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CHAPTER

Ko The Set
Data Model

The set is the most fundamental data model of mathematics. Every concept in
mathematics, from trees to real numbers, is expressible as a special kind of set.
In this book, we have seen sets in the guise of events in a probability space. The
dictionary abstract data type is a kind of set, on which particular operations -—
tnsert, delete, and lookup — are performed. Thus, it should not be surprising that
sets are also a fundamental model of computer science. In this chapter, we learn
the basic definitions concerning sets and then consider algorithms for efficiently
implementing set operations.

+*+ 7.1 What This Chapter Is About

This chapter covers the following topics:

4 The basic definitions of set theory and the principal operations on sets (Sections
7.2-7.3).

The three most common data structures used to implement sets: linked lists,
characteristic vectors, and hash tables. We compare these data structures
with respect to their relative efficiency in supporting various operations on sets
(Sections 7.4-7.6).

4 Relations and functions as sets of pairs (Section 7.7).

+

Data structures for representing relations and functions (Sections 7.8-7.9).

4 Special kinds of binary relations, such as partial orders and equivalence rela-
tions (Section 7.10).

4 Infinite sets (Section 7.11).
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Basic Definitions

In mathematics, the term “set” is not defined explicitly. Rather, like terms such as
“point” and “line” in geometry, the term set is defined by its properties. Specifically,
there is a notion of membership that makes sense only for sets. When S is a set and
z is anything, we can ask the question, “Is z a member of set S7” The set S then
consists of all those elements z for which z is a member of S. The following points
summarize some important notations for talking about sets.

1. The expression r € S means that the element z is a member of the set S.
2. Ifzy,z3,...,z, are all the members of set S, then we can write
S= {1-'1,2:2,“-,1"}

Here, each of the z’s must be distinct; we cannot repeat an element twice in a
set. However, the order in which the members of a set are listed is arbitrary.

3.  The empty set, denoted @, is the set that has no members. That is, z € 8 is
false, no matter what z is.

Example 7.1. Let S = {1,3,6}; that is, let S be the set that has the integers
1, 3, and 6, and nothing else, as members. Wecansay 1 € S,3€ S, and 6 € S.
However, the statement 2 € S is false, as is the statement that any other thing is a
member of S.

Sets can also have other sets as members. For example, let T = {{1,2},3,8}.
Then T has three members. First is the set {1,2}, that is, the set with 1 and 2 as
is sole members. Second is the integer 3. Third is the empty set. The following are
true statements: {1,2} € T, 3 € T, and @ € T. However, 1 € T is false. That is,
the fact that 1 is a member of a member of T does not mean that 1 is a member of
T itself. 4

Atoms

In formal set theory, there really is nothing but sets. However, in our informal
set theory, and in data structures and algorithms based on sets, it is convenient to
assume the existence of certain atoms, which are elements that are not sets. An
atom can be a member of a set, but nothing can be a member of an atom. It
is important to remember that the empty set, like the atoms, has no members.
However, the empty set is a set rather than an atom.

We shall generally assume that integers and lowercase letters denote atoms.
When talking about data structures, it is often convenient to use complex data
types as the types of atoms. Thus, atoms may be structures or arrays, and not be
very “atomic” at all.

Definition of Sets by Abstraction

Enumeration of the members of a set is not the only way we may define sets. Often,
it is more convenient to start with some set S and some property of elements P,
and define the set of those elements in S that have property P. The notation for
this operation, which is called abstraction, is
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Sets and Lists

Although our notation for a list, such as (z1,z2, ..., 2), and our notation for a set,
{z1,%2,...,2a}, look very much alike, there are important differences. First, the
order of elements in a set is irrelevant. The set we write as {1, 2} could just as well
be written {2,1}. In contrast, the list (1,2) is not the same as the list (2,1).

Second, a list may have repetitions. For example, the list (1,2,2) has three
elements; the first is 1, the second is 2, and the third is also 2. However, the set
notation {1,2,2} makes no sense. We cannot have an element, such as 2, occur as a
member of a set more than once. If this notation means anything, it is the same as
{1,2} or {2,1} — that is, the set with 1 and 2 as members, and no other members.

Sometimes we speak of a multiset or bag, which is a set whose elements are
allowed to have a multiplicity greater than 1. For example, we could speak of the
multiset that contains 1 once and 2 twice. Multisets are not the same as lists,
because they still have no order associated with their elements.

{z |z € S and P(z)}

or “the set of elements z in S such that z has property P.”
The preceding expression is called a set former. The variable z in the set
former is local to the expression, and we could just as well have written

{y|y€ S and P(y)}

to describe the same set.

Example 7.2. Let S be the set {1,3,6} from Example 7.1. Let P(z) be the

__property “zis odd.” Then

{r|z €S and zis odd }

is another way of defining the set {1,3}. That is, we accept the elements 1 and 3
from S because they are odd, but we reject 6 because it is not odd.

As another example, consider the set T = {{1,2},3,0} from Example 7.1.
Then

{A|A€Tand Ais a set }
denotes the set {{1,2},0}. ¢

Equality of Sets

We must not confuse what a set is with how it is represented. Two sets are equal,
that is, they are really the same set, if they have exactly the same members. Thus,
most sets have many different representations, including those that explicitly enu-
_merate their elements in some order and representations that use abstraction.

Example 7.3. Theset {1,2} is the set that has exactly the elements 1 and 2 as
members. We can present these elements in either order, so {1,2} = {2,1}. There
are also many ways to express this set by abstraction. For example,
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{z|z€{1,2,3} and z < 3}
is equal to the set {1,2}. 4

Infinite Sets

It is comforting to assume that sets are finite — that is, that there is some particular
integer n such that the set at hand has exactly n members. For example, the set
{1,3,6} has three members. However, some sets are infinite, meaning there is no
integer that is the number of elements in the set. We are familiar with infinite sets
such as

N, the set of nonnegative integers
Z, the set of nonnegative and negative integers

R, the set of real numbers

e B R

C, the set of complex numbers

From these sets, we can create other infinite sets by abstraction.

Example 7.4. The set former
{z|z€Zand z <3}

stands for the set of all the negative integers, plus 0, 1, and 2. The set former
{z |z €Z and /z € Z}

represents the set of integers that are perfect squares, that is, {0,1,4,9,16,...}.
For a third example, let P(z) be the property that z is prime (i.e., z > 1 and
z has no divisors except 1 and z itself). Then the set of primes is denoted

{z|z €N and P(z)}
This expression denotes the infinite set {2,3,5,7,11,...}. +

There are some subtle and interesting properties of infinite sets. We shall take
up the matter again in Section 7.11.

EXERCISES

7.2.1: What are the members of the set {{a, b}, {a}, {b,c}}?
7.2.2: Write set-former expressions for the following:

a) The set of integers greater than 1000.
b) The set of even integers.

7.2.3: Find two different representations for the following sets, one using abstrac-
tion, the other not.

a) {a,b,c}.
b) {0,1,5}.




Universal set

SEC. 7.2 BASIC DEFINITIONS 341

Russell’s Paradox

One might wonder why the operation of abstraction requires that we designate some
other set from which the elements of the new set must come. Why can’t we just
use an expression like {z | P(z)}, for example,

{z | z is blue }

to define the set of all blue things? The reason is that allowing such a general way
to define sets gets us into a logical inconsistency discovered by Bertrand Russell and
called Russell’s paradoz. We may have met this paradox informally when we heard
about the town where the barber shaves everyone who doesn’t shave himself, and
then were asked whether the barber shaves himself. If he does, then he doesn’t, and
if he doesn’t, he does. The way out of this anomaly is to realize that the statement
“shaves everyone who doesn’t shave himself,” while it looks reasonable, actually
makes no formal sense.

To understand Russell’s paradox concerning sets, suppose we could define sets

of the form {z | P(z)} for any property P. Then let P(z) be the property “r is not
a member of z.” That is, let P be true of a set z if z is not a member of itself. Let

S be the set
S = {z | z is not a member of z}
Now we can ask, “Is set S a member of itself?”

Case 1: Suppose that S is not a member of S. Then P(S) is true, and so S is
a member of the set {z | z is not a member of z}. But that set is S, and so by
assuming that S is not a member of itself, we prove that S is indeed a member of
itself. Thus, it cannot be that S is not a member of itself.

Case 2: Suppose that S is a member of itself. Then S is not a member of
{z | z is not a member of z}
But again, that set is S, and so we conclude that S is not a member of itself.

Thus, when we start by assuming that P(S) is false, we prove that it is true,
and when we start by assuming that P(S) is true, we wind up proving that it is
false. Since we arrive at a contradiction either way, we are forced to blame the
notation. That is, the real problem is that it makes no sense to define the set S as
we did.

Another interesting consequence of Russell’s paradox is that it makes no sense
to suppose there is a “set of all elements.” If there were such a “universal set” —
say U — then we could speak of

{z | ¢ € U and z is not a member of z}

and we would again have Russell’s paradox. We would then be forced to give up
abstraction altogether, and that operation is far too useful to drop.

—
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Operations on Sets

There are special operations that are commonly performed on sets, such as union
and intersection. You are probably familiar with many of them, but we shall re-
view the most important operations here. In the next sections we discuss some
implementations of these operations. ;

Union, Intersection, and Difference

Perhaps the most common ways to combine sets are with the following three oper-
ations:

1. The union of two sets S and T, denoted S U T, is the set containing the
elements that are in S or T, or both.

2. The intersection of sets S and T, written S N T, is the set containing the
elements that are in both S and T

3. The difference of sets S and T, denoted S — T, is the set containing those
elements that are in S but not in T'.

Example 7.5. Let S be the set {1,2,3)} and T the set {3,4,5}. Then
SuT=1{1,2,3,4,5},SNT={3},and S—-T = {1,2}

That is, S U T contains all the elements appearing in either S or T'. Although 3
appears in both S and T, there is, of course, only one occurrence of 3in S U T,
because elements cannot appear more than once in a set. S N T contains only 3,
because no other element appears in both S and T'. Finally, S — T contains 1 and
2, because these appear in S and do not appear in T. The element 3 is not present
in S — T, because although it appears in S, it also appears in T. 4

When the sets S and T are events in a probability space, the union, intersection,
and difference have a natural meaning. S U T is the event that either S or T (or
both) occurs. S N T is the event that both S and T occur. S — T is the event that
S, but not T occurs. However, if S is the set that is the entire probability space,
then S — T is the event “T" does not occur,” that is, the complement of T

Venn Diagrams

It is often helpful to see operations involving sets as pictures called Venn diagrams.
Figure 7.1 is a Venn diagram showing two sets, S and T, each of which is represented
by an ellipse. The two ellipses divide the plane into four regions, which we have
numbered 1 to 4.

Region 1 represents those elements that are in neither S nor 7.

Region 2 represents S — T, those elements that are in S but not in 7.

Region 3 represents S N T, those elements that are in both S and T'.

Region 4 represents T — S, those elements that are in 7 but not in S.

Regions 2, 3, and 4 combined represent S U T', those elements that are in S or
T, or both.

ook
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Region 1

Region 4

Fig. 7.1. Regions representing Venn diagrams for the basic set operations.

What Is an Algebra?
We may think that the term “algebra” refers to solving word problems, finding
roots of polynomials, and other matters covered in a high school algebra course. To
a mathematician, however, the term algebra refers to any sort of system in which
there are operands and operators from which one builds expressions. For an algebra
to be interesting and useful, it usually has special constants and laws that allow us
to transform one expression into another “equivalent” expression.

The most familiar algebra is that in which operands are integers, reals, or per-
haps complex numbers — or variables representing values from one of these classes
— and the operators are the ordinary arithmetic operators: addition, multiplica-
tion, subtraction, and division. The constants 0 and 1 are special and satisfy laws
like z + 0 = z. In manipulating arithmetic expressions, we use laws such as the
distributive law, which lets us replace any expression of the form a x b+ a x ¢ by
an equivalent expression a x (b ¢). Notice that by making this transformation, we
reduce the number of arithmetic operations by 1. Often the purpose of algebraic
manipulation of expressions, such as this one, is to find an equivalent expression
whose evaluation takes less time than the evaluation of the original.

Throughout this book, we shall meet various kinds of algebras. Section 8.7
introduces relational algebra, a generalization of the algebra of sets that we discuss
here. Section 10.5 talks about the algebra of regular erpressions for describing
patterns of character strings. Section 12.8 introduces the reader to the Boolean
algebra of logic.

While we have suggested that Region 1 in Fig. 7.1 has finite extent, we should
remember that this region represents everything outside S and T. Thus, this region
is not a set. If it were, we could take its union with S and T to get the “univer-
sal set,” which we know by Russell’s paradox does not exist. Nevertheless, it is
often convenient to draw as a region the elements that are not in any of the sets
represented explicitly in the Venn diagram, as we did in Fig. 7.1.

