important to remember that the head of a list is an element, while the tail of
a list is a list. Moreover, we should not confuse the head of a list — say a — with
the list of length 1 containing only the element a, which would normally be written
with parentheses as (a). If the element a is of type T, then the list (a) is of type
“list of T.”

Failure to recognize the difference leads to programming errors when we im-
plement lists by data structures. For example, we may represent lists by linked
cells, which are typically structures with an element field of some type T, holding
an element, and a next field holding a pointer to the next cell. Then element a is
of type T, while the list (a) is a cell with element field holding a and next field
holding NULL.

If L =(a1,a2,...,8,) is a list, then for any i and j such that 1 <1 < j <n,
(@i, @it1, - - .,a;) is said to be a sublist of L. That is, a sublist is formed by starting
at some position i, and taking all the elements up to some position j. We also say
that ¢, the empty list, is a sublist of any list.

A subsequence of the list L = (a1,as,...,a,) is a list formed by striking out
zero or more elements of L. The remaining elements, which form the subsequence,
must appear in the same order in which they appear in L, but the elements of the
subsequence need not be consecutive in L. Note that ¢ and the list L itself are
always subsequences, as well as sublists, of L.

Example 6.5. Let L be the character string abc. The sublists of L are
€, a, b, c, ab, bc, abc

These are all subsequences of L as well, and in addition, ac is a subsequence, but
not a sublist.
For another example, let L be the character string abab. Then the sublists are

€, a, b, ab, ba, aba, bab, abab

These are also subsequences of L, and in addition, L has the subsequences aa, bb,
aab, and abb. Notice that a character string like bba is not a subsequence of L.
Even though L has two b’s and an a, they do not appear in such an order in L
that we can form bba by striking out elements of L. That is, there is no a after the
second bin L. 4+

A prefiz of a list is any sublist that starts at the beginning of the list. A suffiz
is a sublist that terminates at the end of the list. As special cases, we regard ¢ as
both a prefix and a suffix of any list.

Example 6.6. The prefixes of the list abc are ¢, a, ab, and abc. Its suffixes are
¢, ¢, bc, and abec. ¢
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Car and Cdr

In the programming language Lisp, the head is called the car and the tail is called
the cdr (pronounced “cudder”). The terms “car” and “cdr” arose from the names
given to two fields of a machine instruction on an IBM 709, the computer on which
Lisp was first implemented. Car stands for “contents of the address register,” and
cdr stands for “contents of the decrement register.” In a sense, memory words
were seen as cells with element and next fields, corresponding to the car and cdr,
respectively.

The Position of an Element on a List

Each element on a list is associated with a position. If (a1, as,...,a,) is a list and
n > 1, then a; is said to be first element, a; the second, and so on, with a, the last
element. We also say that element a; occurs at position i. In addition, a; is said
to follow a;_; and to precede a;4,. A position holding element a is said to be an
occurrence of a.

The number of positions on a list equals the length of the list. It is possible
for the same element to appear at two or more positions. Thus it is important not
to confuse a position with the element at that position. For instance, list (3) in
Example 6.1 has twelve positions, seven of which hold 31 — namely, positions 1, 3,
5,7, 8,10, and 12.

EXERCISES

6.2.1: Answer the following questions about the list (2,7,1,8,2).

) What is the length?

) What are all the prefixes?

) What are all the suffixes?

) What are all the sublists?

e) How many subsequences are there?
f) What is the head?

g) What is the tail?

h) How many positions are there?

=

[g]

(=9

6.2.2: Repeat Exercise 6.2.1 for the character string banana.

6.2.3**: In a list of length n > 0, what are the largest and smallest possible
numbers of (a) prefixes (b) sublists (c) subsequences?

6.2.4: If the tail of the tail of the list L is the empty list, what is the length of L?

6.2.5*: Bea Fuddled wrote a list whose elements are themselves lists of integers,
but omitted the parentheses: 1,2,3. There are many lists of lists that could have
been represented, such as ((1), (2,3)). What are all the possible lists that do not
have the empty list as an element?
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43+ 6.3 Operations on Lists

Sorting and
merging

A great variety of operations can be performed on lists. In Chapter 2, when we
discussed merge sort, the basic problem was to sort a list, but we also needed to
split a list into two, and to merge two sorted lists. Formally, the operation of
sorting a list (a), a2, ...,a,) amounts to replacing the list with a list consisting of
a permutation of its elements, (b;,bg,...,b,), such that by < by < --- < by. Here,
as before, < represents an ordering of the elements, such as “less than or equal to”
on integers or reals, or lexicographic order on strings. The operation of merging
two sorted lists consists of constructing from them a sorted list containing the same
elements as the two given lists. Multiplicity must be preserved; that is, if there are
k occurrences of element a among the two given lists, then the resulting list has &
occurrences of a. Review Section 2.8 for examples of these two operations on lists.

Insertion, Deletion, and Lookup

Recall from Section 5.7 that a “dictionary” is a set of elements on which we perform
the operations insert, delete, and lookup. There is an important difference between
sets and lists. An element can never appear more than once in a set, although, as
we have seen, an element can appear more than once on a list; this and other issues
regarding sets are discussed in Chapter 7. However, lists can implement sets, in
the sense that the elements in a set {a;,as,...,a,} can be placed in a list in any
order, for example, the order (a;,as, ..., a,), or the order (an,an—_1,...,a;). Thus
it should be no surprise that there are operations on lists analogous to the dictionary
operations on sets.

1. Wecan insert an element z onto a list L. In principle, 2 could appear anywhere
on the list, and it does not matter if z already appears in L one or more times.
We insert by adding one more occurrence of z. As a special case, if we make =
the head of the new list (and therefore make L the tail), we say that we push
z onto the list L. If L = (aj,-~..,ay), the resulting list is (z,a,,...,an).

2.  We can delete an element x from a list L. Here, we delete an occurrence of
from L. If there is more than one occurrence, we could specify which occurrence
to delete; for example, we could always delete the first occurrence. If we want
to delete all occurrences of z, we repeat the deletion until no more z’s remain.
If z is not present on list L, the deletion has no effect. As a special case, if
we delete the head element of the list, so that the list (z,a;,...,a,) becomes
(a1, -.-,as), we are said to pop the list.

3. We can lookup an element z on a list L. This operation returns TRUE or FALSE,
depending on whether z is or is not an element on the list.

Example 6.7. Let L be the list (1,2,3,2). The result of insert(1, L) could be
the list (1,1,2,3,2), if we chose to push 1, that is, to insert 1 at the beginning. We
could also insert the new 1 at the end, yielding (1,2,3,2,1). Alternatively, the new
1 could be placed in any of three positions interior to the list L.

The result of delete(2, L) is the list (1,3, 2) if we delete the first occurrence of
2. If we ask lookup(z, L), the answer is TRUE if z is 1, 2, or 3, but FALSE if z is any
other value. 4+
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Concatenation

We concatenate two lists L and M by forming the list that begins with the elements
of L and then continues with the elements of M. That is, if L = (a1,a2,.. .y 8p)
and M = (by,bs,...,bx), then LM, the concatenation of L and M, is the list

(alaa21'")aﬂ’bltb21"')bk)

Note that the empty list is the identity for concatenation. That is, for any list L,
we have eL = Le = L.

Example 6.8. If L is the list (1,2,3) and M is the list (3, 1), then LM is the list
(1,2,3,3,1). If L is the character string dog and M is the character string house,
then LM is the character string doghouse. 4

Other List Operations

Another family of operations on lists refers to particular positions of the list. For
example,

a) The operation first(L) returns the first element (head) of list L, and last(L)
returns the last element of L. Both cause an error if L is an empty list.

b) The operation retrieve(i, L) returns the element at the ith position of list L.
It is an error if L has length less than .

There are additional operations that involve the length of a list. Some common
operations are:

c) length(L), which returns the length of list L.

d) isEmpty(L), which returns TRUE if L is an empty list and returns FALSE if not.
Similarly, isNotEmpty(L) would return the opposite.

EXERCISES

6.3.1: Let L be the list (3,1,4,1,5,9).

a) What is the value of delete(5, L)?

b) What is the value of delete(1, L)?

c) What is the result of popping L7

d) What is the result of pushing 2 onto list L?

e) What is returned if we perform lookup with the element 6 and list L?

f) If M is the list (6,7,8), what is the value of LM (the concatenation of L and
M)? What is M L?

g) What is first(L)? What is last(L)?

h) What is the result of retrieve(3, L)?

i) What is the value of length(L)?

j) What is the value of isEmpty(L)?

6.3.2**; If L and M are lists, under what conditions is LM = ML?

6.3.3**: Let z be an element and L a list. Under what conditions are the following
equations true?
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a) delete(z, insert(z,L)) = L

b) insert(z, delete(z,L)) = L

c) first(L) = retrieve(l, L)

d) last(L) = retrieve(le:&i;,{l(i} L)

The LijpkedList Data Structure

The easiest way to implement a list is to use a linked list of cells. Each cell consists
of two fields, one containing an element of the list, the other a pointer to the next
cell on the linked list. In this chapter we shall make the simplifying assumption that
elements are integers. Not only may we use the specific type int for the type of
elements, but we can compare elements by the standard comparison operators ==,
and so on. The exercises invite the reader to develop variants of our functions that
work for arbitrary types, where comparisons are made by user-defined functions
such as eq to test equality, l{(z,y) to test if z precedes y in some ordering, and so
on.
In what follows, we shall use our macro from Section 1.6:

DefCell(int, CELL, LIST);

which expands into our standard structure for cells and lists:

typedef struct CELL *LIST;
struct CELL {

int element;

LIST next;
I

Note that LIST is the type of a pointer to a cell. In effect, the next field of each
cell points both to the next cell and to the entire remainder of the list.
Figure 6.2 shows a linked list that represents the abstract list

L = (a;,az,...,an)

There is one cell for each element; the element a; appears in the element field of the
ith cell. The pointer in the ith cell points to the (i+ 1)st cell, fori = 1,2,...,n—1,
and the pointer in the last cell is NULL, indicating the end of the list. Outside the
list is a pointer, named L, that points to the first cell of the list; L is of type LIST.
If the list L were empty, then the value of L would be NULL.

I & = as — . ——mla, | e

Fig. 6.2. A linked list representing the list L = (a1, az,...,a,).

Implementation of Dictionary Operations by Linked Lists

Let us consider how we can implement the dictionary operations if we represent the
dictionary by a linked list. The following operations on dictionaries were defined in
Section 5.7.
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Lists and Linked Lists

Remember that a list is an abstract, or mathematical model. The linked list is a
simple data structure, which was mentioned in Chapter 1. A linked list is one way
to implement the list data model, although, as we shall see, it is not the only way.
At any rate, this is a good time to remember once more the distinction between
models and the data structures that implement them.

1. insert(z, D), to insert element z into dictionary D,
2. delete(z, D), to delete element z from dictionary D, and

3. lookup(z, D), to determine whether element z is in dictionary D,

We shall see that the linked list is a simpler data structure for implementing dic-
tionaries than the binary search tree that we discussed in the previous chapter.
However, the running time of the dictionary operations when using the linked-list
representation is not as good as when using the binary search tree. In Chapter 7 we
shall see an even better implementation for dictionaries — the hash table — which
makes use, as subroutines, of the dictionary operations on lists.