Algebraic Laws For Union, Intersection, and Difference

Mirroring the algebra of arithmetic operations such as + and *, one can define an
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algebra of sets in which the operators are union, intersection, and difference and the
operands are sets or variables denoting sets. Once we allow ourselves to build up
complicated expressions like R U ((S N T)—U), we can ask whether two expressions
are equsvalent, that is, whether they always denote the same set regardless of what
sets we substitute for the operands that are variables. By substituting one expres-
sion for an equivalent expression, sometimes we can simplify expressions involving
sets so that they may be evaluated more efficiently.

In what follows, we shall list the most important algebraic laws — that is,
statements asserting that one expression is equivalent to another — for union, in-
tersection, and difference of sets. The symbol = is used to denote equivalence of
expressions.

In many of these algebraic laws, there is an analogy between union, intersection,
and difference of sets, on one hand, and addition, multiplication, and subtraction
of integers on the other hand. We shall, however, point out those laws that do not
have analogs for ordinary arithmetic.

a) The commutative law of union: (SUT) = (T U S). That is, it does not matter
which of two sets appears first in a union. The reason this law holds is simple.
The element z isin SUT if z isin S or if z is in T, or both. That is exactly
the condition under which z isin TU S.

b) The associative law of union: (SU (T U R)) = ((SU T) U R). That is, the
union of three sets can be written either by first taking the union of the first
two or the last two; in either case, the result will be the same. We can justify
this law as we did the commutative law, by arguing that an element is in the
set on the left if and only if it is in the set on the right. The intuitive reason
is that both sets contain exactly those elements that are in either S, T', or R,
or any two or three of them.

The commutative and associative laws of union together tell us that we can
take the union of a collection of sets in any order. The result will always be the
same set of elements, namely those elements that are in one or more of the sets. The
argument is like the one we presented for addition, which is another commutative
and associative operation, in Section 2.4. There, we showed that all ways to group
a sum led to the same result.

c) The commutative law of intersection: (S N T) = (T N S). Intuitively, an
element z is in the sets S N T and T N S under exactly the same circumstances:
when zisin Sand zisin T'.

d) The associative law of intersection: (SN (T N R)) = ((SnT) N R). Intu-
itively, z is in either of these sets exactly when z is in all three of S, T, and
R. Like addition or union, the intersection of any collection of sets may be
grouped as we choose, and the result will be the same; in particular, it will be
the set of elements in all the sets.

e) Distributive law of intersection over union: Just as we know that multiplication
distributes over addition — that is, a x (b+¢) = a x b+ a x ¢ — the law

(SN(TUR) =((Sn T),U (SN R))

holds for sets. Intuitively, an element z is in each of these sets exactly when z
isin S and also in at least one of T and R. Similarly, by the commutativity of
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union and intersection, we can distribute intersections from the right, as
(TUR)NS)=((TNnS)U(RNS))

Distributive law of union over intersection: Similarly,
(SU(TNR)=((SUT)N(SUR))

holds. Both the left and right sides are sets that contain an element z exactly
when z is either in S, or is in both T and R. Notice that the analogous law of
arithmetic, where union is replaced by addition and intersection by multiplica-
tion, is false. That is, a4 b x ¢ is generally not equal to (a + b) x (a + ¢). Here is
one of several places where the analogy between set operations and arithmetic
operations breaks down. However, as in (e), we can use the commutativity of
union to get the equivalent law

(TnR)US)=((TUS)N(RUYS))

Example 7.6. Let S ={1,2,3}, T = {3,4,5},and R = {1,4,6}. Then

{1,2,3} U ({3,4,5} N {1,4,6})
{1,2,3}u {4)
{1,2,3,4}

SU(TNR)

On the other hand,

(SUT)N(SUR) ({1,2,3}u {3,4,5}) N ({1,2,3} U {1,4,6})
{1,2,3,4,5}n {1,2,3,4,6}

{1,2,3,4}

Thus, the distributive law of union over intersection holds in this case. That doesn’t
prove that the law holds in general, of course, but the intuitive argument we gave
with rule (f) should be convincing. 4

g)

Associative law of union and difference: (S —(T'U R)) = ((S—T)— R). Both
sides contain an element z exactly when z is in S but in neither 7" nor R.
Notice that this law is analogous to the arithmetic law a — (b+¢) = (a —b) —c.

Distributive law of difference over union: ((SUT)—R) = ((S—R) U (T—R)).
In justification, an element z is in either set when it is not in R, but is in either
S or T, or both. Here is another point at which the analogy with addition and
subtraction breaks down; it is not true that (a +b) — ¢ = (a —¢) + (b — ¢),
unless ¢ = 0.

The empty set is the identity for union. That is, (S U@) = S, and by commu-
tativity of union, (f U S) = S. Informally, an element z can be in S U @ only
when z is in S, since z cannot be in @.

Note that there is no identity for intersection. We might imagine that the set

of “all elements” could serve as the identity for intersection, since the intersection
of a set S with this “set” would surely be S. However, as mentioned in connection
with Russell’s paradox, there cannot be a “set of all elements.”
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J)  Idempotence of union. An operator is said to be idempotent if, when applied to
two copies of the same value, the result is that value. We see that (SU S) = S.
That is, an element z is in S U S exactly when it is in S. Again the analogy
with arithmetic fails, since a + a is generally not equal to a.

k) Idempotence of intersection. Similarly, we have (SN S) = S.

There are a number of laws relating the empty set to operations besides union.
We list them here.

) (5-8)=0.
m) B-5)=0.
n) (AN S)=40, and by commutativity of intersection, (S N @) = §.

Proving Equivalences by Venn Diagrams

Figure 7.2 illustrates the distributive law for intersection over union by a Venn
diagram. This diagram shows three sets, S, T, and R, which divide the plane into
eight regions, numbered 1 through 8. These regions correspond to the eight possible
relationships (in or out) that an element can have with the three sets.

[N

R

Fig. 7.2. Venn diagram showing the distributive law of intersection over union:
S N (T U R) consists of regions 3, 5, and 6, as does (SN T) U (S N R).

We can use the diagram to help us keep track of the values of various sub-
expressions. For instance, T U R is regions 3, 4, 5, 6, 7, and 8. Since $ is regions
2,3, 5, and 6, it follows that S N (T"U R) is regions 3, 5, and 6. Similarly, S N T is
regions 3 and 6, while S N R is regions 5 and 6. It follows that (SN T) U (SN R)
is the same regions 3, 5, and 6, proving that

(SN(TUR) =((SNT)U(SNR))
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In general, we can prove an equivalence by considering one representative ele-
ment from each region and checking that it is either in the set described by both
sides of the equivalence or in neither of those sets. This method is very close to
the truth-table method by which we prove algebraic laws for propositional logic in
Chapter 12.

Proving Equivalences by Applying Transformations

Another way to prove two expressions equivalent is by turning one into the other
using one or more of the algebraic laws we have already seen. We shall give a more
formal treatment of how expressions are manipulated in Chapter 12, but for the
present, let us observe that we can

1. Substitute any expression for any variable in an equivalence, provided that we
substitute for all occurrences of that variable. The equivalence remains true.

2. Substitute, for a subexpression E in some equivalence, an expression F that is
known to be equivalent to E. The equivalence remains true.

In addition, we can write any of the equivalences that were stated as laws and
assume that equivalence is true.

Example 7.7. We shall prove the equivalence (S — (S U R)) = 0. Let us start
with law (g), the associative law for union and difference, which is

(S-(TUR) =((S~T)-R)

We substitute S for each of the two occurrences of T to get a new equivalence:
(S-(SUR)=((S-S)—-R)

By law (1), (S — S) = 0. Thus, we may substitute @ for (S — S) above to get:
(S=(SUR))=@-R)

Law (m), with R substituted for S says that § — R = 0. We may thus substitute @
for @ — R and conclude that (S~ (SUR)) =0. 4

The Subset Relationship

There is a family of comparison operators among sets that is analogous to the
comparisons among numbers. If S and T are sets, we say that § C T if every
member of S is also a member of T. We can express this in words several ways: “S
is a subset of T',)” “T" is a superset of S,” “S is contained in T',” or “T" contains S.”

We say that S C T, if S C T', and there is at least one element of T that is not
also a member of S. The S C T relationship can be read “S is a proper subset of
T,” “T is a proper superset of S,” “S is properly contained in T',” or “T" properly
contains S.”

As with “less than,” we can reverse the direction of the comparison; S O T is
synonymous with 7' C S, and § D T is synonymous with T'C S.

Example 7.8. The following comparisons are all true:
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1. {1,2}c{1,2,3}
2. {1,2}c {1,2,3}
3. {1,2)C{1,2}

Note that a set is always a subset of itself but a set is never a proper sut 1t of itself,
so that {1,2} C {1,2} is false. 4

There are a number of algebraic laws involving the subset opera r and the
other operators that we have already seen. We list some of them here.

o) @ C S for any set S.
p) If SCT,then
i) (SUT)=T,
i) (SNT)=S, and
i) (S—1T)=0.

Proving Equivalences by Showing Containments

Two sets S and T" are equal if and only if S C T and T C S; that is, eac is a subset
of the other. For if every element in S is an element of T and vice v« sa, then S
and T have exactly the same members and thus are equal. Conversely if S and T’
have exactly the same members, then surely S C T and T C S are tru . This rule
is analogous to the arithmetic rule that a = b if and only if both a < and b < a
are true.

We can show the equivalence of two expressions E and F by show ig that the
set denoted by each is contained in the set denoted by the other. That is, we

1. Consider an arbitrary element z in E and prove that it is also in . , and then

2. Consider an arbitrary element z in F and prove that it is also in . .

‘Note that both proofs are necessary in order to prove that £ = F.

STEP REASON

1) | zisinS-(TUR) | Given

2) | zisin S Definition of — and (1)

3) | zisnotinTUR Definition of — and (1)

4) | zisnotin T Definition of U and (3)

5) | zisnotin R Definition of U and (3)

6) | zisinS-T Definition of — with (2) and (- )
7) | zisin (S—T)— R | Definition of — with (6) and (!)

Fig. 7.3. Proof of one half of the associative law for union and diffe ence.

+ Example 7.9. Let us prove the associative law for union and difference,
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(S-(TUR)=((S-T)-R)

We start by assuming that z is in the expression on the left. The sequence of steps
is shown in Fig. 7.3. Note that in steps (4) and (5), we use the definition of union
backwards. That is, (3) tells us that z is not in T U R. If z were in T, (3) would
be wrong, and so we can conclude that z is not in T. Similarly, z is not in R.

STEP REASON

1) | zisin(S—-T)—R | Given

2) | zisinS-T Definition of — and (1)

3) | zisnotin R Definition of — and (1)

4) zisin S Definition of — and (2)

5 | zisnotin T Definition of — and (2)

6) | zisnotinTUR Definition of U with (3) and (5)
7) | zisin S—(TUR) | Definition of — with (4) and (6)

Fig. 7.4. Second half of the proof of the associative law for union and difference.

We are not done; we must now start by assuming that z is in (S—7)— R and
show that it is in S — (T U R). The steps are shown in Fig. 7.4. ¢

Example 7.10. As another example, let us prove part of (p), the rule that if
S CT,then SUT = T. We begin by assuming that z isin S UT. We know by
the definition of union that either

1. zisin Sor
2. zisinT.

In case (1), since S C T is assumed, we know that z is in T". In case (2), we
immediately see that z is in T'. Thus, in either case z is in 7', and we have completed
the first half of the proof, the statement that (SUT) C T.

Now let us assume that z is in 7. Then z is in S U T by the definition of
union. Thus, T C (S U T), which is the second half of the proof. We conclude that
ifSCTthen (SUT)=T. ¢

‘The Power Set of a Set

If S is any set, the power set of S is the set of subsets of S. We shall use P(S) to
denote the power set of S, although the notation 25 is also used.

Example 7.11. Let S = {1,2,3}. Then
P(S) = {8,{1},{2},{3}.{1,2},{1,38},{2,3},{1,2,3}}
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That is, P(S) is a set with eight members; each member is itself a set. The empty
set is in P(S), since surely @ C S. The singletons — sets with one member of S,
namely, {1}, {2}, and {3} — are in P(S). Likewise, the three sets with two of the
three members of S are in P(S), and S itself is a member of P(S).

As another example, P(8) = {@} since 8 C S, but for no set S besides the
empty set is S C 0. Note that {8}, the set containing the empty set, is not the
same as the empty set. In particular, the former has a member, namely @, while
the empty set has no members. 4

The Size of Power Sets

If S has n members, then P(S) has 2" members. In Example 7.11 we saw that a
set of three members has a power set of 23 = 8 members. Also, 2° = 1, and we saw
that the empty set, which contains zero elements, has a power set of one element.

Let S = {aj,a2,...,8n}, where aj,@2,...,a, are any n elements. We shall
now prove by induction on n that P(S) has 2" members.