We shall assume that our dictionary contains integers, and cells are defined as
they were at the beginning of this section. Then the type of a dictionary is LIST,
also as defined at the beginning of this section. The dictionary containing the set of
elements {a;,as,...,a,} could be represented by the linked list of Fig. 6.2. There
are many other lists that could represent the same set, since order of elements is
not important in sets.

Lookup

To perform lookup(z, D), we examine each cell of the list representing D to see
whether it holds the desired element z. If so, we return TRUE. If we reach the end
of the list without finding z, we return FALSE. As before, the defined constants
TRUE and FALSE stand for the constants 1 and 0, and BOOLEAN for the defined type
int. A recursive function lookup(x,D) is shown in Fig. 6.3.

BOOLEAN lookup(int x, LIST L)

{
if (L == NULL)
return FALSE;
else if (x == L->element)
return TRUE;
else
return lookup(x, L->next);
}

Fig. 6.3. Lookup on a linked list.

If the list has length n, we claim that the function of Fig. 6.3 takes O(n) time.
Except for the recursive call at the end, lookup takes O(1) time. When the call is
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made, the length of the remaining list is 1 less than the length of the list L. Thus
it should surprise no one that lookup on a list of length n takes O(n) time. More
formally, the following recurrence relation gives the running time T(n) of lookup
when the list L pointed to by the second argument has length n.

BASIS. T(0) is O(1), because there is no recursive call when L is NULL.

INDUCTION. T(n) = T(n — 1) + O(1).

The solution to this recurrence is T(n) = O(n), as we saw several times in Chapter
3. Since a dictionary of n elements is represented by a list of length n, lookup takes
O(n) time on a dictionary of size n.

Unfortunately, the average time for a successful lookup is also proportional to
n. For if we are looking for an element z known to be in D, the expected value of
the position of z in the list is (n+1)/2. That is, z could be anywhere from the first
to the nth element, with equal probability. Thus, the expected number of recursive
calls to lookup is (n + 1)/2. Since each takes O(1) time, the average successful
lookup takes O(n) time. Of course, if the lookup is unsuccessful, we make all n
calls before reaching the end of the list and returning FALSE.

Deletion

A function to delete an element z from a linked list is shown in Fig. 6.4. The second
parameter pL is a pointer to the list L (rather than the list L itself). We use the
“call by reference” style here because we want delete to remove the cell containing
z from the list. As we move down the list, pL holds a pointer to a pointer to the
«current” cell. If we find z in the current cell C, at line (2), then we change the
pointer to cell C at line (3), so that it points to the cell following C on the list. If
C happens to be last on the list, the former pointer to C becomes NULL. If z is not
the current element, then at line (4) we recursively delete z from the tail of the list.

Note that the test at line (1) causes the function to return with no action if
the list is empty. That is because z is not present on an empty hist, and we need
not do anything to remove z from the dictionary. If D is a linked list representing
a dictionary, then a call to delete(x, &D) initiates the deletion of z from the
dictionary D.

void delete(int x, LIST #*pL)

{
(1) iz ((*pL) !'= NULL)
(2) it (x == (*pL)->element)
(3) (*pL) = (*pL)->next;
else
(4) delete(x, &((*pL)->next))};
}

Fig. 6.4. Deleting an element.

If the element z is not on the list for the dictionary D, then we run down to
the end of the list, taking O(1) time for each element. The analysis is similar to
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that for the lookup function of Fig. 6.3, and we leave the details for the reader.
Thus the time to delete an element not in D is O(n) if D has n elements. If z is
in the dictionary D, then, on the average, we shall encounter z halfway down the
list. Therefore we search (n + 1)/2 cells on the average, and the running time of a
successful deletion is also O(n).

Insertion

A function to insert an element z into a linked list is shown in Fig. 6.5. To insert
z, we need to check that z is not already on the list (if it is, we do nothing). If z
is not already present, we must add it to the list. It does not matter where in the
list we add z, but the function in Fig. 6.5 adds z to the end of the list. When at
line (1) we detect the NULL at the end, we are therefore sure that z is not already
on the list. Then, lines (2) through (4) append z to the end of the list.

If the list is not NULL, line (5) checks for z at the current cell. If z is not there,
line (6) makes a recursive call on the tail. If z is found at line (5), then function
insert terminates with no recursive call and with no change to the list L. A call
to insert(x, &D) initiates the insertion of z into dictionary D.

void insert(int x, LIST *pL)

{
(1) it ((*pL) == NULL) {
(2) (*pL) = (LIST) malloc(sizeof(struct CELL));
(3) (*pL)->element = x;
4) (*pL)->next = NULL;

}

(5) else if (x != (#pL)->element)
(6) insert(x, &((*pL)->next));

Fig. 6.5. Inserting an element.

As in the case of lookup and deletion, if we do not find z on the list, we travel to
the end, taking O(n) time. If we do find z, then on the average we travel halfway!
down the list, and we still take O(n) time on the average.

A Variant Approach with Duplicates

We can make insertion run faster if we do not check for the presence of z on the
list before inserting it. However, as a consequence, there may be several copies of
an element on the list representing a dictionary.

To execute the dictionary operation insert(z, D) we simply create a new cell,
put z in it, and push that cell onto the front of the list for D. This operation takes
0O(1) time.

The lookup operation is exactly the same as in Fig. 6.3. The only nuance is
that we may have to search a longer list, because the length of the list representing
dictionary D may be greater than the number of members of D.

! In the following analyses, we shall use terms like “halfway” or “n/2” when we mean the
middle of a list of length n. Strictly speaking, (n + 1)/2 is more accurate.
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Abstraction Versus Implementation Again

It may be surprising to see us using duplicates in lists that represent dictionaries,
since the abstract data type DICTIONARY is defined as a set, and sets do not have
duplicates. However, it is not the dictionary that has duplicates. Rather the data
structure implementing the dictionary is allowed to have duplicates. But even when
r appears several times on a linked list, it is only present once in the dictionary
that the linked list represents.

Deletion is slightly different. We cannot stop our search for z when we en-
counter a cell with element z, because there could be other copies of z. Thus we
must delete z from the tail of a list L, even when the head of L contains z. As a
result, not only do we have longer lists to contend with, but to achieve a successful
deletion we must search every cell rather than an average of half the list, as we
could for the case in which no duplicates were allowed on the list. The details of
these versions of the dictionary operations are left as an exercise.

In summary, by allowing duplicates, we make insertion faster, O(1) instead of
O(n). However, successful deletions require search of the entire list, rather than an
average of half the list, and for both lookup and deletion, we must contend with lists
that are longer than when duplicates are not allowed, although how much longer
depends on how often we insert an element that is already present in the dictionary.

Which method to choose is a bit subtle. Clearly, if insertions predominate, we
should allow duplicates. In the extreme case, where we do only insertions but never
lookup or deletion, we get performance of O(1) per operation, instead of O(n).? If
we can be sure, for some reason, that we shall never insert an element already in
the dictionary, then we can use both the fast insertion and the fast deletion, where
we stop when we find one occurrence of the element to be deleted. On the other
hand, if we may insert duplicate elements, and lookups or deletions predominate,
then we are best off checking for the presence of = before inserting it, as in the
insert function of Fig. 6.5.

Sorted Lists to Represent Dictionaries

Another alternative is to keep elements sorted in increasing order on the list repre-
senting a dictionary D. Then, if we wish to lookup element z, we have only to go as
far as the position in which z would appear; on the average, that is halfway down
the list. If we meet an element greater than z, then there is no hope of finding z later
in the list. We thus avoid going all the way down the list on unsuccessful searches.
That saves us about a factor of 2, although the exact factor is somewhat clouded
because we have to ask whether z follows in sorted order each of the elements we
meet on the list, which is an additional step at each cell. However, the same factor
in savings is gained on unsuccessful searches during insertion and deletion.

A lookup function for sorted lists is shown in Fig. 6.6. We leave to the reader
the exercise of modifying the functions of Figs. 6.4 and 6.5 to work on sorted lists.

PRRBERTA St Lol o o 2 5 = e EasC A T
2 But why bother inserting into a dictionary if we never look to see what is there?
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BOOLEAN lookup(int x, LIST L)

{
it (L == NULL)
return FALSE;
else if (x > L->element)
return lookup(x, L->next);
else if (x == L->element)
return TRUE;
else /* here x < L->element, and 80 x could not be
on the sorted list L */
return FALSE;
}

Fig. 6.6. Lookup on a sorted list.

Comparison of Methods

The table in Fig. 6.7 indicates the number of cells we must search for each of
the three dictionary operations, for each of the three list-based representations of
dictionaries we have discussed. We take n to be the number of elements in the
dictionary, which is also the length of the list if no duplicates are allowed. We use
m for the length of the list when duplicates are allowed. We know that m > n, but
we do not know how much greater m is than n. Where we use n/2 - n we mean
that the number of cells is an average of n/2 when the search is successful, and n
when unsuccessful. The entry n/2 — m indicates that on a successful lookup we
shall see n/2 elements of the dictionary, on the average, before seeing the one we
want,? but on an unsuccessful search, we must go all the way to the end of a list of
length m.

INSERT | DELETE | LOOKUP
No duplicates | n/2 93 n [n/29n | n/2on
Duplicates 0 m nf2—om
Sorted n/2 n/2 n/2

Fig. 6.7. Number of cells searched by three methods of
representing dictionaries by linked lists.

Notice that all of these running times, except for insertion with duplicates,
are worse than the average running times for dictionary operations when the data
structure is a binary search tree. As we saw in Section 5.8, dictionary operations
take only O(logr) time on the average when a binary search tree is used.

3 In fact, since there may be duplicates, we may have to examine somewhat more than n/2
cells before we can expect to see n/2 different elements.
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Judicious Ordering of Tests

Notice the order in which the three tests of Fig. 6.6 are made. We have no choice
but to test that L is not NULL first, since if L is NULL the other two tests will cause
an error. Let y be the value of L->element. Then in all but the last cell we visit,
we shall have z < y. The reason is that if we have z = y, we terminate the lookup
successfully, and if we have z > y, we terminate with failure to find z. Thus we
make the test z < y first, and only if that fails do we need to separate the other
two cases. That ordering of tests follows a general principle: we want to test for the
most common cases first, and thus save in the total number of tests we perform, on
the average.

If we visit k cells, then we test k times whether L is NULL and we test k times
whether z is less than y. Once, we shall test whether 2 = y, making a total of
2k + 1 tests. That is only one more test than we make in the lookup function of
Fig. 6.3 — which uses unsorted lists — in the case that the element z is found. If
the element is not found, we shall expect to use many fewer tests in Fig. 6.6 than
in Fig. 6.3, because we can, on the average, stop after examining only half the cells
with Fig. 6.6. Thus although the big-oh running times of the dictionary operations
using either sorted or unsorted lists is O(n), there is usually a slight advantage in
the constant factor if we use sorted lists.

m— S i ——— - il

Doubly Linked Lists

In a linked list it is not easy to move from a cell toward the beginning of the list.
The doubly linked list is a data structure that facilitates movement both forward
and backward in a list. The cells of a doubly linked list of integers contain three
fields:

typdef struct CELL *LIST;
struct CELL { '
LIST previous;
int element;
LIST next;
The additional field contains a pointer to the previous cell on the list. Figure 6.8
shows a doubly linked list data structure that represents the list L = (a;,a2,...,a,).