BASIS. If n = 0, then S is #. We have already observed that P (@) has one member.
Since 2° = 1, we have proved the basis.

INDUCTION. Suppose that when S = {ay,az,...,as}, P(S) has 2" members. Let
ans1 be a new element, and let T = S U {an41}, a set of n + 1 members. Now a
subset of T either does not have or does have a,, 41 as a member. Let us consider
these two cases in turn.

1. The subsets of T that do not include a,4; are also subsets of S, and therefore
in P(S). By the inductive hypothesis, there are exactly 2" such sets.

2. If R is a subset of T that includes an41, let @ = R — {@n41}; that is, Q is R
with a,4, removed. Then Q is a subset of S. By the inductive hypothesis,
there are exactly 2" possible sets Q, and each one corresponds to a unique set
R, which is Q U {@n41}-

We conclude that there are exactly 2 x 2°, or 2"*!, subsets of T, half that are
subsets of S, and half that are formed from a subset of S by including an+1. Thus,
the inductive step is proved; given that any set S of n elements has 2" subsets, we
have shown that any set T of n + 1 elements has 2"+! subsets.

EXERCISES

7.3.1: In Fig. 7.2, we showed two expressions for the set of regions {3,5,6}. How-
ever, each of the regions can be represented by expressions involving S, T, and R and
the operators union, intersection, and difference. Write two different expressions for
each of the following:

a) Region 6 alone
b) Regions 2 and 4 together
c) Regions 2, 4, and 8 together

7.3.2: Use Venn diagrams to show the following algebraic laws. For each sub-
expression involved in the equivalence, indicate the set of regions it represents.
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a) (SU(TNR))=((SUT)N(SUR))
b) ((SUT)-R)=((S-R)U(T-R))
) (S-(TUR)=((S-T)-R)

7.3.3: Show each of the equivalences from Exercise 7.3.2 by showing containment
of each side in the other.

7.3.4: Assuming S C T, prove the following by showing that each side of the
equivalence is a subset of the other:

a) (SNT)=S
b) (S—-T)=0

7.3.5%: Into how many regions does a Venn diagram with n sets divide the plane,
assuming that no set is a subset of any other? Suppose that of the n sets there is
one that is a subset of one other, but there are no other containments. Then some
regions would be empty. For example, in Fig. 7.1, if S C T', then region 2 would be
empty, because there is no element that is in S but not in 7". In general, how many
nonempty regions would there be?

7.3.6: Prove that if S C T', then P(S) C P(T).

7.3.7*: In C we can represent a set S whose members are sets by a linked list
whose elements are the headers for lists; each such list represents a set that is one
of the members of S. Write a C program that takes a list of elements representing
a set (i.e., a list in which all the elements are distinct) and returns the power set of
the given set. What is the running time of your program? Hint: Use the inductive
proof that there are 2® members in the power set of a set of n elements to devise
a recursive algorithm that creates the power set. If you are clever, you can use the
same list as part of several sets, to avoid copying the lists that represent members
of the power set, thus saving both time and space.

7.3.8: Show that

a) P(S)UP(T)CP(SUT)
b) P(SNT)CP(S)NP(T)

Are either (a) or (b) true if containment is replaced by equivalence?
7.3.9: What is P(P(P(0)))?

7.3.10*: If we apply the power-set operator n times, starting with @, how many
members does the resulting set have? For an example, Exercise 7.3.9 is the case
n=3.

List Implementation of Sets

We have already seen, in Section 6.4, how to implement the dictionary operations
insert, delete, and lookup using a linked-list data structure. We also observed
there that the expected running time of these operations is O(n) if the set has n
elements. This running time is not as good as the O(logn) average time taken
for the dictionary operations using a balanced binary search tree data structure,
as in Section 5.8. On the other hand, as we shall see in Section 7.6, a linked-list
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representation of dictionaries plays an essential role in the hash-table data structure
for dictionaries, which is generally faster than the binary search tree.

Union, Intersection, and Difference

The basic set operations such as union can profit from the use of linked lists as a
data structure, although the proper techniques are somewhat different from what
we use for the dictionary operations. In particular, sorting the lists significantly
improvess the running time for union, intersection, and difference. As we saw
in Section 6.4, sorting makes only a small improvement in the running time of
dictionary operations.

To begin, let us see what problems arise when we represent sets by unsorted
lists. In this case, we must compare each element of each set with each element of
the other. Thus, to take the union, intersection, or difference of sets of size n and
m requires O(mn) time. For example, to create a list U that represents the union
of two sets S and T, we may start by copying the list for S onto the initially empty
list I/. Then we examine each element of T and see whether it is in S. If not, we
add the element to U. The idea is sketched in Fig. 7.5.

(1) copy S to U;

(2) tor (each z in T)
(3) it (Yookup(z,S))
(4)

insert(z,U);

Fig. 7.5. Pseudocode sketch of the algorithm for taking the union
of sets represented by unsorted lists.

Suppose S has n members and T has m members. The operation in line (1),
copying S to U, can easily be accomplished in O(n) time. The lookup of line (3)
takes O(n) time. We only execute the insertion of line (4) if we know from line (3)
that z is not in S. Since z can only appear once on the list for T, we know that z is
not yet in U. Therefore, it is safe to place z at the front of U’s list, and line (4) can
be accomplished in O(1) time. The for-loop of lines (2) through (4) is iterated m
times, and its body takes time O(n). Thus, the time for lines (2) to (4) is O(mn),
which dominates the O(n) for line (1).

There are similar algorithms for intersection and difference, each taking O(mn)
time. We leave these algorithms for the reader to design.

Union, Intersection, and Difference Using Sorted Lists

We can perform unions, intersections, and set differences much faster when the lists
representing the sets are sorted. In fact, we shall see that it pays to sort the lists
before performing these operations, even if the lists are not initially sorted. For
example, consider the computation of S U T', where S and T are represented by
sorted lists. The process is similar to the merge algorithm of Section 2.8. One
difference is that when there is a tie for smallest between the elements currently at
the fronts of the two lists, we make only one copy of the element, rather than two
copies as we must for merge. The other difference is that we cannot simply remove
elements from the lists for S and T for the union, since we should not destroy S or
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T while creating their union. Instead, we must make copies of all elements to form
the union.
We assume that the types LIST and CELL are defined as before, by the macro

DefCell(int, CELL, LIST);

The function setUnion is shown in Fig. 7.6. It makes use of an auxiliary function
assemble(z, L, M) that creates a new cell at line (1), places element z in that
cell at line (2), and calls setUnion at line (3) to take the union of the lists L
and M. Then assemble returns a cell for z followed by the list that results from
applying setUnion to L and M. Note that the functions assemble and setUnion
are mutually recursive; each calls the other.

Function setUnion selects the least element from its two given sorted lists and
passes to assemble the chosen element and the remainders of the two lists. There
are six cases for setUnion, depending on whether or not one of its lists is NULL, and
if not, which of the two elements at the heads of the lists precedes the other.

1. If both lists are NULL, setUnion simply returns NULL, ending the recursion.
This case is lines (5) and (6) of Fig. 7.6.

2. If L is NULL and M is not, then at lines (7) and (8) we assemble the union by
taking the first element from M, followed by the “union” of the NULL list with
the tail of M. Note that, in this case, successive calls to setUnion result in M
being copied.

3. If M is NULL but L is not, then at lines (9) and (10) we do the opposite,
assembling the answer from the first element of L and the tail of L.

4. If the first elements of L and M are the same, then at lines (11) and (12) we
assemble the answer from one copy of this element, referred to as L->element,
and the tails of L and M.

5. If the first element of L precedes that of M, then at lines (13) and (14) we
assemble the answer from this smallest element, the tail of L, and the entire
list M.

6. Symmetrically, at lines (15) and (16), if M has the smallest element, then we
assemble the answer from that element, the entire list L, and the tail of M.

Example 7.12. Suppose S is {1,3,6} and T is {5,3}. The sorted lists rep-
resenting these sets are L = (1,3,6) and M = (3,5). We call setUnion(L, M) to
take the union. Since the first element of L, which is 1, precedes the first element
of M, which is 3, case (5) applies, and we assemble the answer from 1, the tail
of L, which we shall call L, = (3,6), and M. Function assemble(l, L,, M) calls
setUnion(Ly, M) at line (3), and the result is the list with first element 1 and tail
equal to whatever the union is.

This call to setUnion is case (4), where the two leading elements are equal;
both are 3 here. Thus, we assemble the union from one copy of element 3 and the
tails of the lists L; and M. These tails are L,, consisting of only the element 6, and
M, consisting of only the element 5. The next call is setUnion(L,, M;), which is an
instance of case (6). We thus add 5 to the union and call setUnion(L;,NULL). That
is case (3), generating 6 for the union and calling setUnion(NULL,NULL). Here, we
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LIST setUnion(LIST L, LIST M);
LIST assemble(int x, LIST L, LIST M);

/* assemble produces a list whose head element is x and
whose tail is the union of lists L and M =/

LIST assemble(int x, LIST L, LIST M)
{
LIST first;

) first = (LIST) malloc(sizeof(struct CELL));
) first->element = x;

) first->next = setUnion(L, M);

) return firat;

iy

/% setUnion returns a list that is the union of L and M */

LIST setUnion(LIST L, LIST M)

{
(52 if (L == NULL &% M == NULL)
(63 return NULL;
(72 else if (L == NULL) /* M cannot be NULL here */
(8'E return assemble(M->element, NULL, M->next);
(9: else if (M == NULL) /* L cannot be NULL here #*/
(10z return assemble(L->element, L->next, NULL);

/* if we reach here, neither L nor M can be NULL */

(112 else if (L->element == M->element)
(125 return assemble(L->element, L->next, M->next);
(13: else if (L->element < M->element)
(14'E return assemble(L->element, L->next, M);
(153 else /* here, M->element < L->element */
(162 return assemble(M->element, L, M->next);

}

Fig. 7.6. Computing the union of sets represented by sorted lists.

have case (1), and the recursion ends. The result of the initial call to setUnion is
the list (1, 3,5,6). Figure 7.7 shows in detail the sequence of calls and returns made
on this example data. 4

Notice that the list generated by setUnion always comes out in sorted order.
We can see why the algorithm works, by observing that whichever case applies, each
element in lists L or M is either copied to the output, by becoming the first param-
eter in a call to assemble, or remains on the lists that are passed as parameters in
the recursive call to setUnion.

Running Time of Union

If we call setUnion on sets with n and m elements, respectively, then the time taken
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call setUnion((1,3,6),(3,5))
call assemble(1,(3,6), (3,5))
call setUnion((3,6), (3,5))
call assemble(3,(6), (5))
call setUnion((6), (5))
call assemble (5, (6), NULL)
call setUnion((6), NULL)
call assemble(6, NULL, NULL)
call setUnion(NULL, NULL)
return NULL
return (6)
return (6)
return (5,6)
return (5,6)
return (3,5,6)
return (3,5,6)
return (1,3,5,6)
return (1,3,5,6)

Fig. 7.7. Sequence of calls and returns for Example 7.12.

Big-Oh for Functions of More Than One Variable

As we pointed out in Section 6.9, the notion of big-oh, which we defined only for
functions of one variable, can be applied naturally to functions of more than one

variable. We say that f(zy,...,z%) is O(g(:i,...,z:;,)) if there are constants ¢
and ai,...,a such that whenever z; > a; for all i = 1,...,k, it is the case that
f(z1,...,zx) < cg(z1,...,2k). In particular, note that even though m+n is greater

than mn when one of m and n is 0 and the other is greater than 0, we can still say
that m + n is O(mn), by choosing constants c, a;, and a; all equal to 1.

B e ———

by setUnion is O(m+ n). To see why, note that calls to assemble spend O(1) time
creating a cell for the output list and then calling setUnion on the remaining lists.
Thus, the calls to assemble in Fig. 7.6 can be thought of as costing O(1) time plus
the time for a call to setUnion on lists the sum of whose lengths is either one less
than that of L and M, or in case (4), two less. Further, all the work in setUnion,
exclusive of the call to assemble, takes O(1) time.

It follows that when setUnion is called on lists of total length m+n, it will result
in at most m + n recursive calls to setUnion and an equal number to assemble.
Each takes O(1) time, exclusive of the time taken by the recursive call. Thus, the
time to take the union is O(m + n), that is, proportional to the sum of the sizes of
the sets.

This time is less than that of the O(mn) time needed to take the union of sets
represented by unsorted lists. In fact, if the lists for our sets are not sorted, we
can sort them in O(nlogn + mlogm) time, and then take the union of the sorted
lists. Since nlogn dominates n and mlogm dominates m, we can express the total
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cost of sorting and taking the union as O(nlogn + mlogm). That expression can
be greater than O(mn), but is less whenever n and m are close in value — that is,
whenever the sets are approximately the same size. Thus, it usually makes sense to
sort before taking the union.