LEF il 19 a as __""I ‘et it |'On ] @

Fiig. 6.8. A doubly linked list representing the li* L= (a1 az,...,an).

Dictionary operations on a doubly linked list structure are essentially the same
as those on a singly linked list. To see the advantage of doubly linked lists, consider
the operation of deleting an element a;, given only a pointer to the cell containing
that element. With a singly linked list, we would have to find the previous cell by
searching the list from the beginning. With a doubly linked list, we can do the task
in O(1) time by a sequence of pointer manipulations, as shown in Fig. 6.9.
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void delete(LIST p, LIST *pL)

{
/* p is a pointer to the cell to be deleted,
and pL points to the list */
(1) it (p->next != NULL)
(2) p->next->previous = p->previous;
(3) if (p->previous == NULL) /* p points to first cell #/
(4) (*pL) = p->next;
else
(5) p->previous->next = p->next;
}

Fig. 6.9. Deleting a cell from a doubly linked list.

The function delete(p,pL) shown in Fig. 6.9 takes as arguments a pointer p
to the cell to be deleted, and pL, which is a pointer to the list L itself. That is,
pL is the address of a pointer to the first cell on the list. In line (1) of Fig. 6.9 we
check that p does not point to the last cell. If it does not, then at line (2) we make
the backward pointer of the following cell point to the cell before p (or we make it
equal to NULL if p happens to point to the first cell).

Line (3) tests whether p is the first cell. If so, then at line (4) we make L point
to the second cell. Note that in this case, line (2) has made the previous field of
the second cell NULL. If p does not point to the first cell, then at line (5) we make
the forward pointer of the previous cell point to the cell following p. That way, the
cell pointed to by p has effectively been spliced out of the list; the previous and
next cells point to each other.

EXERCISES

6.4.1: Set up the recurrence relations for the <running times of (a) delete in Fig.
6.4 (b) insert in Fig. 6.5. What are their solutions?

6.4.2: Write C functions for dictionary operations insert, lookup and delete using
linked lists with duplicates.

6.4.3: Write C functions for insert and delete, using sorted lists as in Fig. 6.6.

6.4.4: Write a C function that inserts an element z into a new cell that follows
the cell pointed to by p on a doubly linked list. Figure 6.9 is a similar function for
deletion, but for insertion, we don’t need to know the list header L.

6.4.5: If we use the doubly linked data structure for lists, an option is to represent a
list not by a pointer to a cell, but by a cell with the element field unused. Note that
this “header” cell is not itself a part of the list. The next field of the header points
to the first true cell of the list, and the previous field of the first cell points to the
header cell. We can then delete the cell (not the header) pointed to by pointer p
without knowing the header L, as we needed to know in Fig. 6.9. Write a C function
to delete from a doubly linked list using the format described here.

6.4.6: Write recursive functions for (a) retrieve(i, L) (b) length(L) (c) last(L)
using the linked-list data structure.
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6.4.7: Extend each of the following functions to cells with an arbitrary type ETYPE
for elements, using functions eg(z,y) to test if z and y are equal and lt(z, y) to tell
if = precedes y in an ordering of the elements of ETYPE.

a) lookup as in Fig. 6.3.

b) delete as in Fig. 6.4.

c) insert as in Fig. 6.5.

d) insert, delete, and lookup using lists with duplicates.
e) insert, delete, and lookup using sorted lists.

Array-Based Implementation of Lists

Another common way to implement a list is to create a structure consisting of

1. An array to hold the elements and

2. A variable length to keep track of the count of the number of elements currently
in the list.

Figure 6.10 shows how we might represent the list (ag,a1,...,a,_1) using an array
A[0..MAX-1]. Elements ag, @, ...,a,-1 are stored in A[0..n-1], and length = n.

0 ap
ay
n—1 An-1
MAX — 1
Fig. 6.10. The array A holding the list (ag,a1,...,an-1).

As in the previous section, we assume that list elements are integers and invite
the reader to generalize the functions to arbitrary types. The structure declaration
for this array-based implementation of lists is:

typedef struct {
int A[MAX];
int length;
¥ LIST;
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Here, LIST is a structure of two fields; the first is an array A that stores the elements,
the second an integer length that contains the number of elements currently on
the list. The quantity MAX is a user-defined constant that bounds the number of
elements that will ever be stored on the list.

The array-based representation of lists is in many ways more convenient than
the linked-list representation. It does suffer, however, from the limitation that lists
cannot grow longer than the array, which can cause an insertion to fail. In the
linked-list representation, we can grow lists as long as we have available computer
memory.

We can perform the dictionary operations on array-based lists in roughly the
same time as on lists in the linked-list representation. To insert z, we look for z,
and if we do not find it, we check whether length < M AX. If not, there is an error
condition, as we cannot fit the new element into the array. Otherwise, we store z
in A[length] and then increase length by 1. To delete z, we again lookup z, and if
found, we shift all following elements of A down by one position; then, we decrement
length by 1. The details of functions to implement insert and delete are left as
exercises. We shall concentrate on the details of lookup below.

Lookup with Linear Search

Figure 6.11 is a function that implements the operation lookup. Because the array
A may be large, we choose to pass a pointer pL to the structure of type LIST as a
formal parameter to lookup. Within the function, the two fields of the structure
can then be referred to as pL->A[i] and pL->length.

Starting with i = 0, the for-loop of lines (1) to (3) examines each location of
the array in turn, until it either reaches the last occupied location or finds z. If it
finds z, it returns TRUE. If it has examined each element in the list without finding
z, it returns FALSE at line (4). This method of lookup is called linear or sequential
search.

BOOLEAN lookup(int x, LIST *pL)

t
int 1i;
(1) for (i = 0; i < pL->length; i++)
(2) it (x == pL->A[i])
3) return TRUE;
(4) return FALSE;
}

Fig. 6.11. Function that does lookup by linear search.

It is easy to see that, on the average, we search half the array A[0..length-1]
before finding z if it is present. Thus letting n be the value of length, we take
O(n) time to perform a lookup. If z is not present, we search the whole array
A[0. .1ength-1], again requiring O(n) time. This performance is the same as for
a linked-list representation of a list.
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The Importance of Constant Factors in Practice

Throughout Chapter 3, we emphasized the importance of big-oh measures of run-
ning time, and we may have given the impression that big-oh is all that matters
or that any O(n) algorithm is as good as any other O(n) algorithm for the same
job. Yet here, in our discussion of sentinels, and in other sections, we have exam-
ined rather carefully the constant factor hidden by the O(n). The reason is simple.
While it is true that big-oh measures of running time dominate constant factors, it
is also true that everybody studying the subject learns that fairly quickly. We learn,
for example, to use an O(nlogn) running time sort whenever n is large enough to
matter. A competitive edge in the performance of software frequently comes from
improving the constant factor in an algorithm that already has the right “big-oh”
running time, and this edge frequently translates into the success or failure of a
commercial software product.

Lookup with Sentinels

We can simplify the code in the for-loop of Fig 6.11 and speed up the program
by temporarily inserting z at the end of the list. This z at the end of the list is
called a sentinel. The technique was first mentioned in a box on “More Defensive
Programming” in Section 3.6, and it has an important application here. Assuming
that there always is an extra slot at the end of the list, we can use the program in
Fig. 6.12 to search for z. The running time of the program is still O(n), but the
constant of proportionality is smaller because the number of machine instructions
required by the body and test of the loop will typically be smaller for Fig. 6.12 than
for Fig. 6.11.

BOOLEAN lookup(int x, LIST *pL)

{ -
int i;
(1) pL=>A[pL->length] = x;
(2) i=0;
(3) while (x != pL->A[i])
(4) it
(5) return (i < pL->length);
}

Fig. 6.12. Function that does lookup with a sentinel.

The sentinel is placed just beyond the list by line (1). Note that since length
does not change, this z is not really part of the list. The loop of lines (3) and (4)
increases i until we find z. Note that we are guaranteed to find z even if the list
is empty, because of the sentinel. After finding z, we test at line (5) whether we
have found a real occurrence of z (that is, i < length), or whether we have found
the sentinel (that is, ¢ = length). Note that if we are using a sentinel, it is essential
that length be kept strictly less than MA X, or else there will be no place to put the
sentinel.
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Lookup on Sorted Lists with Binary Search

Suppose L is a list in which the elements ag, a1, ..., an_1 have been sorted in non-
decreasing order. If the sorted list is stored in an array A[0..n-1], we can speed
lookups considerably by using a technique known as binary search. We must first
find the index m of the middle element; that is, m = [(n — 1)/2].* Then we com-
pare element z with A[m]. If they are equal, we have found z. If z < A[m], we
recursively repeat the search on the sublist A[0..m-1]. If z > A[m], we recursively
repeat the search on the sublist A[m+1..n-1]. If at any time we try to search an
empty list, we report failure. Figure 6.13 illustrates the division process.

A
0

Search here

if z < A[|(n—1)/2]]

l(n —1)/2]

Search here

if z > A[|(n —1)/2]]

n—1

Fig. 6.13. Binary search divides a rirangén two.

The code for a function binsearch to locate z in a sorted array A is shown in
Fig. 6.14. The function uses the variables 1low and high for the lower and upper
bounds of the range in which z might lie. If the lower range exceeds the upper, we
have failed to find z; the function terminates and returns FALSE.

Otherwise, binsearch computes the midpoint of the range, by

mid = |(low + high)/2)

Then the function examines A[mid], the element at the middle of the range, to
determine whether z is there. If not, it continues the search in the lower or upper
half of the range, depending on whether z is less than or greater than A[mid]. This
idea generalizes the division suggested in Fig. 6.13, where low was (0 and high was
n—1.

The function binsearch can be proved correct using the inductive assertion
that if z is in the array, then it must lie within the range A[low. .high]. The proof
is by induction on the difference high — low and is left as an exercise.

At each iteration, binsearch either

1. Finds the element z when it reaches line (8) or

1 The notation [a], the floor of a, is the integer part of a. Thus [6.5] = 6 and [6] = 6.
Also, [a], the ceiling of a, is the smallest integer greater than or equal to a. For instance,
|-6‘5-| = 7 and |-6] = 6.
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BOOLEAN binsearch(int x, int A[], int low, int high)

{
int mid;
(1) i? (low > high)
(2) return FALSE;
T else {
(3) mid = (low + high)/2;
(4) it (x < A[mid])
(5) return binsearch(x, A, low, mid-1);
(6) else if (x > A[mid]l)
N return binsearch(x, A, mid+1, high);
else /* x == Almid] */

8) return TRUE;
D 1

}

Fig. 6.14. Function that does lookup using binary search.

2. Calls itself recursively at line (5) or line (7) on a sublist that is at most half as
long as the array A[low..high] that it was given to search.

Starting with an array of length n, we cannot divide the length of the array to be
searched in half more than log, n times before it has length 1, whereupon we either
find z at A[mid], or we fail to find z at all after a call on the empty list.

To look for z in an array A with n elements, we call binsearch(x,A,0,n-1).
We see that binsearch calls itself O(logn) times at most. At each call, we spend
O(1) time, plus the time of the recursive call. The running time of binary search
is therefore O(logn). That compares favorably with the linear search, which takes
O(n) time on the average, as we have seen.