Intersection and Difference

The idea in the algorithm for union outlined in Fig. 7.6 works for intersections and
differences of sets as well: when the sets are represented by sorted lists, intersection
and difference are also performed in linear time. For intersection, we want to copy
an element to the output only if it appears on both lists, as in case (4). If either list
is NULL, we cannot have any elements in the intersection, and so cases (1), (2), and
(3) can be replaced by a step that returns NULL. In case (4), we copy the element at
the heads of the lists to the intersection. In cases (5) and (6), where the heads of
the lists are different, the smaller cannot appear on both lists, and so we do not add
anything to the intersection but pop the smaller off its list and take the intersection
of the remainders.

To see why that makes sense, suppose, for example, that a is at the head of
list L, that b is at the head of list M, and that a < b. Then a cannot appear on
the sorted list M, and so we can rule out the possibility that a is on both lists.
However, b can appear on list L somewhere after a, so that we may still be able
to use b from M. Thus, we need to take the intersection of the tail of L with the
entire list M. Conversely, if b were less than a, we would take the intersection of L
with the tail of M. C code to compute the intersection is shown in Fig. 7.8. It is
also necessary to modify assemble to call intersection instead of setUnion. We
leave this change as well as a program to compute the difference of sorted lists as
exercises.

LIST intersection(LIST L, LIST M)
{
it (L == NULL || M == NULL)
return NULL;
else if (L->element == M->element)
return assemble(L->element, L->next, M->next);
else if (L->element < M->element)
return intersection(L->next, M);
else /* here, M->element < L->element */
return intersection(L, M->next);

Fig. 7.8. Computing the intersection of sets represented by sorted lists.
A new version of assemble is required.

EXERCISES

7.4.1: Write C programs for taking the (a) union, (b) intersection, and (c) difference
of sets represented by unsorted lists.

7.4.2: Modify the program of Fig. 7.6 so that it takes the (a) intersection and (b)
difference of sets represented by sorted lists.
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7.4.3: The functions assemble and setUnion from Fig. 7.6 leave the lists whose
union they take intact; that is, they make copies of elements rather than use the
cells of the given lists themselves. Can you simplify the program by allowing it to
destroy the given lists as it takes their union?

7.4.4*: Prove by induction on the sum of the lengths of the lists given as parameters
that setUnion from Fig. 7.6 returns the union of the given lists.

7.4.5*%: The symmetric difference of two sets S and T is (S — T) U (T — S), that
is, the elements that are in exactly one of S and T. Write a program to take the
symmetric difference of two sets that are represented by sorted lists. Your program
should make one pass through the lists, like Fig. 7.6, rather than call routines for
union and difference.

7.4.6*: We analyzed the program of Fig. 7.6 informally by arguing that if the total
of the lengths of the lists was n, there were O(n) calls to setUnion and assemble
and each call took O(1) time plus whatever time the recursive call took. We can
formalize this argument by letting Ty (n) be the running time for setUnion and
Ta(n) be the running time of assemble on lists of total length n. Write recursive
rules defining Ty and T, in terms of each other. Substitute to eliminate T4, and
set up a conventional recurrence for Tyy. Solve that recurrence. Does it show that
setUnion takes O(n) time?

Characteristic-Vector Implementation of Sets

Frequently, the sets we encounter are each subsets of some small set U, which we
shall refer to as the “universal set.”! For example, a hand of cards is a subset of the
set of all 52 cards. When the sets with which we are concerned are each subsets of
some small set U, there is a representation of sets that is much more efficient than
the list representation discussed in the previous section. We order the elements of U
in some way so that each element of U can be associated with a unique “position,”
which is an integer from 0 up to n — 1, where n is the number of elements in U.
Then, given a set S that is contained in U, we can represent S by a charac-
teristic vector of 0’s and 1’s, such that for each element 2 of U, if z is in S, the
position corresponding to z has a 1, and if z is not in S, then that position has a 0.

Example 7.13. Let U be the set of cards. We may order the cards any way we
choose, but one reasonable scheme is to order them by suits: clubs, then diamonds,
then hearts, then spades. Then, within a suit, we order the cards ace, 2, 3,. .., 10,
jack, queen, king. For instance, the position of the ace of clubs is 0, the king of
clubs is 12, the ace of diamonds is 13, and the jack of spades is 49. A royal flush in
hearts is represented by the characteristic vector

0000000000000000000000000010000000011110000000000000

1 Of course U cannot be a true universal set, or set of all sets, which we argued does not exist
because of Russell's paradox.
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The first 1, in position 26, represents the ace of hearts; and the other four 1’s, in
positions 35 through 38, represent the 10, jack, queen, and king of hearts.
The set of all clubs is represented by

1111111111111000000000000000000000000000000000000000

and the set of all picture cards is represented by
0000000000111000000000011100000000001110000000000111

+

Array Implementation of Sets

We can represent characteristic vectors for subsets of a universal set of n elements
using Boolean arrays of the following type:

typedef BOOLEAN USET[n];

The type BOOLEAN is as described in Section 1.6. To insert the element corresponding
to position i into a set S declared to be of type USET, we have only to execute

S[i] = TRUE;
Similarly, to delete the element corresponding to position i from S, we do
S[i] = FALSE;

If we want to look up this element, we have only to return the value S[i], which
tells us whether the ith element is present in S or not.

Note that each of the dictionary operations insert, delete, and lookup thus
takes O(1) time, when sets are represented by characteristic vectors. The only
disadvantage to this technique is that all sets must be subsets of some universal set
U. Moreover, the universal set must be small; otherwise, the length of the arrays
becomes so large that we cannot store them conveniently. In fact, since we shall
normally have to initialize all elements of the array for a set S to TRUE or FALSE,
the initialization of any subset of U (even @) must take time proportional to the
size of U. If U had a large number of elements, the time to initialize a set could
dominate the cost of all other operations.

To form the union of two sets that are subsets of a common universal set of
n elements, and that are represented by characteristic vectors S and T, we define
another characteristic vector R to be the bitwise OR of the characteristic vectors S
and T:

R[i) = s[i) Il T[il,for0<i<n

Similarly, we can make R represent the intersection of S and T by taking the bitwise
AND of S and T

R[i] = s[i] && T[il,for0<i<n
Finally, we can make R represent the set difference S — T as follows:

R{i] = S[i] && !T[i], for 0<i<n
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The arrays representing characteristic vectors and the Boolean operations on them
can be implemented using the bitwise operators of C if we define the type BOOLEAN
appropriately. However, the code is machine specific, and so we shall not present
any details here. A portable (but more space consuming) implementation of char-
acteristic vectors can be accomplished with arrays of int’s of the appropriate size,
and this is the definition of BOOLEAN that we have assumed.

Example 7.14. Let us consider sets of apple varieties. Our universal set will
consist of the six varieties listed in Fig. 7.9; the order of their listing indicates their
position in characteristic vectors.

VARIETY COLOR | RIPENS
0) | Delicious red late
1) | Granny Smith | green early
2) | Gravenstein red early
3) | Jonathan red early
4) | MclIntosh red late
'J] i Pippin e | green late

Fig. 7.9. Characteristics of some apple varieties.

The set of red apples is represented by the characteristic vector
Red = 101110
and the set of early apples is represented by
FEarly = 011100

Thus, the set of apples that are either red or early, that is, Red U Farly, is repre-
sented by the characteristic vector 111110. Note that this vector has a 1 in those
positions where either the vector for Red, that is, 101110, or the vector for Early,
that is, 011100, or both, have a 1.

We can find the characteristic vector for Red N Early, the set of apples that
are both red and early, by placing a 1 in those positions where both 101110 and
011100 have 1. The resulting vector is 001100, representing the set of apples
{Gravenstein, Jonathan}. The set of apples that are red but not early, that is,

Red — Early
is represented by the vector 100010. The set is {Delicious, McIntosh}. 4+

Notice that the time to perform union, intersection, and difference using char-
acteristic vectors is proportional to the length of the vectors. That length is not
directly related to the size of the sets, but is equal to the size of the universal set.
If the sets have a reasonable fraction of the elements in the universal set, then the
time for union, intersection, and difference is proportional to the sizes of the sets
involved. That is better than the O(nlogn) time for sorted lists, and much better
than the O(n?) time for unsorted lists. However, the drawback of characteristic



360 THE SET DATA MODEL

vectors is that, should the sets be much smaller than { ¢ universal set, the running
time of these operations can be far greater than the si s of the sets involved.

EXERCISES

7.5.1: Give the characteristic vectors of the followings s of cards. For convenience,
you can use 0¥ to represent k consecutive 0’s and 1* f ¢ k consecutive 1’s.

a) The cards found in a pinochle deck
b) The red cards
c) The one-eyed jacks and the suicide king

7.5.2: Using bitwise operators, write C programs to c¢ npute the (a) union and (b)
difference of two sets of cards, the first represented by words al and a2, the second
represented by b1 and 2.

7.5.3*%: Suppose we wanted to represent a bag (mu tiset) whose elements were
contained in some small universal set /. How could we zeneralize the characteristic-
vector method of representation to bags? Show hov to perform (a) insert, (b)
delete, and (c) lookup on bags represented this way Note that bag lookup(z)
returns the number of times z appears in the bag.

Hashing

The characteristic-vector representation of dictionaries, when it can be used, allows
us to access directly the place where an element is repr sented, that is, to access the
position in the array that is indexed by the value of the element. However, as we
mentioned, we cannot allow our universal set to be too arge, or the array will be too
long to fit in the available memory of the computer. .iven if it did fit, the time to
initialize the array would be prohibitive. For example suppose we wanted to store
a real dictionary of words in the English language, and also suppose we were willing
to ignore words longer than 10 letters. We would sti] have 26'° 4 26° 4 ... 4+ 26
possible words, or over 10!* words. Each of these poisible words would require a
position in the array.

At any time, however, there are only about a million words in the English
language, so that only one out of 100 million of the array entries would be TRUE.
Perhaps we could collapse the array, so that many possible words could share an
entry. For example, suppose we assigned the first 100 million possible words to the
first cell of the array, the next 100 million possibilities to the second cell, and so on,
up to the millionth cell. There are two problems with this arrangement:

1. It is no longer enough just to put TRUE in a cell, because we won’t know which
of the 100 million possible words are actually present in the dictionary, or if in
fact more than one word in any one group is present.
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2. If, for example, the first 100 million possible words include all the short words,
then we would expect many more than the average number of words from the
dictionary to fall into this group of possible words. Note that our arrangement
has as many cells of the array as there are words in the dictionary, and so we
expect the average cell to represent one word; but surely there are in English
many thousands of words in the first group, which would include all the words
of up to five letters, and some of the six-letter words.

To solve problem (1), we need to list, in each cell of the array, all the words
in its group that are present in the dictionary. That is, the array cell becomes
the header of a linked list with these words. To solve problem (2), we need to
be careful how we assign potential words to groups. We must distribute elements
among groups so that it is unlikely (although never impossible) that there will be
many elements in a single group. Note that if there are a large number of elements
in a group, and we represent groups by linked lists, then lookup will be very slow
for members of a large group.

The Hash Table Data Structure

We have now evolved from the characteristic vector — a valuable data structure that
is of limited use — to a structure called a hash table that is useful for any dictionary
whatsoever, and for many other purposes as well.2 The speed of the hash table for
the dictionary operations can be made O(1) on the average, independent of the size
of the dictionary, and independent of the size of the universal set from which the
dictionary is drawn. A picture of a hash table appears in Fig. 7.10. However, we
show the list for only one group, that to which z belongs.

headers
0
1
z ——= h(z) — a; ay| —+—» —»ia,| e
B-1

Fig. 7.10. A hash table.

2 Although in situations where a characteristic vector is feasible, we would normally prefer
that representation over any other.
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There is a hash function that takes an element z as argument and produces an
integer value between 0 and B — 1, where B is the number of buckets in the hash
table. The value h(z) is the bucket in which we place the element z. Thus, the
buckets correspond to the “groups” of words that we talked about in the preceding
informal discussion, and the hash function is used to decide to which bucket a given
element belongs.

The appropriate hash function to use depends on the type of the elements. For
example,

1. If elements are integers, we could let h(z) be z % B, that is, the remainder
when z is divided by B. That number is always in the required range, 0 to
B-1.

2. If the elements are character strings, we can take an element z = aaz - - -ay,
where each a; is a character, and compute y = a; + a3 + - - - + ax, since a char
in C is a small integer. We then have an integer y that is the sum of the integer
equivalents of all the characters in the string z. If we divide y by B and take
the remainder, we have a bucket number in the range 0 to B — 1.

What is important is that the hash function “hashes” the element. That is, A wildly
mixes up the buckets into which elements fall, so they tend to fall in approximately
equal numbers into all the buckets. This equitable distribution must occur even for
a fairly regular pattern of elements, such as consecutive integers or character strings
that differ in only one position.

Each bucket consists of a linked list wherein are stored all the elements of the
set that are sent by the hash function to that bucket. To find an element z, we
compute h(z), which gives us a bucket number. If z is anywhere, it is in that bucket,
so that we may search for z by running down the list for that bucket. In effect, the
hash table allows us to use the (slow) list representation for sets, but, by dividing
the set into B buckets, allows us to search lists that are only 1/B as long as the size
of the set, on the average. If we make B roughly as large as the set, then buckets
will average only one element, and we can find elements in an average of O(1) time,
just as for the characteristic-vector representation of sets.

Example 7.15. Suppose we wish to store a set of character strings of up to
32 characters, where each string is terminated by the null character. We shall use
the hash function outlined in (2) above, with B = 5, that is, a five-bucket hash
table. To compute the hash value of each element, we sum the integer values of the
characters in each string, up to but not including the null character. The following
declarations give us the desired types.

(1) #define B &

(2) typedef char ETYPE[32];

(3) DefCell(ETYPE, CELL, LIST);
(4) typedef LIST HASHTABLE[B];

Line (1) defines the constant B to be the number of buckets, 5. Line (2) defines
the type ETYPE to be arrays of 32 characters. Line (3) is our usual definition of cells
and linked lists, but here the element type is ETYPE, that is, 32-character arrays.
Line (4) defines a hashtable to be an array of B lists. If we then declare
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HASHTABLE headers;

the array headers is of the appropriate type to contain the bucket headers for our
hash table.

int h(ETYPE x)

{
int i, sum;
sum = 0;
tor (i =07-x[i) t=-2\0"; i++)
sum += x[i];
return sum % B;
}

Fig. 7.11. A hash function that sums the integer equivalents of characters,
assuming ETYPE is an array of characters.

Now, we must define the hash function h. The code for this function is shown
in Fig. 7.11. The integer equivalent of each of the characters of the string z is
summed in the variable sum. The last step computes and returns as the value of
the hash function h the remainder of this sum when it is divided by the number of
buckets B.

Let us consider some examples of words and the buckets into which the function
h puts them. We shall enter into the hash table the seven words®

anyone lived in a pretty how town

In order to compute h(anyone), we need to understand the integer values of char-
acters. In the usual ASCII code for characters, the lower-case letters have integer
values starting at 97 for a (that’s 1100001 in binary), 98 for b, and so on, up to
122 for z. The upper-case letters correspond to integers that are 32 less than their
lower-case equivalents — that is, from 65 for A (1000001 in binary) to 90 for Z.
Thus, the integer equivalents for the characters in anyone are 97, 110, 121, 111,
110, 101. The sum of these is 650. When we divide by B, which is 5, we get the
remainder 0. Thus, anyone belongs in bucket 0. The seven words of our example
are assigned, by the hash function of Fig. 7.11, to the buckets indicated in Fig. 7.12.
We see that three of the seven words have been assigned to one bucket, number
0. Two words are assigned to bucket 2, and one each to buckets 1 and 4. That is
somewhat less even a distribution than would be typical, but with a small number of
words and buckets, we should expect anomalies. As the number of words becomes
large, they will tend to distribute themselves among the five buckets approximately

evenly. The hash table, after insertion of these seven words, is shown in Fig. 7.13. 4 _

Implementing the Dictionary Operations by a Hash Table

To insert, delete, or look up an element z in a dictionary that is represented by a
hash table, there is a simple three-step process:

3 The words are from a poem of the same name by e. e. cummings. The poem doesn’t get any
easier to decode. The next line is “with up so floating many bells down.”
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WORD Sum BUCKET
anyone 650 0
lived 532 2
in 215 0
a 97 v
pretty 680 0
how 334 4
town 456 1

Fig. 7.12. Words, their values, and their buckets.

headers

0 ——-{anyonel -—}—-—( in | Wetty] o}
1| —p{tewm]e]
2 ——,ﬁived I —-i—-—{ a ] . I

i [ o 7]

Fig. 7.13. Hash table holding seven elements

Compute the proper bucket, which is h(z).

2. Use the array of header pointers to find the list of elements for the bucket
numbered h(z).

3. Perform the operation on this list, just as if the list represented the entire set.

The algorithms in Section 6.4 can be used for the list operations after suitable mod-
ifications for the fact that elements here are character strings while in Section 6.4
elements were integers. As an example, we show the complete function for inserting
an element into a hash table in Fig. 7.14. You can develop similar functions for
delete and lookup as an exercise.

To understand Fig. 7.14, it helps to notice that the function bucketInsert is
similar to the function insert from Fig. 6.5. At line (1) we test to see whether we
have reached the end of the list. If we have, then we create a new cell at line (2).
However, at line (3), instead of storing an integer into the newly created cell, we
use the function strcpy from the standard header file string.h to copy the string
z into the element field of the cell.

Also, at line (5), to test if z has not yet been found on the list, we use function
strcmp from string.h. That function returns 0 if and only if z and the element in
the current cell are equal. Thus, we continue down the list as long as the value of
the comparison is nonzero, that is, as long as the current element is not z.

The function insert here consists of a single line, in which we call buck-
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#include <string.h>

void bucketInsert(ETYPE x, LIST *pL)

{
(1) if ((*pL) == NULL) {
(2) (*pL) = (LIST) malloc(sizeof (struct CELL));
(3) strcpy((*pL)->element, x);
(4) (*pL)->next = NULL;

}
(5) else if (strcmp((*pL)->element, x)) /* x and element
are different */

(6) bucketInsert(x, &((*pL)->next));

}

void insert(ETYPE x, HASHTABLE H)

 §
(7) bucketInsert(x, &(H[h(x)]));

}

Fig. 7.14. Inserting an element into a hash table.

etInsert after first finding the element of the array that is the header for the
appropriate bucket, h(z). We assume that the hash function A is defined elsewhere.
Also recall that the type HASHTABLE means that H is an array of pointers to cells
(i.e., an array of lists).

Example 7.16. Suppose we wish to delete the element in from the hash table
of Fig. 7.13, assuming the hash function described in Example 7.15. The delete
operation is carried out essentially like the function insert of Fig. 7.14. We compute
h(in), which is 0. We thus go to the header for bucket number 0. The second cell
on the list for this bucket holds in, and we delete that cell. The detailed C program
is left as an exercise. 4

Running Time of Hash Table Operations

As we can see by examining Fig. 7.14, the time taken by the function insert to find
the header of the appropriate bucket is O(1), assuming that the time to compute
h(z) is a constant independent of the number of elements stored in the hash table.*
To this constant we must add on the average an additional O(n/B) time, if n is
the number of elements in the hash table and B is the number of buckets. The
reason is that bucketInsert will take time proportional to the length of the list, and
that length, on the average, must be the total number of elements divided by the
number of buckets, or n/B.

An interesting consequence is that if we make B approximately equal to the
number of elements in the set — that is, n and B are close — then n/B is about 1

4 That would be the case for the hash function of Fig. 7.11, or most other hash functions
encountered in practice. The time for computing the bucket number may depend on the type
of the element — longer strings may require the summation of more integers, for example —
but the time is not dependent on the number of elements stored.
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and the dictionary operations on a hash table take O(1) time each, on the average,
just as when we use a characteristic-vector representation. If we try to do better
by making B much larger than n, so that most buckets are empty, it still takes
us O(1) time to find the bucket header, and so the running time does not improve
significantly once B becomes larger than n.

We must also consider that in some circumstances it may not be possible to
keep B close to n all the time. If the set is growing rapidly, then n increases while
B remains fixed, so that ultimately n/B becomes large. It is possible to restructure
the hash table by picking a larger value for B and then inserting each of the elements
into the new table. It takes O(n) time to do so, but that time is no greater than
the O(n) time that must be spent inserting the n elements into the hash table in
the first place. (Note that n insertions, at O(1) average time per insertion, require
O(n) time in all.)

EXERCISES

7.6.1: Continue filling the hash table of Fig. 7.13 with the words with up so
floating many bells down.

7.6.2*: Comment on how effective the following hash functions would be at dividing
typical sets of English words into buckets of roughly equal size:

a) Use B = 10, and let h(z) be the remainder when the length of the word z is
divided by 10.

b) Use B = 128, and let h(z) be the integer value of the last character of z.

¢} Use B = 10. Take the sum of the values of the characters in z. Square the
result, and take the remainder when divided by 10.

7.6.3: Write C programs for performing (a) delete and (b) lookup in a hash table,
using the same assumptions as for the code in Fig. 7.14.

Relations and Functions

While we have generally assumed that elements of sets are atomic, in practice it is
often useful to give elements some structure. For example, in the previous section we
talked about elements that were character strings of length 32. Another important
structure for elements is fixed-length lists, which are similar to C structures. Lists
used as set elements will be called tuples, and each list element is called a component
of the tuple.

The number of components a tuple has is called its arity. For example, (a,b)
is a tuple of arity 2; its first component is a and its second component is b. A tuple
of arity k is also called a k-tuple.

A set of elements, each of which is a tuple of the same arity, — say, k — is
called a relation. The arity of this relation is k. A tuple or relation of arity 1 is
unary. If the arity is 2, it is binary, and in general, if the arity is k, then the tuple
or relation is k-ary.
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Example 7.17. The relation R = {(1,2), (1,3), (2,2)} is a relation of arity
2, or a binary relation. Its members are (1,2), (1,3), and (2, 2), each of which is a
tuple of arity 2. +

In this section, we shall consider primarily binary relations. There are also
many important applications of nonbinary relations, especially in representing and
manipulating tabular data (as in relational databases). We shall discuss this topic
extensively in Chapter 8.

Cartesian Products

Before studying binary relations formally, we need to define another operator on
sets. Let A and B be two sets. Then the product of A and B, denoted A x B, is
defined as the set of pairs in which the first component is chosen from A and the
second component from B. That is,

Ax B={(a,b)|a € Aand b € B}

The product is sometimes called the Cartesian product, after the French mathe-
matician René Descartes.

Example 7.18. Recall that Z is the conventional symbol for the set of all
integers. Thus, Z x Z stands for the set of pairs of integers.

As another example, if A is the two-element set {1,2} and B is the three-
element set {a,b,c}, then A x B is the six-element set

{(l, a)) (Lb): (13 c)’ (213}& (2| b)! (2,6)}

Note that the product of sets is aptly named, because if A and B are finite sets,
then the number of elements in A x B is the product of the number of elements in
A and the number of elements in B. 4

Cartesian Product of More Than Two Sets

Unlike the arithmetic product, the Cartesian product does not have the common
properties of commutativity or associativity. It is easy to find examples where

AxB#BxA

disproving commutativity. The associative law does not even make sense, because
(Ax B)xC would have as members pairs like ((a, b), ), while members of Ax(BxC)
would be pairs of the form (a, (b, ¢c)).

Since we shall need on several occasions to talk about sets of tuples with more
than two components, we need to extend the product notation to a k-way product.
We let Ay x Ay x --- x Ay stand for the product of sets Ay, A, ..., Ax, that is, the
set of k-tuples (a;,az,...,ax) such that @y € Aj,a; € Aj,...,and ax € Ag.




Domain, range

368 THE SET DATA MODEL

Example 7.19. Z x Z x Z represents the set of triples of integers (i, j, k) —
it contains, for example, the triple (1,2,3). This three-way product should not be
confused with (Z x Z) x Z, which represents pairs like ((1,2),3), orZ x (Z x Z),
which represents pairs like (1,(2,3)).

On the other hand, note that all three product expressions can be represented
by structures consisting of three integer fields. The distinction is in how one inter-
prets the structures of this type. Thus, we often feel free to “confuse” parenthesized
and unparenthesized product expressions. Similarly, the three C type declarations

struct {int f£1; int £2; int £3;);
struct {struct {int f1; int £2;}; int £3;};
struct {int £1; struct {int £2; int £3;};};

would all be stored in a similar way — only the notation for accessing fields would
differ. ¢

Binary Relations

A binary relation R is a set of pairs that is a subset of the product of two sets A
and B. If a relation R is a subset of A x B, we say that R is from A to B. We call
A the domain and B the range of the relation. If B is the same as A, we say that
R is a relation on A or “on the domain” A.

Example 7.20. The arithmetic relation < on integers is a subset of Z x Z,
consisting of those pairs (a,b) such that a is less than b. Thus, the symbol < may
be regarded as the name of the set

{(a,b) | (a,b) € Z x Z, and a is less than b}

We then use a < b as a shorthand for “(a,b) € <,” or “(a,b) is a member of the
relation <.” The other arithmetic relations on integers, such as > or <, can be
defined similarly, as can the arithmetic comparisons on real numbers.