EXERCISES

6.5.1: Write functions to (a) insert z and (b) delete z from a list L, using linear
search of an array.

6.5.2: Repeat Exercise 6.5.1 for an array with sentinels.

6.5.3: Repeat Exercise 6.5.1 for a sorted array.

6.5.4: Write the following functions assuming that list elements are of some arbi-
trary type ETYPE, for which we have functions eq(z,y) that tells whether z and y
are equal and lt(z,y) telling whether z precedes y in the order of elements of type
ETYPE.

a) Function lookup of Fig. 6.11.
b) Function lookup of Fig. 6.12.
c) Function binsearch of Fig. 6.14.
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6.5.5**: Let P(k) be the length (high — low + 1) of the longest array such that the
binary search algorithm of Fig. 6.14 never makes more than k probes [evaluations of
mid at line (3)). For example, P(1) = 1, and P(2) = 3. Write a recurrence relation
for P(k). What is the solution to your recurrence relation? Does it demonstrate
that binary search makes O(log n) probes?

6.5.6*: Prove by induction on the difference between low and high that if z is in
the range A[low..high], then the binary search algorithm of Fig. 6.14 will find =z.

6.5.7: Suppose we allowed arrays to have duplicates, so insertion could be done in
O(1) time. Write insert, delete, and lookup functions for this data structure.

6.5.8: Rewrite the binary search program to use iteration rather than recursion.

6.5.9**: Set up and solve a recurrence relation for the running time of binary search
on an array of n elements. Hint: To simplify, it helps to take T(n) as an upper
bound on the running time of binary search on any array of n or fewer elements
(rather than on exactly n elements, as would be our usual approach).

6.5.10: In ternary search, given a range low to high, we compute the approximate
1/3 point of the range,

Jirst = |(2 x low + high)/3]

and compare the lookup element z with A{first]. If z > A[first], we compute the
approximate 2/3 point,

second = [(low + 2 x high)/3]

and compare z with A[second]. Thus we isolate z to within one of three ranges,
each no more than one third the range low to high. Write a function to perform
ternary search.

6.5.11**: Repeat Exercise 6.5.5 for ternary search. That is, find and solve a
recurrence relation for the largest array that requires no more than & probes during
ternary search. How do the number of probes required for binary and ternary search
compare? That is, for a given k, can we handle larger arrays by binary search or
by ternary search?

Stacks

A stack is an abstract data type based on the list data model in which all operations
are performed at one end of the list, which is called the top of the stack. The term
“LIFO (for last-in first-out) list” is a synonym for stack.

The abstract model of a stack is the same as that of a list — that is, a sequence
of elements ay, as, . . ., a, of some one type. What distinguishes stacks from general
lists is the particular set of operations permitted. We shall give a more complete set
of operations later, but for the moment, we note that the quintessential stack oper-
ations are push and pop, where push(z) puts the element z on top of the stack and
pop removes the topmost element from the stack. If we write stacks with the top at
the right end, the operation push(z) applied to the list (a;,a3,. .., a,) yields the list
(a1, as,...,an,z). Popping the list (a;,a3,...,a,) yields the list (a;,a2,...,an_1);
popping the empty list, ¢, is impossible and causes an error condition,
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Example 6.9. Many compilers begin by turning the infix expressions that
appear in programs into equivalent postfix expressions. For example, the expression
(3+4) x2is 34 + 2 x in postfix notation. A stack can be used to evaluate postfix
expressions. Starting with an empty stack, we scan the postfix expression from left
to right. Each time we encounter an argument, we push it onto the stack. When we
encounter an operator, we pop the stack twice, remembering the operands popped.
We then apply the operator to the two popped values (with the second as the left
operand) and push the result onto the stack. Figure 6.15 shows the stack after each
step in the processing of the postfix expression 3 4 + 2 x. The result, 14, remains
on the stack after processing. +

SYMBOL STACK | ACTIONS
PROCESSED
initial €
3 3 push 3
4 3,4 push 4
o+ € pop 4; pop 3
compute 7 =3+4
7 push 7
2 T2 push 2
X € pop 2; pop T
compute 14 =7 x 2
14 push 14

Fig. 6.15. Evaluating a postfix expression using a stack.

Operations on a Stack

The two previous ADT’s we discussed, the dictionary and the priority queue, each
had a definite set of associated operations. The stack is really a family of similar
ADT’s with the same underlying model, but with some variation in the set of
allowable operations. In this section, we shall discuss the common operations on
stacks and show two data structures that can serve as implementations for the stack,
one based on linked lists and the other on arrays.

In any collection of stack operations we expect to see push and pop, as we
mentioned. There is another common thread to the operations chosen for the stack
ADT(s): they can all be implemented simply in O(1) time, independent of the
number of elements on the stack. You can check as an exercise that for the two
data structures suggested, all operations require only constant time.

In addition to push and pop, we generally need an operation clear that initial-
izes the stack to be empty. In Example 6.9, we tacitly assumed that the stack started
out empty, without explaining how it got that way. Another possible operation is
a test to determine whether the stack is currently empty.

The last of the operations we shall consider is a test whether the stack is
“full.” Now in our abstract model of a stack, there is no notion of a full stack, since
a stack is a list and lists can grow as long as we like, in principle. However, in any
implementation of a stack, there will be some length beyond which it cannot grow.
The most common example is when we represent a list or stack by an array. As
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seen in the previous section, we had to assume the list would not grow beyond the
constant MAX, or our implementation of insert would not work.

The formal definitions of the operations we shall use in our implementation of
stacks are the following. Let S be a stack of type ETYPE and z an element of type
ETYPE.

1. clear(S). Make the stack S empty.
2. isEmpty(S). Return TRUE if S is empty, FALSE otherwise.
3. isFull(S). Return TRUE if S is full, FALSE otherwise.

4. pop(S,z). If S is empty, return FALSE; otherwise, set z to the value of the top
element on stack S, remove this element from S, and return TRUE.

5. push(z,S). If S is full, return FALSE; otherwise, add the element z to the top
of S and return TRUE.

There is a common variation of pop that assumes S is nonempty. It takes only S
as an argument and returns the element z that is popped. Yet another alternative
version of pop does not return a value at all; it just removes the element at the top
_of the stack. Similarly, we may write push with the assumption that S is not “full.”
In that case,i puyl ‘does not return any value.

Array Implementation of Stacks

The implementations we used for lists can also be used for stacks. We shall discuss
an array-based implementation first, followed by a linked-list representation. In each
case, we take the type of elements to be int. Generalizations are left as exercises.

0 Qo
a)
n-1 [ .
MAX -1

Fig. 6.16. An array representing a stack.

The declaration for an array-based stack of integers is

typedef struct {
int A[MAX];
int top;

} STACK
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void clear(STIACK #pS)

{
pS->top =: -1;
¥
BOOLEAN isEmpyty(STACK *pS)
i
return (pSs->top < 0);
} _
BOOLEAN isFul.1(STACK #*pS)
{
return (pSS->top >= MAX-1);
}
BOOLEAN pop(SSTACK *pS, int *px)
{
if (isEmptty(ps))
returrn FALSE;
else {
(*px) = pS->A[(pS->top)--1;
returmn TRUE;
}
}
BOOLEAN push({int x, STACK #*pS)
{
if (isFulll(ps))
returmn FALSE;
else { )
pS—>A[[++(pS->top)] = x;
returrn TRUE;
}
}

Fig. 6.17. Functions to implement stack operations on arrays.

With an array-based inmplementation, the stack can grow either upward (from lower
locations to higher) orr downward (from higher locations to lower). We choose to
have the stack grow 1upward;® that is, the oldest element ag in the stack is in
location 0, the next-tco-oldest element a; is in location 1, and the most recently
inserted element a,_1 is in the location n — 1.

The field top in { he array structure indicates the position of the top of stack.
Thus, in Fig. 6.16, top . has the value n—1. An empty stack is represented by having
top = —1. In that case . the content of array A is irrelevant, there being no elements
on the stack.

The programs for - the five stack operations defined earlier in this section are

® Thus the “top” of th e stack is physically shown at the bottom of the page, an unfortunate
but quite standard ci pnvention.
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void clear(STACK #pS)

{
(*pS) = NULL;
}
BOOLEAN isEmpty(STACK *pS)
{
return ((*pS) == NULL);
}
BOOLEAN isFull(STACK *pS)
{
return FALSE;
}
BOOLEAN pop(STACK *pS, int #*px)
{
if ((#pS) == NULL)
return FALSE;
else {
(*px) = (*pS)->element;
(*pS) = (*#pS)->next;
~_return TRUE;
}
}
BOOLEAN push(int x, STACK *pS)
{
STACK newCell;
newCell = (STACK) malloc(sizeof(struct CELL));
newCell->element = x;
newCell->next = (#pS);
(*pS) = newCell;
return TRUE;
}

Fig. 6.18. Functions to implement stacks by linked lists.

shown in Fig. 6.17. We pass stacks by reference to avoid having to copy large arrays
that are arguments of the functions.

Linked-List Implementation of a Stack

We can represent a stack by a linked-list data structure, like any list. However, it
is convenient if the top of the stack is the front of the list. That way, we can push
and pop at the head of the list, which takes only O(1) time. If we had to find the
end of the list to push or pop, it would take O(n) time to do these operations on a
stack of length n. However, as a consequence, the stack S = (a;,az,...,a,) must
be represented “backward” by the linked list, as:
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The type definition macro we have used for list cells can as well be used for
stacks. The macro

DefCell(int, CELL, STACK);

defines stacks of integers, expanding into

typdef struct CELL *STACK;
struct CELL {
int element;
STACK next;
};
With this representation, the five operations can be implemented by the functions
in Fig. 6.18. We assume that malloc never runs out of space, which means that
the isFull operation always returns FALSE, and the push operation never fails.
The effects of push and pop on a stack implemented as a linked list are illus-
trated in Fig. 6.19.

(a) List L.

(b) After executing push(z, L).

L —» b o c| e

(c) After executing pop(L,z) on list L of (a).
Fig. 6.19. Push and pop operations on a stack implemented as a linked list.

EXERCISES

6.6.1: Show the stack that remains after executing the following sequence of oper-
ations, starting with an empty stack: push(a), push(b), pop, push(c), push(d), pop,

push(e), pop, pop.

6.6.2: Using only the five operations on stacks discussed in this section to ma-
nipulate the stack, write a C program to evaluate postfix expressions with integer
operands and the four usual arithmetic operators, following the algorithm suggested
in Example 6.9. Show that you can use either the array or the linked-list imple-
mentation with your program by defining the data type STACK appropriately and
including with your program first the functions of Fig. 6.17, and then the functions
of Fig. 6.18.
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6.6.3*: How would you use a stack to evaluate prefix expressions?

6.6.4: Compute the running time of each of the functions in Figs. 6.17 and 6.18.
Are they all O(1)?

6.6.5: Sometimes, a stack ADT uses an operation top, where top(S) returns the
top element of stack S, which must be assumed nonempty. Write functions for top
that can be used with

a) The array data structure
b) The linked-list data structure

that we defined for stacks in this section. Do your implementations of top all take
0(1) time?

6.6.6: Simulate a stack evaluating the following postfix expressions.

a) ab+cdx +ex

b) abcde++ + +
c) ab+c+d+e+

6.6.7*: Suppose we start with an empty stack and perform some push and pop
operations. If the stack after these operations is (a1,az,...,a,) (top at the right),
prove that a; was pushed before a;;; was pushed, fori=1,2,...,n— L

Implementing Function Calls Using a Stack

An important application of stacks is normally hidden from view: a stack is used to
allocate space in the computer’s memory to the variables belonging to the various
functions of a program. We shall discuss the mechanism used in C, although a
similar mechanism is used in almost every other programming language as well.

int fact(int n)

{
(1) if (n <= 1)
(2) return 1; /* basis */
else
(3) return n*fact(n-1); /* induction */
}

Fig. 6.20. Recursive function to compute n!.

To see what the problem is, consider the simple, recursive factorial function
fact from Section 2.7, which we reproduce here as Fig. 6.20. The function has a
parameter n and a return value. As fact calls itself recursively, different calls are
active at the same time. These calls have different values of the parameter n and
produce different return values. Where are these different objects with the same
names kept?

To answer the question, we must learn a little about the run-time organization
associated with a programming language. The run-time organization is the plan
used to subdivide the computer’s memory into regions to hold the various data items
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used by a program. When a program is run, each execution of a function is called
an activation. The data objects associated with each activation are stored in the
memory of the computer in a block called an activation record for that activation.
The data objects include parameters, the return value, the return address, and any
variables local to the function.

Code

Static data

Stack

Heap

Fig. 6.21. Typical run-time memory organization.

Figure 6.21 shows a typical subdivision of run-time memory. The first arca
contains the object code for the program being executed. The next area contains
the static data for the program, such -as the values of certain constants and exter-
nal variables used by the program. The third area is the run-time stack, which
grows downward toward the higher addresses in memory. At the highest-numbered
memory locations is the heap, an area set aside for the objects that are dynamically
allocated using malloc.®

The run-time stack holds the activation records for all the currently live acti-
vations. A stack is the appropriate structure, because when we call a function, we
can push an activation record onto the stack. At all times, the currently executing
activation A, has its activation record at the top of the stack. Just below the top of
the stack is the activation record for the activation A; that called A;. Below A,’s
activation record is the record for the activation that called A,, and so on. When
a function returns, we pop its activation record off the top of stack, exposing the
activation record of the function that called it. That is exactly the right thing to
do, because when a function returns, control passes to the calling function.

Example 6.10. Consider the skeletal program shown in Fig. 6.22. This program
is nonrecursive, and there is never more than one activation for any one function.

¢ Do not confuse this use of the term “heap” with the heap data structure discussed in Section
5.9.
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void P();
void QQ);

main() {
int x, y, z;

PO); (jgyere +/

} hiaS s
void P();
{L
int pi1, p2;
Q0);
}
void Q()
{
int q1, q2, q3;
}

Fig. 6.22. Skeletal program.

When the main function starts to execute, its activation record containing the space
for the variables x, y, and z is pushed onto the stack. When function P is called,
at the place marked Here, its activation record, which contains the space for the
variables p1 and p2, is pushed onto the stack.” When P calls Q, Q’s activation record
is pushed onto the stack. At this point, the stack is as shown in Fig. 6.23.

When Q finishes executing, its activation record is popped off the stack. At
that time, P is also finished, and so its activation record is popped. Finally, main
too is finished and has its activation record popped off the stack. Now the stack is
empty, and the program is finished. 4

Example 6.11. Consider the recursive function fact from Fig. 6.20. There
may be many activations of fact live at any one time, but each one will have an
activation record of the same form, namely

n
fact

consisting of a word for the parameter n, which is filled initially, and a word for the
return value, which we have denoted fact. The return value is not filled until the
last step of the activation, just before the return.

7 Notice that the activation record for P has two data objects, and so is of a “type” different
from that of the activation record for the main program. However, we may regard all ac-
tivation record forms for a program as variants of a single record type, thus preserving the
viewpoint that a stack has all its elements of the same type.
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z
pt
p2
qi
q2
q3

Fig. 6.23. Run-time stack when function Q is executing.

Suppose we call fact(4). Then we create one activation record, of the form

n 4
fact -

As fact(4) calls fact(3), we next push an activation record for that activation
onto the run-time stack, which now appears as

n 4
fact -
n 3
fact -

Note that there are two locations named n and two named fact. There is no
confusion, since they belong to different activations and only one activation record
can be at the top of the stack at any one time: the activation record belonging to
the currently executing activation.

n 4
fact -
n 3
fact -
n 2
fact -
n i
fact -

Fig. 6.24. Activation records during execution of fact.

Then tact(3) calls fact(2), which calls fact(1). At that point, the run-time
stack is as in Fig. 6.24. Now fact(1) makes no recursive call, but assigns fact = 1.
The value 1 is thus placed in the slot of the top activation record reserved for fact.
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n 4
fact -
n 3
fact -
n 2
fact -
n 1
fact 1

Fig. 6.25. After fact(1) computes its value.

The other slots labeled fact are unaffected, as shown in Fig. 6.25.

Then, fact (1) returns, exposing the activation record for fact(2) and return-
ing control to the activation fact(2) at the point where fact(1) was called. The
return value, 1, from fact (1) is multiplied by the value of n in the activation record
for fact(2), and the product is placed in the slot for fact of that activation record,
as required by line (3) in Fig. 6.20. The resulting stack is shown in Fig. 6.26.

n 4
fact -
n 3
fact -
n 2
fact 2

Fig. 6.26. After fact(2) computes its value.

Similarly, fact(2) then returns control to fact(3), and the activation record
for fact(2) is popped off the stack. The return value, 2, multiplies n of fact(3),
producing the return value 6. Then, fact(3) returns, and its return value multiplies
n in fact(4), producing the return value 24. The stack is now

n 4
fact 24

At this point, fact(4) returns to some hypothetical calling function whose
activation record (not shown) is below that of fact(4) on the stack. However, it
would receive the return value 24 as the value of fact(4), and would proceed with
its own execution. ¢

EXERCISES

6.7.1: Consider the C program of Fig. 6.27. The activation record for main has a
slot for the integer i. The important data in the activation record for sum is
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#define MAX 4
int A[MAX];
int sum(int i);

main()
{
int i;

(1) for (i = 0; i < MAX; i++)
(2) scanf ("%d", &A[i]);
(3) printf("\n" sum(0));

}

int sum(int i)

{
(4) if (i > MAX)
(5) return 0;

else

(6) return A(i] + sum(i+1);

}

Fig. 6.27. Program for Exercise 6.7.1.

1. The parameter i.

2.  The return value.

3. An unnamed temporary location, which we shall call temp, to store the value
of sum(i+1). The latter is computed in line (6) and then added to A[7] to form
the return value.

Show the stack of activation records immediately before and immediately after each
call to sum, on the assumption that the value of A[i] is 10i. That is, show the stack
immediately after we have pushed an activation record for sum, and just before
we pop an activation record off the stack. You need not show the contents of the
bottom activation record (for main) each time.

void delete(int x, LIST #pL)

{
if ((*pL) '= NULL)
it (x == (*pL)->element)
(*pL) = (#pL)->next;
else
delete(x, &((*pL)->next));
end

Fig. 6.28. Function for Exercise 6.7.2.
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6.7.2*: The function delete of Fig. 6.28 removes the first occurrence of integer z
from a linked list composed of the usual cells defined by

DefCell(int, CELL, LIST);

The activation record for delete consists of the parameters x and pL. However,
since pL is a pointer to a list, the value of the second parameter in the activation
record is not a pointer to the first cell on the list, but rather a pointer to a pointer
to the first cell. Typically, an activation record will hold a pointer to the next field
of some cell. Show the sequence of stacks when delete(3,&L) is called (from some
other function) and L is a pointer to the first cell of a linked list containing elements
1, 2, 3, and 4, in that order.

Queues

Another important ADT based on the list data model is the queue, a restricted
form of list in which elements are inserted at one end, the rear, and removed from
the other end, the front. The term “FIFO (first-in first-out) list” is a synonym for
queue.

The intuitive idea behind a queue is a line at a cashier’s window. People enter
the line at the rear and receive service once they reach the front. Unlike a stack,
there is fairness to a queue; people are served in the order in which they enter the
line. Thus the person who has waited the longest is the one who is served next.

Operations on a Queue

The abstract model of a queue is the same as that of a list (or a stack), but the
operations applied are special. The two operations that are characteristic of a
queue are enqueue and dequeue; enqueue(z) adds z to the rear of a queue, dequeue
removes the element from the front of the queue. As is true of stacks, there are
certain other useful operations that we may want to apply to queues.

Let Q be a queue whose elements are of type ETYPE, and let z be an element
of type ETYPE. We shall consider the following operations on queues:

1. clear(Q). Make the queue Q empty.

2.  dequeue(Q,z). If Q is empty, return FALSE; otherwise, set z to the value of
the element at the front of @, remove this element from @, and return TRUE.

3. enqueue(z,Q). If Q is full, return FALSE; otherwise, add the element z to the
rear of @ and return TRUE.

4. isEmpty(Q). Return TRUE if Q is empty and FALSE otherwise.
5. isFull(Q). Return TRUE if Q is full and FALSE otherwise.

As with stacks, we can have more “trusting” versions of enqueue and dequeue that
do not check for a full or empty queue, respectively. Then engueue does not return
a value, and dequeue takes only @ as an argument and returns the value dequeued.

A Linked-List Implementation of Queues

A useful data structure for queues is based on linked lists. We start with the usual
definition of cells given by the macro
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void clear(QUEUE *pQ)
{

pQ->front = NULL

BOOLEAN isEmpty(QUEUE *pQ)

{
return (pQ->front == NULL);
}
BOOLEAN isFull(QUEUE *pQ)
{
return FALSE;
}
BOOLEAN dequeue(QUEUE *pQ, int *px)
{
if (isEmpty(pQ))
return FALSE;
else {
(*px) = pQ->front->element;
pQ->front = pQ->front->next;
return TRUE;
}
}
BOOLEAN enqueue(int x, QUEUE *pQ)
{
if (isEmpty(pQ)) {
pQ->front = (LIST) malloc(sizeof (struct CELL));
pQ->rear = pQ->front;
}
else {
pQ->rear->next = (LIST) malloc(sizeof(struct CELL));
pPQ->rear = pQ->rear->next;
}
pQ->rear->element = x;
pQ->rear->next = NULL;
return TRUE;
}

Fig. 6.29. Procedures to implement linked-list queue operations.

DefCell(int, CELL, LIST);

As previously in this chapter, we assume that elements of our queues are integers
and invite the reader to generalize our functions to arbitrary element types.

The elements of a queue will be stored on a linked list of cells. A queue itself
is a structure with two pointers — one to the front cell (the first on the linked list)
and another to the rear cell (the last on the linked list). That is, we define
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More Abstract Data Types

We can add the stack and queue to the table of ADT’s that we started in Section
5.9. We covered two data structures for the stack in Section 6.6, and one data
structure for the queue in Section 6.8. Exercise 6.8.3 covers another data structure,
the “circular array,” for the queue.

ADT Stack Queue

Abstract List List
Implementation

Data 1) Linked List | 1) Linked List
Structures 2) Array 2) Circular Array

typedef struct {
LIST front, rear;
} QUEUE;

If the queue is empty, front will be NULL, and the value of rear is then irrelevant.