For another example, consider the relation R from Example 7.17. Its domain
and range are uncertain. We know that 1 and 2 must be in the domain, because
these integers appear as first components of tuples in R. Similarly, we know that
the range of R must include 2 and 3. However, we could regard R as a relation from
{1,2} to {2,3}, or as a relation from Z to Z, as two examples among an infinity of
choices. 4

Infix Notation for Relations

As we suggested in Example 7.20, it is common to use an infix notation for binary
relations, so that a relation like <, which is really a set of pairs, can be written
between the components of pairs in the relation. That is why we commonly find
expressions like 1 < 2 and 4 > 4, rather than the more pedantic “(1,2) € <” or
“(4,4) € 27

Example 7.21. The same notation can be used for arbitrary binary relations.
For instance, the relation R from Example 7.17 can be written as the three “facts”
1R2, 1R3, and 2R2. 4+
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Declared and Current Domains and Ranges

The second part of Example 7.20 underscores the point that we cannot tell the
domain or range of a relation just by looking at it. Surely the set of elements
appearing in first components must be a subset of the domain, and the set of
elements that occur in second components must be a subset of the range. However,
there could be other elements in the domain or range.

The difference is not important when a relation does not change. However,
we shall see in Sections 7.8 and 7.9, and also in Chapter 8, that relations whose
values change are very important. For example, we might speak of a relation whose
domain is the students in a class, and whose range is integers, representing total
scores on homework. Before the class starts, there are no pairs in this relation.
After the first assignment is graded, there is one pair for each student. As time
goes on, students drop the class or are added to the class, and scores increase.

We could define the domain of this relation to be the set of all students reg-
istered at the university and the range to be the set of integers. Surely, at any
time, the value of the relation is a subset of the Cartesian product of these two sets.
On the other hand, at any time, the relation has a current domain and a current
range, which are the sets of elements appearing in first and second components,
respectively, of the pairs in the relation. When we need to make a distinction, we
can call the domain and range the declared domain and range. The current domain
and range will always be a subset of the declared domain and range, respectively.

Graphs for Binary Relations

We can represent a relation R whose domain is A and whose range is B by a graph.
We draw a node for each element that is in A and/or B. If aRb, then we draw an

arrow (“arc”) from a to b. (General graphs are discussed in more detail in Chapter
9.)

Example 7.22. The graph for the relation R from Example 7.17 is shown in
Fig. 7.15. It has nodes for the elements 1, 2, and 3. Since 1R2, there is an arc from
node 1 to node 2. Since 1R3, there is an arc from 1 to 3, and since 2R2, there is an

arc from node 2 to itself. There are no other arcs, because there are no other pairs
in R. +

Fig. 7.15. Graph for the relation {(1,2), (1,3), (2,2)}.
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Functions

Suppose a relation R, from domain A to range B, has the property that for every
member @ of A there is at most one element b in B such that aRb. Then R is said
to be a partial function from domain A to range B.

If for every member a of A there is exactly one element b in B such that aRb,
then R is said to be a total function from A to B. The difference between a partial
function and a total function is that a partial function can be undefined on some
elements of its domain; for example, for some a in A, there may be no b in B such
that aRb. We shall use the term “function” to refer to the more general notion of
a partial function, but whenever the distinction between a partial function and a
total function is important, we shall use the word “partial.”

There a common notation used to describe functions. We often write R(a) = b
if b is the unique element such that aRb.

Example 7.23. Let S be the total function from Z to Z given by
{(a,b) | b = a?}

that is, the set of pairs of integers whose second component is the square of the
first component. Then S has such members as (3,9), (—4,16), and (0,0). We can
express the fact that S is the squaring function by writing S(3) = 9, S(—4) = 16,
and S(0) =0. ¢

Notice that the set-theoretic notion of a function is not much different from the
notion of a function that we encountered in C. That is, suppose s is a C function
declared as

int s(int a)
{
return a*a;

}

that takes an integer and returns its square. We usually think of s(a) as being the
same function as S(a), although the former is a way to compute squares and the
latter only defines the operation of squaring abstractly. Also note that in practice
s(a) is always a partial function, since there are many values of a for which s(a)
will not return an integer because of the finiteness of computer arithmetic.

C has functions that take more than one parameter. A C function £ that takes
two integer parameters a and b, returning an integer, is a function from Z x Z to
Z. Similarly, if the two parameters are of types that make them belong to sets A
and B, respectively, and £ returns a member of type C, then £ is a function from
Ax B to C. More generally, if £ takes k parameters — say, from sets A,, A, .. ., Ak,
respectively — and returns a member of set B, then we say that f is a function
from A; x A3 x --- X Ax to B.

For example, we can regard the function lookup(x,L) from Section 6.4 as a
function from Z x L to {TRUE, FALSE}. Here, L is the set of linked lists of integers.

Formally, a function from domain A; x - - x A, to range B is a set of pairs of
the form ((ay,...,ax), b), where each a; is in set A; and b is in B. Notice that the
first element of the pair is itself a k-tuple. For example, the function lookup(x,L)
discussed above can be thought of as the set of pairs ((z,L),t), where z is an




Surjection

Injection

SEC. 7.7 RELATIONS AND FUNCTIONS 371

The Many Notations for Functions

A fuinction F from, say, A x B to C is technically a subset of (A x B) x C. A typical
pair in the function F would thus have the form ((a,b),c), where a, b, and ¢ are
mennbers of A, B, and C, respectively. Using the special notation for functions, we
can write F(a,b) = c.

We can also view F as a relation from A x B to C, since every function is a
relat;ion. Using the infix notation for relations, the fact that ((a,b),¢) is in F could
also be written (a, b} Fc.

When we extend the Cartesian product to more than two sets, we may wish to
remove parentheses from product expressions. Thus, we might identify (A x B) xC
with, the technically inequivalent expression A x B x C. In that case, a typical
mermber of F could be written (a,b,c). If we stored F as a set of such triples,
we would have to remember that the first two components together make up the
domiain element and the third component is the range element.

integger, L is a list of integers, and ¢ is either TRUE or FALSE, depending on whether
r 15 or is not on the list L. We can think of a function, whether written in C or
as formally defined in set theory, as a box that takes a value from the domain set
and produces a value from the range set, as suggested in Fig. 7.16 for the function
look(up,

(z,L) ——» lookup |——

Fig. 7.16. A function associates elements from the domain
with unique elements from the range.

One-to-One Correspondences
Let JF be a partial function from domain A to range B with the following properties:

1. For every element a in A, there is an element b in B such that F(a) = b.
2. For every b in B, there is some a in A such that F(a) = b.

3.  Fornobin B are there two elements a; and a, in A such that F(a,) and F(a3)
are both b.

Them F is said to be a one-to-one correspondence from A to B. The term bijection
is also used for a one-to-one correspondence.

Property (1) says that F is a total function from A to B. Property (2) is the
condlition of being onto: F is a total function from A onto B. Some mathematicians
use ;he term surjection for a total function that is onto.

Properties (2) and (3) together say that F behaves like a total function from
B tor A. A total function with property (3) is sometimes called an injection.

A one-to-one correspondence is basically a total function in both directions, but
it is important to observe that whether F is a one-to-one correspondence depends
not only on the pairs in F, but on the declared domain and range. For example, we
coulid take any one-to-one correspondence from A to B and change the domain by



372 THE SET DATA MODEL

adding to A some new element ¢ not mentioned in F. F would not be a one-to-one
correspondence from A U {e} to B.

Example 7.24. The squaring function S from Z to Z of Example 7.23 is not
a one-to-one correspondence. It does satisfy property (1), since for every integer i
there is some integer, namely, i2, such that S(i) = i2. However, it fails to satisfy
(2), since there are some b’s in Z — in particular all the negative integers — that
are not S(a) for any a. S also fails to satisfy (3), since there are many examples
of two distinct a’s for which S(a) equals the same b. For instance, S(3) = 9 and
S(-3)=9.

For an example of a one-to-one correspondence, consider the total function P
from Z to Z defined by P(a) = a+1. That is, P adds 1 to any integer. For instance,
P(5) = 6, and P(—5) = —4. An alternative way to look at the situation is that P
consists of the tuples

{..., (-2,-1), (-1,0), (0,1), (1,2),...}

or that it has the graph of Fig. 7.17.

We claim that P is a one-to-one correspondence from integers to integers. First,
it is a partial function, since when we add 1 to an integer a we get the unique integer
a + 1. It satisfies property (1), since for every integer a, there is some integer a+1,
which is P(a). Property (2) is also satisfied, since for every integer b there is some
integer, namely, b — 1, such that P(b — 1) = b. Finally, property (3) is satisfied,
because for an integer b there cannot be two distinct integers such that when you
add 1 to either, the result is b. 4

Fig. 7.17. Graph for the relation that is the function P(a) =a + 1.

A one-to-one correspondence from A to B is a way of establishing a unique
association between the elements of A and B. For example, if we clap our hands
together, the left and right thumbs touch, the left and right index fingers touch, and
so on. We can think of this association between the set of fingers on the left hand
and the fingers on the right hand as a one-to-one correspondence F, defined by
F(“left thumb”) = “right thumb”, F(“left index finger”) = “right index finger”,
and so on. We could similarly think of the association as the inverse function, from
the right hand to the left. In general, a one-to-one correspondence from A to B
can be inverted by switching the order of components in its pairs, to become a
one-to-one correspondence from B to A.

A consequence of the existence of this one-to-one correspondence between hands
is that the number of fingers on each hand is the same. That seems a natural and
intuitive notion; two sets have the same number of elements exactly when there is
a one-to-one correspondence from one set to the other. However, we shall see in
Section 7.11 that when sets are infinite, there are some surprising conclusions we
are forced to draw from this definition of “same number of elements.”
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EXERCISES

7.7.1: Give an example of sets A and B for which A x B is not the same as B x A.
7.7.2: Let R be the relation defined by aRb, bRc, cRd, aRe, and bRd.

Draw the graph of R.

Is R a function?

Name two possible domains for R; name two possible ranges.

What is the smallest set S such that R is a relation on S (i.e., the domain and
the range can both be S)?

7.7.3: Let T be a tree and let S be the set of nodes of T. Let R be the “child-
parent” relation; that is, cRp if and only if ¢ is a child of p. Answer the following,
and justify your answers:

2oL

a) Is R a partial function, no matter what tree 7" is?

b) Is R a total function from S to S no matter what 7 is?

c) Can R ever be a one-to-one correspondence (i.e., for some tree T)?
d) What does the graph for R look like?

7.7.4: Let R be the relation on the set of integers {1,2,...,10} defined by aRb if a
and b are distinct and have a common divisor other than 1. For example, 2R4 and
6 RY, but not 2R3.

a) Draw the graph for R.
b) Is R a function? Why or why not?

7.7.5*: Although we observed that S = (A x B) x C and T' = A x (B x () are
not the same set, we can show that they are “essentially the same” by exhibiting a
natural one-to-one correspondence between them. For each ((a,b),c) in S, let

F(((a,8),¢)) = (a,(b,¢)
Show that F' is a one-to-one correspondence from S to T.

7.7.6: What do the three statements F(10) = 20, 10F20, and (10,20) € F have
in common?

7.7.7*: The inverse of a relation R is the set of pairs (b, a) such that (a,b) is in R.

a) Explain how to get the graph of the inverse of R from the graph for R.
b) If R is a total function, is the inverse of R necessarily a function? What if R
is a one-to-one correspondence?

7.7.8: Show that a relation is a one-to-one correspondence if and only if it is a total
function and its inverse is also a total function.

Implementing Functions as Data

In a programming language, functions are usually implemented by code, but when
their domain is small, they can be implemented using techniques quite similar to
the ones we used for sets. In this section we shall discuss the use of linked lists,
characteristic vectors, and hash tables to implement finite functions.
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Functions as Programs and Functions as Data

While we drew a strong analogy in Section 7.7 between the abstract notion of

Operations on Functions

The operations we most commonly perform on functions are similar to those for
dictionaries. Suppose F is a function from domain set A to range set B. Then we
may

1. Insert a new pair (a,b), such that F(a) = b. The only nuance is that, since
F must be a function, should there already be a pair (a,c) for any c, this pair
must be replaced by (a,b).

2. Delete the value associated with F(a). Here, we need to give only the domain
value a. If there is any b such that F(a) = b, the pair (a,b) is removed from
the set. If there is no such pair, then no change is made.

3.  Lookup the value associated with F(a); that is, given domain value a, we return
the value b such that F(a) = b. If there is no such pair (a,b) in the set, then
we return some special value warning that F(a) is undefined.

Example 7.25. Suppose F consists of the pairs {(3,9), (—4,16), (0,0)}; that
is, F(3) = 9; F(—4) = 16, and F(0) = 0. Then lookup(3) returns 9, and lookup(2)
returns a value indicating that no value is defined for F(2). If F is the “squaring”
function, the value —1 might be used to indicate a missing value, since —1 is not
the true square of any integer.