Figure 6.29 gives programs for the queue operations mentioned in this section.
Note that when a linked list is used there is no notion of a “full” queue, and so is F'ull
returns FALSE always. However, if we used some sort of array-based implementation
of a queue, there would be the possibility of a full queue.

EXERCISES

6.8.1: Show the queue that remains after executing the following sequence of opera-
tions, starting with an empty queue: enqueue(a), enqueue(b), dequeue, enqueue(c),
enqueue(d), dequeue, enqueue(e), dequeue, dequeue.

6.8.2: Show that each of the functions in Fig. 6.29 can be executed in O(1) time,
regardless of the length of the queue.

6.8.3*: We can represent a queue by an array, provided that the queue does not
grow too long. In order to make the operations take O(1) time, we must think of
the array as circular. That is, the array A[0..n-1] can be thought of as having
A[1] follow A[0], A[2] follow A[1], and so on, up to A[n-1] following A[n-21,
but also A[0] follows A[n-1]. The queue is represented by a pair of integers front
and rear that indicate the positions of the front and rear elements of the queue.
An empty queue is represented by having front be the position that follows rear
in the circular sense; for example, front = 23 and rear = 22, or front = 0 and
rear = n — 1. Note that therefore, the queue cannot have n elements, or that
condition too would be represented by front immediately following rear. Thus the
queue is full when it has n— 1 elements, not when it has n elements. Write functions
for the queue operations assuming the circular array data structure. Do not forget
to check for full and empty queues.
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6.8.4*: Show that if (ay,ay,...,4a,) is a queue with a, at the front, then a; was
enqueued before a;4,,fori =1,2,... ., n—1.

Longest Common Subsequences

This section is devoted to an interesting problem about lists. Suppose we have two
lists and we want to know what differences there are between them. This problem
appears in many different guises; perhaps the most common occurs when the two
lists represent two different versions of a text file and we want to determine which
lines are common to the two versions. For notational convenience, throughout this
section we shall assume that lists are character strings.

A useful way to think about this problem is to treat the two files as sequences
of symbols, z = a; - -ap, and y = b; - - - b,,, where a; represents the ith line of the
first file and b; represents the jth line of the second file. Thus an abstract symbol
like a; may really be a “big” object, perhaps a full sentence.

There is a UNIX command diff that compares two text files for their differ-
ences. One file, z, might be the current version of a program and the other, y,
might be the version of the program before a small change was made. We could
use diff to remind ourselves of the changes that were made turning y into z. The
typical changes that are made to a text file are

1. Inserting a line.

2. Deleting a line.

A modification of a line can be treated as a deletion followed by an insertion.

Usually, if we examine two text files in which a small number of such changes
have been made when transforming one into the other, it is easy to see which lines
correspond to which, and which lines have been deleted and which inserted. The
diff command makes the assumption that one can identify what the changes are by
first finding a longest common subsequence, or LC'S, of the two lists whose elements
are the lines of the two text files involved. An LCS represents those lines that have
not been changed.

Recall that a subsequence is formed from a list by deleting zero or more ele-
ments, keeping the remaining elements in order. A common subsequence of two lists
is a list that is a subsequence of both. A longest common subsequence of two lists
1s a common subsequence that is as long as any common subsequence of the two
lists.

Example 6.12. In what follows, we can think of characters like a, b,orc,
as standing for lines of a text file, or as any other type of elements if we wish.
As an example, baba and cbba are both longest common subsequences of abcabba
and cbabac. We see that baba is a subsequence of abcabba, because we may take
positions 2, 4, 5, and 7 of the latter string to form baba. String baba is also a
subsequence of cbabac, because we may take positions 2, 3, 4, and 5. Similarly,
cbba is formed from positions 3, 5, 6, and 7 of abcabba and from positions 1, 2,
4, and § of cbabac. Thus cbba too is a common subsequence of these strings. We
must convince ourselves that these are longest common subsequences; that is, there
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are no common subsequences of length five or more. That fact will follow from the
algorithm we describe next. 4

A Recursion That Computes the LCS

We offer a recursive definition of the length of the LCS of two lists. This definition
will let us calculate the length easily, and by examining the table it constructs,
we can then discover one of the possible LCS’s itself, rather than just its length.
From the LCS, we can deduce what changes were made to the text files in question;
essentially, everything that is not part of the LCS is a change.

To find the length of an LCS of lists z and y, we need to find the lengths of
the LCS’s of all pairs of prefixes, one from z and the other from y. Recall that &
prefix is an initial sublist of a list, so that, for instance, the prefixes of cbabac are
¢, ¢, cb, cba, and so on. Suppose that z = (a1,az,...,am) and y = (b1, b2, ..., b,).
For each i and j, where i is between 0 and m and j is between 0 and n, we can ask
for an LCS of the prefix (a;,...,a;) from z and the prefix (4, ...,b;) from y.

If either i or j is 0, then one of the prefixes is ¢, and the only possible common
subsequence of the two prefixes is ¢. Thus when either i or j is 0, the length of
the LCS is 0. This observation is formalized in both the basis and rule (1) of the
induction that follows our informal discussion of how the LCS is computed.

Now consider the case where both i and j are greater than 0. It helps to think
of an LCS as a matching between certain positions of the two strings involved. That
is, for each element of the LCS, we match the two positions of the two strings from
which that element comes. Matched positions must have the same symbols, and
the lines between matched positions must not cross.

Example 6.13. Figure 6.30(a) shows one of two possible matchings between
strings abcabba and cbabac corresponding to the common subsequence baba and
Fig. 6.30(b) shows a matching corresponding to cbba. 4

a b c¢c abbdb a abcabbdba
|/ / 7 Yl

¢ b abdb ac c b ab ac
(a) For baba. (b) For cbba.

Fig. 6.30. LCS’s as matchings between positions.

Thus let us consider any matching between prefixes (ay, ..., a;) and (by, ..., b;).
There are two cases, depending on whether or not the last symbols of the two lists
are equal.

a) If a; # bj, then the matching cannot include both a; and b;. Thus an LCS of
(a1,--.,a;) and (by,...,b;) must be either
i) An LCSof (a1,...,ai—1) and (y,...,b;), or
1) An LCS of (ay,...,a;) and (by,...,b5_1).
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If we have already found the lengths of the LCS’s of these two pairs of prefixes,
then we can take the larger to be the length of the LCS of (a3, ...,qa;) and
(b1, ...,b;). Thissituation is formalized in rule (2) of the induction that follows.

b) If a; = b;, we can match a; and b;, and the matching will not interfere
with any other potential matches. Thus the length of the LCS of (ay,...,a;)
and (b;,...,b;) is 1 greater than the length of the LCS of (a;,...,a;_;) and
(b1,...,bj_1). This situation is formalized in rule (3) of the following induction.

These observations let us give a recursive definition for L(z, j), the length of the
LCS of (ay,...,a;) and (by,...,b;). We use complete induction on the sum i + j.

BASIS. If i+ j = 0, then both ¢ and j are 0, and so the LCS is ¢. Thus L(0,0) = 0.

INDUCTION. Consider ¢ and j, and suppose we have already computed L(g, h) for
any g and h such that g + h < i+ j. There are three cases to consider.

1. If either i or j is 0, then L(i,j) = 0.
2. Ifi>0andj>0, and a; #b;, then L(i,5) = max(L(i,j — 1), L(i — 1,j)).
3. fi>0andj>0,anda; =bj, then L(i,j) =1+ L(: — 1,5 - 1).

A Dynamic Programming Algorithm for the LCS

Ultimately what we want is L(m, n), the length of an LCS for the two lists z and
y. If we write a recursive program based on the preceding induction, it will take
time that is exponential in the smaller of m and n. That is far too much time to
make the simple recursive algorithm practical for, say, n = m = 100. The reason
this recursion does so badly is a bit subtle. To begin, suppose there are no matches
at all between characters in the lists £ and y, and we call L(3,3). That results in
calls to L(2,3) and L(3,2). But each of these calls results in a call to L(2,2). We
thus do the work of L(2,2) twice. The number of times L(i, j} is called increases
rapidly as the arguments of L become smaller. If we continue the trace of calls, we
find that L(1,1) is called 6 times, L(0,1) and L(1,0) are called 10 times each, and
L(0,0) is called 20 times.

We can do much better if we build a two-dimensional table, or array, to store
L(i, j) for the various values of i and j. If we compute the values in order of the
induction — that is, smallest values of i + j first — then the needed values of L
are always in the table when we compute L(z, 7). In fact, it is easier to compute L
by rows, that is, for ¢ = 0, 1,2, and so on; within a row, compute by columns, for
J=10,1,2, and so on. Again, we can be sure of finding the needed values in the
table when we compute L(i, j), and no recursive calls are necessary. As a result, it
takes only O(1) time to compute each entry of the table, and a table for the LCS
of lists of length m and n can be constructed in O(mn) time. )

In Fig. 6.31 we see C code that fills this table, working by row rather than
by the sum i 4 j. We assume that the list x is stored in an array al1..m] and
y is stored in b[1..n]. Note that the Oth elements of these are unused; doing so
simplifies the notation in Fig. 6.31. We leave it as an exercise to show that the
running time of this program is O(mn) on lists of length m and n.8

8 Strictly speaking, we discussed only big-oh expressions that are a function of one variable.
However, the meaning here should be clear. If T(m,n) is the running time of the program
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for (j = 0; j <='n; j++)

L[0]I[j] = 0;
for (i = 1; i <=m; i++) {
L[il[0] = 0;

for (j = 1; j <= n; j++)
if (alil '= b[jl)
if (L[i-11[j1 >= L[i1[j-11)
L[i1[j] = L[i-1]1[3];
else
L[i]J[j] = L{i1[j-1];
else /* a[i] == bl[j] */
LUIE3Y = £+ LLi~111)=13;

Fig. 6.31. C fragment to fill the LCS tabie.

Dynamic Programming

The term “dynamic programming” comes from a general theory developed by R.
E. Bellman in the 1950’s for solving problems in control systems. People who work
in the field of artificial intelligence often speak of the technique under the name
memoing or tabulation.

A table-filling technique like this example is often called a dynamic program-
ming algorithm. As in this case, it can be much more efficient than a straightforward
implementation of a recursion that solves the same subproblem repeatedly.

Example 6.14. Let = be the list cbabac and y the list abcabba. Figure 6.32
shows the table constructed for these two lists. For instance, L(6,7) is a case where
ag # bz. Thus L(6,7) is the larger of the entries just below and just to the left.
Since these are 4 and 3, respectively, we set L(6,7), the entry in the upper right
corner, to 4. Now consider L(4,5). Since both a4 and bs are the symbol b, we add
1 to the entry L(3,4) that we find to the lower left. Since that entry is 2, we set
L(4,5) to 3. 4+

Recovery of an LCS

We now have a table giving us the length of the LCS, not only for the lists in
question, but for each pair of their prefixes. From this information we must deduce
one of the possible LCS’s for the two lists in question. To do so, we shall find the
matching pairs of elements that form one of the LCS’s. We shall find a path through
the table, beginning at the upper right corner; this path will identify an LCS.
Suppose that our path, starting at the upper right corner, has taken us to row
¢ and column j, the point in the table that corresponds to the pair of elements q;

on lists of length m and n, then there are constants mg, no, and c such that for all m > mg
and n > ng, T(m,n) < cmn.
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G wipTo M 0
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Fig. 6.32. Table of longest common subsequences for cbabac and abcabba.

and b;. If a; = b;, then L(i,j) was chosen to be 14 L(i — 1,5 —1). We thus treat
a; and b; as a matched pair of elements, and we shall include the symbol that is a;
(and also b;) in the LCS, ahead of all the elements of the LCS found so far. We
then move our path down and to the left, that is, to row : — 1 and column j — 1.

However, it is also possible that a; # b;. If so, then L(z, j) must equal at least
one of L(i — 1,7) and L(i,j — 1). If L(¢,5) = L(i — 1, j), we shall move our path
one row down, and if not, we know that L(¢, 7) = L(¢,j — 1), and we shall move our
path one column left.

When we follow this rule, we eventually arrive at the lower left corner. At that
point, we have selected a certain sequence of elements for our LCS, and the LCS
itself is the list of these elements, in the reverse of the order in which they were
selected.

T L - - M
(=T R L L S - =

from J I o (O e =l e B B S W e
R o B T e R T e
o0 O = = NN
O WO == = R R
G e - I U Y
oGNS = NN e L
L= = < T NC I U 7L U )
P =1 = b o o b b

Fig. 6.33. A path that finds the LCS caba.

Example 6.15. The table of Fig. 6.32 is shown again in Fig. 6.33, with a
path shown in bold. We start with L(6,7), which is 4. Since ag # b7, we look
immediately to the left and down to find the value 4, which must appear in at least
one of these places. In this case, 4 appears only below, and so we go to L(5,7). Now
as = by; both are a. Thus a is the last symbol of the LCS, and we move southwest,
to L(4,6).
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Since a4 and bg are both b, we include b, ahead of a, in the LCS being formed,
and we again move southwest, to L(3,5). Here, we find a3 # bs, but L(3,5), which
is 2, equals both the entry below and the entry to the left. We have elected in this
situation to move down, so we next move to L(2,5). There we find a; = bs = b,
and so we put a b ahead of the LCS being formed and move southwest to L(1,4).

Since a; # bg and only the entry to the left has the same value (1) as L(1,4),
we move to L(1,3). Now we have a, = b3 = ¢, and so we add c to the beginning
of the LCS and move to L(0,2). At this point, we have no choice but to move left
to L(0,1) and then L(0,0), and we are done. The resulting LCS consists of the
four characters we discovered, in the reverse order, or cbba. That happens to be
one of the two LCS’s we mentioned in Example 6.12. We can obtain other LCS’s
by choosing to go left instead of down when L(i,j) equals both L(i,j — 1) and
L(i—1, ), and by choosing to go left or down when one of these equals L(i, j }, even
in the situation when a; = b; (i.e., by skipping certain matches in favor of matches
farther to the left). 4

We can prove that this path finding algorithm always finds an LCS. The state-
ment that we prove by complete induction on the sum of the lengths of the lists
is:

STATEMENT S(k): If we find ourselves at row i and column j, where i + j = &,
and if L(i,j) = v, then we subsequently discover v elements for our LCS.

BASIS. The basis is k = 0. If i + j = 0, then both i and j are 0. We have finished
our path and find no more elements for the LCS. As we know L(0,0) = 0, the
inductive hypothesis holds for i + j = 0.

INDUCTION. Assume the inductive hypothesis for sums k or less, and let i + j =
k + 1. Suppose we are at L(i,j), which has value v. If a; = b;, then we find one
match and move to L(i — 1, j — 1). Since the sum (i — 1) + (5 — 1) is less than i +j,
the inductive hypothesis applies. Since L(i — 1, j — 1) must be v — 1, we know that
we shall find v — 1 more elements for our LCS, which, with the one element just
found, will give us v elements. That observation proves the inductive hypothesis in
this case.

The only other case is when a; # b;. Then, either L(i — 1,5) or L(i,j — 1), or
both, must have the value v, and we move to one of these positions that does have
the value v. Since the sum of the row and column is ¢ + j — 1 in either case, the
inductive hypothesis applies, and we conclude that we find v elements for the LCS.
Again we can conclude that S(k + 1) is true. Since we have considered all cases,
we are done and conclude that if we are at an entry L(i, j), we always find L(3, j)
elements for our LCS.

EXERCISES

6.9.1: What is the length of the LCS of the lists

a) banana and cabana
b) abaacbacab and bacabbcaba
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6.9.2*: Find all the LCS’s of the pairs of lists from Exercise 6.9.1. Hint: After
building the table from Exercise 6.9.1, trace backward from the upper right corner,
following each choice in turn when you come to a point that could be explained in
two or three different ways.

6.9.3**: Suppose we use the recursive algorithm for computing the LCS that we
described first (instead of the table-filling program that we recommend). If we call
L(4,4) with two lists having no symbols in common, how many calls to L(1,1) are
made? Hint: Use a table-filling (dynamic programming) algorithm to compute a
table giving the value of L(i, j) for all i and j. Compare your result with Pascal’s
triangle from Section 4.5. What does this relationship suggest about a formula for
the number of calls?

6.9.4**: Suppose we have two lists = and y, each of length n. For n below a certain
size, there can be at most one string that is an LCS of z and y (although that string
may occur in different positions of z and/or y). For example, if n = 1, then the
LCS can only be ¢, unless z and y are both the same symbol a, in which case a
is the only LCS. What is the smallest value of n for which z and y can have two
different LCS’s?

6.9.5: Show that the program of Fig. 6.31 has running time O{mn).

6.9.6: Write a C program to take a table, such as that computed by the program
of Fig. 6.31, and find the positions, in each string, of one LCS. What is the running
time of your program, if the table is m by n?

6.9.7: In the beginning of this section, we suggested that the length of an LCS and
the size of the largest matching between positions of two strings were related.

a*) Prove by induction on k that if two strings have a common subsequence of
length k, then they have a matching of length k.

b) Prove that if two strings have a matching of length k, then they have a common
subsequence of length k.

c) Conclude from (a) and (b) that the lengths of the LCS and the greatest size of
a matching are the same.

Representing Character Strings

Character strings are probably the most common form of list encountered in prac-
tice. There are a great many ways to represent strings, and some of these techniques
are rarely appropriate for other kinds of lists. Therefore, we shall devote this section
to the special issues regarding character strings.

First, we should realize that storing a single character string is rarely the whole
problem. Often, we have a large number of character strings, each rather short.
They may form a dictionary, meaning that we insert and delete strings from the
population as time goes on, or they may be a static set of strings, unchanging over
time. The following are two typical examples.
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1. A useful tool for studying texts is a concordance, a list of all the words used in
the document and the places in which they occur. There will typically be tens
of thousands of different words used in a large document, and each occurrence
must be stored once. The set of words used is static; that is, once formed it does
not change, except perhaps if there were errors in the original concordance.

2. The compiler that turns a C program into machine code must keep track of
all the character strings that represent variables of the program. A large pro-
gram may have hundreds or thousands of variable names, especially when we
remember that two local variables named i that are declared in two functions
are really two distinct variables. As the compiler scans the program, it finds
new variable names and inserts them into the set of names. Once the com-
piler has finished compiling a function, the variables of that function are not
available to subsequent functions, and so may be deleted.

In both of these examples, there will be many short character strings. Short
words abound in English, and programmers like to use single letters such as i or x
for variables. On the other hand, there is no limit on the length of words, either in
English texts or in programs.

Character Strings in C

Character-string constants, as might appear in a C program, are stored as arrays of
characters, followed by the special character '\0°’, called the null character, whose
value is 0. However, in applications such as the ones mentioned above, we need the
facility to create and store new strings as a program runs. Thus, we need a data
structure in which we can store arbitrary character strings. Some of the possibilities
are:

1. Use a fixed-length array to hold character strings. Strings shorter than the
array are followed by a null character. Strings longer than the array cannot be
stored in their entirety. They must be truncated by storing only their prefix of
length equal to the length of the array.

2. A scheme similar to (1), but assume that every string, or prefix of a truncated
string, is followed by the null character. This approach simplifies the reading
of strings, but it reduces by one the number of string characters that can be
stored.

3. A scheme similar to (1), but instead of following strings by a null character,
use another integer length to indicate how long the string really is.

4. To avoid the restriction of a maximumstring length, we can store the characters
of the string as the elements of a linked list. Possibly, several characters can
be stored in one cell.

5. We may create a large array of characters in which individual character strings
are placed. A string is then represented by a pointer to a place in the array
where the string begins. Strings may be terminated by a null character or they
may have an associated length.
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Fixed-Length Array Representations

Let us consider a structure of type (1) above, where strings are represented by
fixed-length arrays. In the following example, we create structures that have a
fixed-length array as one of their fields.

+ Example 6.16. Consider the data structure we might use to hold one entry in
a concordance, that is, a single word and its associated information. We need to

hold

1.  The word itself.
2. The number of times the word appears.

3. A list of the lines of the document in which there are one or more occurrences
of the word.

Thus we might use the following structure:

typedef struct {
char word[MAX];
int occurrences;
LIST lines;

} WORDCELL;

Here, MAX is the maximum length of a word. All WORDCELL structures have an array
called word of MAX bytes, no matter how short the word happens to be.

The field occurrences is a count of the number of times the word appears,
and lines is a pointer to the beginning of a linked list of cells. These cells are of
the conventional type defined by the macro

DefCell(int, CELL, LIST);

Each cell holds one integer, representing a line on which there are one or more
occurrences of the word in question. Note that occurrences could be larger than
the length of the list, if the word appeared several times on one line.

In Fig. 6.34 we see the structurc for the word earth in the first chapter of
Genesis. We assume MAX is at least 6. The complete list of line (verse) numbers is
(1, 2,10, 11, 12, 15, 17, 20, 22, 24, 25, 26, 28, 29, 30).

word: “earth\o"

occurrences:

20
lines: |l|—'—>[2|—-|—>[10|—-'—>

Fig. 6.34. Concordance entry for the word earth in the first chapter of Genesis.

The entire concordance might consist of a collection of structures of type WORD-
CELL. These might, for example, be organized in a binary search tree, with the <
ordering of structures based on the alphabetic order of words. That structure would
h allow relatively fast access to words as we use the concordance. It would also allow

us to create the concordance efficiently as we scan the text to locate and list the
occurrences of the various words. To use the binary tree structure we would re-
quire left- and right-child fields in the type WORDCELL. We could also arrange these
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structures in a linked list, by adding a “next” field to the type WORDCELL instead.
That would be a simpler structure, but it would be less efficient if the number of
words is large. We shall see, in the next chapter, how to arrange these structures
in a hash table, which probably offers the best performance of all data structures
for this problem. 4

Linked Lists for Character Strings

The limitation on the length of character strings, and the need to allocate a fixed
amount of space no matter how short the string, are two disadvantages of the
previous implementation of character strings. However, C and other languages allow
us to build other, more flexible data structures to represent strings. For example, if
we are concerned that there be no upper limit on the length of a character string,
we can use conventional linked lists of characters to hold character strings. That is,
we can declare a type

typedef struct CHARCELL *CHARSTRING;
struct CHARCELL {

char character;

CHARSTRING next;
};

In the type WORDCELL, CHARSTRING becomes the type of the field word, as

typedef {
CHARSTRING word;
int occurrences;
LIST lines;

} WORDCELL;

For example, the word earth would be represented by

e a r t h|e

This scheme removes any upper limit on the length of words, but it is, in practice,
not very economical of space. The reason is that each structure of type CHARCELL
takes at least five bytes, assuming one for the character and a typical four for a
pointer to the next cell on the list. Thus, the great majority of the space is used
for the “overhead” of pointers rather than the “payload” of characters.