The operation delete(3) removes the pair (3,9), while delete(2) has no effect.
If we execute insert(5,25), the pair (5,25) is added to the set F, or equivalently,
we now have F(5) = 25. If we execute insert(3, 10), the old pair (3,9) is removed
from F, and the new pair (3, 10) is added to F, so that now F(3) = 10. 4
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Linked-List Representation of Functions

A function, being a set of pairs, can be stored in a linked list just like any other set.
It 1s useful to define cells with three fields, one for the domain value, one for the
range value, and one for a next-cell pointer. For example, we could define cells as

typedef struct CELL *LIST;
struct CELL {

DTYPE domain;

RTYPE range;

LIST next;
Y

where DTYPE is the type for domain elements and RTYPE is the type for range
elements. Then a function is represented by a pointer to (the first cell of) a linked
list.

The function in Fig. 7.18 performs the operation insert(a, b, L), assuming that
DTYPE and RTYPE are both arrays of 32 characters. We search for a cell containing
a in the domain field. If found, we set its range field to b. If we reach the end of
the list, we create a new cell and store (a,b) therein. Otherwise, we test whether
the cell has domain element a. If so, we change the range value to b, and we are
done. If the domain has a value other than a, then we recursively insert into the
tail of the list.

typedef char DTYPE[32], RTYPE([32];

void insert(DTYPE a, RTYPE b, LIST #pL)
{
if ((*pL) == NULL) {/* at end of list #/
(»pL) = (LIST) malloc(sizeof(struct CELL));
strepy((*pL)->domain, a);
strcpy((#pL)->range, b);
(*pL)->next = NULL;

else if (!'strcmp(a, (*pL)->domain)) /* a = domain element;
change F(a) */
strcpy((*pL)->range, b);
else /+ domain element is not a */
insert(a, b, &((*pL)->next));
};

Fig. 7.18. Inserting a new fact into a function represented as a linked list.
If the function F has n pairs, then insert takes O(n) time on the average.

Likewise, the analogous delete and lookup functions for a function represented as a
linked list require O(n) time on the average.
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Vector Representation of Functions

Suppose the declared domain is the integers 0 through DNUM — 1, or it can be
regarded as such, perhaps by being an enumeration type. Then we can use a
generalization of a characteristic vector to represent functions. Define a type FUNCT
for the characteristic vector as

typedef RTYPE FUNCT[DNUM];

Here it is essential that either the function be total or that RTYPE contain a value
that we can interpret as “no value.”

Example 7.26. Suppose we want to store information about apples, like the
harvest information of Fig. 7.9, but we now want to give the actual month of harvest,
rather than the binary choice early/late. We can associate an integer constant with
each element in the domain and range by defining the enumeration types

enum APPLES {Delicious, GrannySmith, Jonathan, McIntosh,
Gravenstein, Pippin};

enum MONTHS {Unknown, Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, Dec};

This declaration associates 0 with the identifier Delicious, 1 with GrannySmith,
and so on. It also associates 0 with Unknown, 1 with Jan, and so on. The identifier
Unknown indicates that the harvest month is not known. We can now declare an
array

int Harvest[6];

with the intention that the array Harvest represents the set of pairs in Fig. 7.19.
Then the array Harvest appears as in Fig. 7.20, where, for example, the entry
Harvest[Delicious] = Oct means Harvest{0] = 10. ¢

APPLE HARVEST MONTH
Delicious Oct
Granny Smith Aug
Jonathan Sep
Mclntosh Oct
Gravenstein Sep
Pippin Nov

Fig. 7.19. Harvest months of apples.

Hash-Table Representation of Functions

We can store the pairs belonging to a function in a hash table. The crucial point
is that we apply the hash function only to the domain element to determine the
bucket of the pair. The cells in the linked lists forming the buckets have one field
for the domain element, another for the corresponding range element, and a third
to link one cell to the next on the list. An example should make the technique clear.

E
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Delicious Oct

GrannySmith Aug

Jonathan Sep
McIntosh Oct
Gravenstein Sep

Pippin Nov

Fig. 7.20. The array Harvest.

Example 7.27. Let us use the same data about apples that appeared in Exam-
ple 7.26, except now we shall use the actual names rather than integers to represent
the domain. To represent the function Harvest, we shall use a hash table with
five buckets. We shall define APPLES to be 32-character arrays, while MONTHS is an
enumeration as in Example 7.26. The buckets are linked lists with field variety
for a domain element of type APPLES, field harvested for a range element of type
int (a month), and a link field next to the next element of the list.

We shall use a hash function A similar to that shown in Fig. 7.11 of Section
7.6. Of course, h is applied to domain elements only — that is, to character strings
of length 32, consisting of the name of an apple variety.

Now, we can define the type HASHTABLE as an array of B LIST’s. B is the
number of buckets, which we have taken to be 5. All these declarations appear in
the beginning of Fig. 7.22. We may then declare a hash table Harvest to represent
the desired function.

Harvest
5 GrannySmith| McIntosh
= s ®
Aug Oct
1 ®
2 L]
Gravenstein
3 =
Sep
4 Delicious Jonathan Pippin
o = e >
Oct Sep Nov

Fig. 7.21. Apples and their harvest months stored in a hash table.

After inserting the six apple varieties listed in Fig. 7.19, the arrangement of cells
within buckets is shown in Fig. 7.21. For example, the word Delicious yields the
sum 929 if we add up the integer values of the nine characters. Since the remainder
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when 929 is divided by 5 is 4, the Delicious apple belongs in bucket 4. The cell
for Delicious has that string in the variety field, the month Oct in the harvested
field, and a pointer to the next cell of the bucket. 4

#include <string.h>
#define B 6

typedef char APPLES([32];
enum MONTHS {Unknown, Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, Dec};
typedef struct CELL *LIST;
struct CELL {
APPLES variety;
int harvested;
LIST next;
};
typedef LIST HASHTABLE(B];

int lookupBucket (APPLES a, LIST L)

{
if (L == NULL)
return Unknown;
if ('strcmp(a, L->variety)) /* found */
return L->harvested;
else /* a not found; examine tail */
return lookupBucket(a, L->next);
}
int lookup(APPLES a, HASHTABLE H)
{
return lookupBucket(a, H[h(a)]);
}

Fig. 7.22. Lookup for a function represented by a hash table.

Operations on Functions Represented by a Hash Table

Each of the operations insert, delete, and lookup start with a domain value that we
hash to find a bucket. To insert the pair (a,b), we find the bucket h{a) and search
its list. The action is then the same as the function to insert a function pair into a
list, given in Fig. 7.18.

To execute delete(a), we find bucket h(a), search for a cell with domain value a,
and delete that cell from the list, when and if it is found. The lookup(a) operation
is executed by again hashing a and searching the bucket h(a) for a cell with domain
value a. If such a cell is found, the associated range value is returned.

For example, the function lookup(a, H) is shown in Fig. 7.22. The function
lookupBucket(a, L) runs down the list L for a bucket and returns the value

harvested(a)




e

SEC. 7.8 IMPLEMENTING FUNCTIONS AS DATA 379

Vectors versus Hash Tables

There is a fundamental difference in the way we viewed the information about apples
in Examples 7.26 and 7.27. In the characteristic-vector approach, apple varieties
were a fixed set, which became an enumerated type. There is no way, while a C
program is running, to change the set of apple names, and it is meaningless to
perform a lookup with a name that is not part of our enumerated set.

On the other hand, when we set the same function up as a hash table, we treated
the apple names as character strings, rather than members of an enumerated type.
As a consequence, it is possible to modify the set of names while the program is
Tunning — say, in response to some input data about new apple varieties. It makes
sense for a lookup to be performed for a variety not in the hash table, and we had
to make provisions, by the addition of a “month” Unknown, for the possibility that
we would look up a variety that was not mentioned in our table. Thus, the hash
table offers increased flexibility over the characteristic vector, at some cost in speed.

that is, the month in which apple variety a is harvested. If the month is undefined,
it returns the value Unknown.

Efficiency of Operations on Functions

The times required for the operations on functions for the three representations
we have discussed here are the same as for the operations of the same names on
dictionaries. That is, if the function consists of n pairs, then the linked-list represen-
tation requires O(n) time per operation on the average. The characteristic-vector
approach requires only O(1) time per operation, but, as for dictionaries, it can be
used only if the domain type is of limited size. The hash table with B buckets offers
average time per operation of O(n/B). If it is possible to make B close to n, then
O(1) time per operation, on the average, can be achieved.

EXERCISES

7.8.1: Write functions that perform (a) delete and (b) lookup on functions repre-
sented by linked lists, analogous to the insert function of Fig. 7.18.

7.8.2: Write functions that perform (a) insert, (b) delete, and (c) lookup on a
function represented by a vector, that is, an array of RTYPE’s indexed by integers
representing DTYPE’s.

7.8.3: Write functions that perform (a) insert and (b) delete on functions repre-
sented by hash tables, analogous to the lookup function of Fig. 7.22.

7.8.4: A binary search tree can also be used to represent functions as data. Define
appropriate data structures for a binary search tree to hold the apple information in
Fig. 7.19, and implement (a) insert, (b) delete, and (c) lookup using these structures.

7.8.5: Design an information retrieval system to keep track of information about
at bats and hits for baseball players. Your system should accept triples of the form

Ruth 6 2
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to indicate that Ruth in § at bats got 2 hits. The entry for Ruth should be updated
appropriately. You should also be able to query the number of at bats and hits
for any player. Implement your system so that the functions insert and lookup will
work on any data structure as long as they use the proper subroutines and types.

Implementing Binary Relations

The implementation of binary relations differs in some details from the implemen-
tation of functions. Recall that both binary relations and functions are sets of pairs,
but a function has for each domain element a at most one pair of the form (a, b)
for any b. In contrast, a binary relation can have any number of range elements
associated with a given domain element a.

In this section, we shall first consider the meaning of insertion, deletion, and
lookup for binary relations. Then we see how the three implementations we have
been using — linked lists, characteristic vectors, and hash tables — generalize to
binary relations. In Chapter 8, we shall discuss implementation of relations with
more than two components. Frequently, data structures for such relations are built
from the structures for functions and binary relations.

Operations on Binary Relations

When we insert a pair (a,b) into a binary relation R, we do not have to concern
ourselves with whether or not there already is a pair (a,c) in R, for some ¢ # b, as
we do when we insert (a,b) into a function. The reason, of course, is that there is
no limit on the number of pairs in R that can have the domain value a. Thus, we
shall simply insert the pair (a,}) into R as we would insert an element into any set.

Likewise, deletion of a pair (a,b) from a relation is similar to deletion of an
element from a set: we look for the pair and remove it if it is present.

The lookup operation can be defined in several ways. For example, we could
take a pair (a,b) and ask whether this pair is in R. However, if we interpret lookup
thus, along with the insert and delete operations we just defined, a relation behaves
like any dictionary. The fact that the elements being operated upon are pairs, rather
than atomic, is a minor detail; it just affects the type of elements in the dictionary.

However, it is often useful to define lookup to take a domain element a and
return all the range elements b such that (a,b) is in the binary relation R. This
interpretation of lookup gives us an abstract data type that is somewhat different
from the dictionary, and it has certain uses that are distinct from those of the
dictionary ADT.

Example 7.28. Most varieties of plums require one of several other specific
varieties for pollination; without the appropriate “pollinizer,” the tree cannot bear
fruit. A few varieties are “self-fertile”: they can serve as their own pollinizer. Figure
7.23 shows a binary relation on the set of plum varieties. A pair (a, b) in this relation
means that variety b is a pollinizer for variety a.

Inserting a pair into this table corresponds to asserting that one variety is a
pollinizer for another. For example, if a new variety is developed, we might enter
into the relation facts about which varieties pollinize the new variety, and which it
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VARIETY POLLINIZER
Beauty Santa Rosa
Santa Rosa Santa Rosa
Burbank Beauty
Burbank Santa Rosa
Eldorado Santa Rosa
Eldorado Wickson
Wickson Santa Rosa
Wickson Beauty

Fig. 7.23. Pollinizers for certain plum varieties.

More General Operations on Relations

We may want more information than the three operations insert, delete, and lookup
can provide when applied to the plum varieties of Example 7.28. For example, we
may want to ask “What varieties does Santa Rosa pollinate?” or “Does Eldorado
pollinate Beauty?” Some data structures, such as a linked list, allow us to answer
questions like these as fast as we can perform the three basic dictionary operations,
if for no other reason than that linked lists are not very efficient for any of these
operations.

A hash table based on domain elements does not help answer questions in which
we are given a range element and must find all the associated domain elements —
for instance, “What varietics does Santa Rosa pollinate?”” We could, of course,
base the hash function on range elements, but then we could not answer easily
questions like “What pollinates Burbank?” We could base the hash function on a
combination of the domain and range values, but then we couldn’t answer either
type of query efficiently; we could only answer easily questions like “Does Eldorado
pollinate Beauty?”