We can be a bit more clever, however, if we pack several bytes into the data
field of each cell. For example, if we put four characters into each cell, and pointers
consume four bytes, then half our space will be used for “payload,” compared with
20% payload in the one-character-per-cell scheme. The only caution is that we
must have some character, such as the null character, that can serve as a string-
terminating character, as is the case for character strings stored in arrays. In
general, if CPC (characters per cell) is the number of characters that we are willing
to place in one cell, we can declare cells by

typedef struct CHARCELL *CHARSTRING;
struct CHARCELL {

char characters[CPC];

CHARSTRING next;
};
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For example, if CPC = 4, then we could store the word earth in two cells, as

& |l aie s = h |\O s

We could also increase CPC above 4. As we do so, the fraction of space taken
for pointers decreases, which is good; it means that the overhead of using linked
lists rather than arrays is dropping. On the other hand, if we used a very large
value for CPC, we would find that almost all words used only one cell, but that cell
would have many unused locations in it, just as an array of length CPC would.

Example 6.17. Let us suppose that in our population of character strings,
30% are between 1 and 4 characters long, 40% between 5 and 8 characters, 20% in
the range 9-12, and 10% in the range 13-16. Then the table in Fig. 6.35 gives the
number of bytes devoted to linked lists representing words in the four ranges, for
four values of CPC, namely, 4, 8, 12, and 16. For our assumption about word-length
frequencies, CPC = 8 comes out best, with an average usage of 15.6 bytes That is,
we are best off using cells with room for 8 bytes, using a total of 12 bytes per cell,
including the 4 bytes for the next pointer. Note that the total space cost, which is
19.6 bytes when we include a pointer to the front of the list, is not as good as using
16 bytes for a character array. However, the linked-list scheme can accommodate
strings longer than 16 characters, even though our assumptions put a 0% probability
on finding such strings. 4

CHARACTERS PER CELL

RANGE | PROBABILITY | 4 8 12 16

1-4 3 8 12 16 20

5-8 A4 16 12 16 20

9-12 2 24 24 16 20

13-16 d 32 24 32 20
Avg. 16.8 | 15.6 | 17.6 | 20.0

Fig. 6.35. Numbers of bytes used for strings in various length
ranges by different values of CPC.

Mass Storage of Character Strings

There is another approach to the storage of large numbers of character strings that
combines the advantage of array storage (little overhead) with the advantages of -
linked-list storage (no wasted space due to padding, and no limit on string length).
We create one very long array of characters, into which we shall store each char-
acter string. To tell where one string ends and the next begins, we need a special
character called the endmarker. The endmarker character cannot appear as part of
a legitimate character string. In what follows, we shall use * as the endmarker, for
visibility, although it is more usual to choose a nonprinting character, such as the
null character.
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Example 6.18. Suppose we declare an array space by
char space[MAX];

We can then store a word by giving a pointer to the first position of space devoted
to that word. The WORDCELL structure, analogous to that of Example 6.16, would
then be

typedef struct {
char *word;
int occurrences;
LIST lines;

} WORDCELL;

In Fig. 6.36 we see the WORDCELL structure for the word the in a concordance based
on the book of Genesis. The pointer word refers us to space[3], where we see the
beginning of the word the.

Note that the lowest elements of the array space might appear to contain the
text itself. However, that would not continue to be the case for long. Even if the
next elements contain the words beginning, God, and created, the second the
would not appear again in the array space. Rather, that word would be accounted
for by adding to the number of occurrences in the WORDCELL structure for the. As
we proceeded through the book and found more repetitions of words, the entries in
space would stop resembling the biblical text itself. 4

word:

occurrences: 1377

space: i|nj* |t |h |e |*|b |e

Fig. 6.36. Representing words by indices into string space.

As in Example 6.16, the structures of Example 6.18 can be formed into data
structures such as binary search trees or linked lists by adding the appropriate
pointer fields to the WORDCELL structure. The function It(W;, W,) that compares
two WORDCELL’s W, and W, follows the word fields of these structures and compares
them lexicographically.

To build a concordance using such a binary search tree, we maintain a pointer
available to the first unoccupied position in the array space. Initially, available
points to space[0]. Suppose we are scanning the text for which the concordance
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What Happens When We Run Out of Space?

We have assumed that space is so large that there is always room to add a new
word. Actually, each time we add a character we must be careful that the current
position into which we write is less than MAX.

If we want to enter new words after running out of space, we need to be prepared
to obtain new blocks of space when the old one runs out. Instead of creating just
one array space, we can define a character-array type

typedef char SPACE[MAX];

We can then create a new array, the first character of which is pointed to by
available, by

available = (char *) malloc(sizeof(SPACE));
It is useful to remember the end of this array by immediately assigning
last = available + MAX;

We then insert words into the array pointed to by available. If we can no
longer fit words into this array, we call malloc to create another character array.
Of course we must be careful not to write past the end of the array, and if we are
presented with a string of length greater than M AX, there is no way we can store
the word in this scheme.

is being built and we find the next word — say, the. We do not know whether or
not the is already in the binary search tree. We thus temporarily add the#* to the
position indicated by available and the three following positions. We remember
that the newly added word takes up 4 bytes.

Now we can search for the word the in the binary search tree. If found, we
add 1 to its count of occurrences and insert the current line into the list of lines.
If not found, we create a new node — which includes the fields of the WORDCELL
structure, plus left- and right-child pointers (both NULL) — and insert it into the
tree at the proper place. We set the word field in the new node to available, so
that it refers to our copy of the word the. We set occurrences to 1 and create a
list for the field 1ines consisting of only the current line of text. Finally, we must
add 4 to available, since the word the has now been added permanently to the
space array.

EXERCISES

6.10.1: For the structure type WORDCELL discussed in Example 6.16, write the
following programs:

a) A function create that returns a pointer to a structure of type WORDCELL.

b) A function insert(WORDCELL *pWC, int line) that takes a pointer to the
structure WORDCELL and a line number, adds 1 to the number of occurrences
for that word, and adds that line to the list of lines if it is not already there.
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6.10.2: Redo Example 6.17 under the assumption that any word length from 1 to
40 is equally likely; that is, 10% of the words are of length 1-4, 10% are of length
5-8, and so on, up to 10% in the range 37-40. What is the average number of bytes
required if CPCis 4, 8, ..., 40?7

6.10.3*: If, in the model of Example 6.17, all word lengths from 1 to n are equally
likely, what value of CPC, as a function of n, minimizes the number of bytes used?
If you cannot get the exact answer, a big-oh approximation is useful.

6.10.4*: One advantage of using the structure of Example 6.18 is that one can share
parts of the space array among two or more words. For example, the structure for
the word he could have word field equal to 5 in the array of Fig. 6.36. Compress
the words all, call, man, mania, maniac, recall, two, woman into as few elements
of the space array as you can. How much space do you save by compression?

6.10.5*: Another approach to storing words is to eliminate the endmarker character
from the space array. Instead, we add a length field to the WORDCELL structures of
Example 6.18, to tell us how many characters from the first character, as indicated
by the word field, are included in the word. Assuming that integers take four bytes,
does this scheme save or cost space, compared with the scheme described in Example
6.18?7 What if integers could be stored in one byte?

6.10.6**: The scheme described in Exercise 6.10.5 also gives us opportunities to
compress the space array. Now words can overlap even if neither is a suffix of the
other. How many elements of the space array do you need to store the words in the
list of Exercise 6.10.4, using the scheme of Exercise 6.10.57

6.10.7: Write a program to take two WORDCELL’s as discussed in Example 6.18 and
determine which one’s word precedes the other in lexicographic order. Recall that
words are terminated by * in this example.

Summary of Chapter 6

The following points were covered in Chapter 6.
4 Lists are an important data model representing sequences of elements.

4+ Linked lists and arrays are two data structures that can be used to implement
lists.

4+ Lists are a simple implementation of dictionaries, but their efficiency does not
compare with that of the binary search tree of Chapter 5 or the hash table to
be covered in Chapter 7.

4 Placing a “sentinel” at the end of an array to make sure we find the element
we are seeking is a useful efficiency improver.

4 Stacks and queues are important special kinds of lists.

4 The stack is used “behind the scenes” to implement recursive functions.
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4 A character string is an important special case of a list, and we have a number
of special data structures for representing character strings efficiently. These
include linked lists that hold several characters per cell and large arrays shared
by many character strings.

4 The problem of finding longest common subsequences can be solved efficiently
by a technique known as “dynamic programming,” in which we fill a table of
information in the proper order.

Bibliographic Notes for Chapter 6

Knuth [1968] is still the fundamental source on list data structures. While it is
hard to trace the origins of very basic notions such as “list” or “stack,” the first
programming language to use lists as a part of its data model was IPL-V (Newell et
al. [1961]), although among the early list-processing languages, only Lisp (McCarthy
et al. [1962]) survives among the currently important languages. Lisp, by the way,
stands for “LISt Processing.”

The use of stacks in run-time implementation of recursive programs is discussed
in more detail in Aho, Sethi, and Ullman [1986].

The longest-common-subsequence algorithm described in Section 6.9 is by Wag-
ner and Fischer [1975]. The algorithm actually used in the UNIX diff command is
described in Hunt and Szymanski [1977]. Aho [1990] surveys a number of algorithms
involving the matching of character strings.

Dynamic programming as an abstract technique was described by Bellman
[1957]. Aho, Hopcroft, and Ullman [1983] give a number of examples of algorithms
using dynamic programming.

Aho, A. V. [1990]. “Algorithms for finding patterns in strings,” in Handbook of

Theoretical Computer Science Vol. A: Algorithms and Complexity (J. Van Leeuwen,
ed.), MIT Press, Cambridge, Mass.

Aho, A. V., J. E. Hopcroft, and J. D. Ullman {1983]. Data Structures and Algo-
rithms, Addison-Wesley, Reading, Mass.

Aho, A. V., R. Sethi, and J. D. Ullman [1986). Compilers: Principles, Techniques,
and Tools, Addison-Wesley, Reading, Mass.

Bellman, R. E. [1957]. Dynamic Programming, Princeton University Press, Prince-
ton, NJ.

Hunt, J. W. and T. G. Szymanski [1977]. “A fast algorithm for computing longest
common subsequences,” Comm. ACM 20:5, pp. 350-353.

Knuth, D. E. [1968]). The Art of Computer Programming, Vol. 1, Fundamental
Algorithms, Addison-Wesley, Reading, Mass.

McCarthy, J. et al. [1962). LISP 1.5 Programmer’s Manual, MIT Computation
Center and Research Laboratory of Electronics, Cambridge, Mass.

Newell, A., F. M. Tonge, E. A. Feigenbaum, B. F. Green, and G. H. Mealy [1961].
Information Processing Language-V Manual, Prentice-Hall, Englewood Cliffs, New
Jersey.




336 THE LIST DATA MODEL

Wagner, R. A. and M. J. Fischer (1975]. “The string to string correction problem,”
J. ACM 21:1, pp. 168-173.