There are ways to get questions of all these types answered efficiently. We shall
have to wait, however, until the next chapter, on the relational model, to learn the
techniques.

can pollinize. Deletion of a pair corresponds to a retraction of the assertion that
one variety can pollinize another.

The lookup operation we defined takes a variety a as argument, looks in the
first column for all pairs having the value a, and returns the set of associated range
values. That is, we ask, “What varieties can pollinize variety a?” This question
seems to be the one we are most likely to ask about the information in this table,
because when we plant a plum tree, we must make sure that, if it is not self-fertile,
then there is a pollinizer nearby. For instance, if we invoke {ookup(Burbank), we
expect the answer {Beauty, Santa Rosa}. 4

Linked-List Implementation of Binary Relations

We can link the pairs of a relation in a list if we like. The cells of this list consist
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of a domain element, a range element, and a pointer to the next ||, just like
the cells for functions. Insertion and deletion are carried out as for dinary sets,
as discussed in Section 6.4. The only nuance is that equality of ¢ members is
determined by comparing both the field holding the domain elemer nd the field
holding the range element.

Lookup 1s a somewhat different operation from the operations of :same name
we have encountered previously. We must go down the list, lookin; r cells with
a particular domain value a, and we must assemble a list of the as ‘iated range
values. An example will show the mechanics of the lookup operation linked lists.

Example 7.29. Suppose we want to implement the plum relati of Example
7.28 as a linked list. We could define the type PVARIETY as a char ter string of
length 32; and cells, whose type we shall call RCELL (relation cell), n be defined
by a structure:

typedef char PVARIETY[32];
typedef struct RCELL *RLIST;
struct RCELL {
PVARIETY variety;
PVARIETY pollinizer;
RLIST next;
};

We also need a cell containing one plum variety and a pointer to tt next cell, in
order to build a list of the pollinizers of a given variety, and thus to a1 wer a lookup
query. This type we shall call PCELL, and we define

typedef struct PCELL *PLIST;
struct PCELL {
PVARIETY pollinizer;
PLIST next;
};

We can then define lookup by the function in Fig. 7.24.

The function lookup takes a domain element a and a pointer to t}. first cell of a
linked list of pairs as arguments. We perform the lookup(a) operatiol on a relation
R by calling 1ookup(a,L), where L is a pointer to the first cell on he linked list
representing relation R. Lines (1) and (2) are simple. If the list is em)ty, we return
NULL, since surely there are no pairs with first component a in an enpty list.

The hard case occurs when a is found in the domain field, callel variety, in
the first cell of the list. This case is detected at line (3) and handld by lines (4)
through (7). We create at line (4) a new cell of type PCELL, whicl becomes the
first cell on the list of PCELL’s that we shall return. Line (5) copies he associated
range value into this new cell. Then at line (6) we call lookup recusively on the
tail of the list L. The return value from this call, which is a pointer t the first cell
on the resulting list (NULL if the list is empty), becomes the next fild of the cell
we created at line (4). Then at line (7) we return a pointer to the newly created
cell, which holds one range value and is linked to cells holding othe range values
for domain value g, if any exist.

The last case occurs when the desired domain value a is not fowd in the first
cell of the list L. Then we just call lookup on the tail of the list, ai line (8), and
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PLIST lookup(PVARIETY a, RLIST L)

{
PLIST P;
(1) it (L == NULL)
(2) return NULL;
3) else if (!strcmp(L->variety, a)) /#* L->variety == a */ {
(4) P = (PLIST) malloc(sizeof(struct PCELL));
(5) strcpy(P->pollinizer, L->pollinizer);
(6) P->next = lookup(a, L->next);
(M return P;
}
else /* a not the domain value of current pair */
(8) return lookup(a, L->next);
}

Fig. 7.24. Lookup in a binary relation represented by a linked list.

return whatever that call returns. 4

A Characteristic-Vector Approach

For sets and for functions, we saw that we could create an array indexed by elements
of a “universal” set and place appropriate values in the array. For sets, the appro-
priate array values are TRUE and FALSE, and for functions they are those values that
can appear in the range, plus (usually) a special value that means “none.”

For binary relations, we can index an array by members of a small declared
domain, just as we did for functions. However, we cannot use a single value as an
array element, because a relation can have any number of range values for a given
domain value. The best we can do is to use as an array element the header of a
linked list that contains all the range values associated with a given domain value.

Example 7.30. Let us redo the plum example using this organization. As was
pointed out in the last section, when we use a characteristic-vector style, we must
fix the set of values, in the domain at least; there is no such constraint for linked-list
or hash-table representations. Thus, we must redeclare the PVARIETY type to be an
enumerated type:

enum PVARIETY {Beauty, SantaRosa, Burbank, Eldorado, Wickson};

We can continue to use the PCELL type for lists of varieties, as defined in Example
7.29. Then we may define the array

PLIST Pollinizers[5];

That is, the array representing the relation of Fig. 7.23 is indexed by the varieties
mentioned in that figure, and the value associated with each variety is a pointer
to the first cell on its list of pollinizers. Figure 7.25 shows the pairs of Fig. 7.23
represented in this way. 4
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Pollinizers

Beauty —4—[ SantaRosa | s |

SantaRosa —W
Burbank —{—»{ Beauty | —}—= SantaRosa | o |
Eldorado ——+—»f SantaRosa | —}—| Wickson | e |
Wickson —+{ Beauty | —}—»{ SantaRosa | o |

Fig. 7.25. Characteristic-vector representation of the pollinizers relation.

Insertion and deletion of pairs is performed by going to the appropriate array
element and thence to the linked list. At that point, insertion in or deletion from
the list is performed normally. For example, if we determined that Wickson cannot
adequately pollinate Eldorado, we could execute the operation

delete(Eldorado, Wickson)

The header of the list for Eldorado is found in Pollinizers[Eldorado], and from
there we go down the list until we find a cell holding Wickson and delete it.

Lookup is trivial; we have only to return the pointer found in the appropriate
array entry. For example, to answer the query lookup(Burbank, Pollinizers),
we simply return the list Pollinizers [Burbank].

Hash-Table Implementation of Binary Relations

We may store a given binary relation R in a hash table, using a hash function that
depends only on the first component of a pair. That is, the pair (a, b) will be placed
in bucket h(a), where h is the hash function. Note that this arrangement is exactly
the same as that for a function; the only difference is that for a binary relation a
bucket may contain more than one pair with a given value a as the first component,
whereas for a function, it could never contain more than one such pair.

To insert the pair (a,b), we compute h(a) and examine the bucket with that
number to be sure that (a,b) is not already there. If it is not, we append (a,b) to
the end of the list for that bucket. To delete (a, b), we go to the bucket k(a), search
for this pair, and remove it from the list if it is there.

To execute lookup(a), we again find the bucket h(a) and go down the list for
this bucket, collecting all the b’s that appear in cells with first component a. The
lookup function of Fig. 7.24, which we wrote for a linked list, applies equally well to
the list that forms one bucket of a hash table.

Running Time of Operations on a Binary Relation

The performance of the three representations for binary relations is not much dif-
ferent from the performance of the same structures on functions or dictionaries.
Consider first the list representation. While we have not written the functions for
insert and delete, we should be able to visualize that these functions will run down
the entire list, searching for the target pair, and stop upon finding it. On a list of
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length n, this search takes O(n) average time, since we must scan the entire list if
the pair is not found and, on the average, half the list if it is found.

For lookup, an examination of Fig. 7.24 should convince us that this function
takes O(1) time plus a recursive call on the tail of a list. We thus make n calls if
the list is of length n, for a total time of O(n).

Now consider the generalized characteristic vector. The operation lookup(a) is
easiest. We go to the array element indexed by a, and there we find our answer, a
list of all the b’s such that (a, b) is in the relation. We don’t even have to examine the
elements or copy them. Thus, lookup takes O(1) time when characteristic vectors
are used.

On the other hand, insert and delete are less simple. To insert (a, b}, we can
go to the array element indexed by a easily enough, but we must search the entire
list to make sure that (a,b) is not already there.> That requires an amount of
time proportional to the average length of a list, that is, to the average number of
range values associated with a given domain value. We shall call this parameter m.
Another way to look at m is that it 1s n, the total number of pairs in the relation,
divided by the number of different domain values. If we assume that any list is as
likely to be searched as any other, then we require O(m) time on the average to
perform an insert or a delete.

Finally, let us consider the hash table. If there are n pairs in our relation and
B buckets, we expect there to be an average of n/B pairs per bucket. However,
the parameter m must be figured in as well. If there are n/m different domain
values, then at most n/m buckets can be nonempty, since the bucket for a pair is
determined only by the domain value. Thus, m is a lower bound on the average size
of a bucket, regardless of B. Since n/B is also a lower bound, the time to perform
one of the three operations is O(max(m, n/B)).

Example 7.31. Suppose there is a relation of 1000 pairs, distributed among 100
domain values. Then the typical domain value has 10 associated range values; that
is, m = 10. If we use 1000 buckets — that is, B = 1000 — then m is greater than
n/B, which is 1, and we expect the average bucket that we might actually search
(because its number is h(a) for some domain value a that appears in the relation)
to have about 10 pairs. In fact, it will have on the average slightly more, because by
coincidence, the same bucket could be h(a;) and h{a;) for different domain values
a; and as. If we choose B = 100, then m = n/B = 10, and we would again expect
each bucket we might search to have about 10 elements. As just mentioned, the
actual number is slightly more because of coincidences, where two or more domain
values hash to the same bucket. 4

EXERCISES

7.9.1: Using the data types from Example 7.29, write a function that takes a
pollinizer value b and a list of variety-pollinizer pairs, and returns a list of the
varieties that are pollinized by b&.

5 We could insert the pair without regard for whether it is already present, but that would
have both the advantages and disadvantages of the list representation discussed in Section
6.4, where we allowed duplicates.
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“Dictionary Operations” on Functions and Relations

A set of pairs might be thought of as a set, as a function, or as a relation. For each
of these cases, we have defined operations insert, delete, and lookup suitably. These
operations differ in form. Most of the time, the operation takes both the domain
and range element of the pair. However, sometimes only the domain element is
used as an argument. The table below summarizes the differences in the use of
these three operations.

Set of Pairs Function Relation
Insert | Domain and Range | Domain and Range | Domain and Range
Delete | Domain and Range | Domain only Domain and Range
Lookup | Domain and Range | Domain only Domain only

7.9.2: Write (a) insert and (b) delete routines for variety-pollinizer pairs using the
assumptions of Example 7.29.

7.9.3: Write (a) insert, (b) delete, and (c) lookup functions for a relation repre-
sented by the vector data structure of Example 7.30. When inserting, do not forget
to check for an identical pair already in the relation.

7.9.4: Design a hash-table data structure to represent the pollinizer relation that
forms the primary example of this section. Write functions for the operations insert,
delete, and lookup.

7.9.5*: Prove that the function lookup of Fig. 7.24 works correctly, by showing
by induction on the length of list L that 1ookup returns a list of all the elements b
such that the pair (a,b) is on the list L.

7.9.6*: Design a data structure that allows O(1) average time to perform each of
the operations insert, delete, lookup, and inverseLookup. The latter operation
takes a range element and finds the associated domain elements.

7.9.7: In this section and the previous, we defined some new abstract data types
that had operations we called insert, delete, and lookup. However, these operations
were defined slightly differently from the operations of the same name on dictio-
naries. Make a table for the ADT’s DICTIONARY, FUNCTION (as discussed in
Section 7.8), and RELATION (as discussed in this section) and indicate the possi-
ble abstract implementations and the data structures that support them. For each,
indicate the running time of each operation.

Some Special Properties of Binary Relations

In this section we shall consider some of the special properties that certain useful
binary relations have. We begin by defining some basic properties: transitivity,
reflexivity, symmetry, and antisymmetry. These are combined to form common
types of binary relations: partial orders, total orders, and equivalence relations.
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Transitivity

Let R be a binary relation on the domain D. We say that the relation R is transitive
if whenever aRb and bRc are true, aRc is also true. Figure 7.26 illustrates the
transitivity property as it appears in the graph of a relation. Whenever the dotted
arrows from a to b and from b to ¢ appear in the diagram, for some particular a, b,
and c, then the solid arrow from a to ¢ must also be in the diagram. It is important
to remember that transitivity, like the other properties to be defined in this section,
pertains to the relation as a whole. It is not enough that the property be satisfied
for three particular domain elements; it must be satisfied for all triples a, b, and ¢
in the declared domain D.

Fig. 7.26. Transitivity condition requires that if both the arcs aRb and bRc
are present in the graph of a relation, then so is the arc aRc.

Example 7.32. Consider the relation < on Z, the set of integers. That is, <
is the set of pairs of integers (a,b) such that a is less than b. The relation < is
transitive, because if a < b and b < ¢, we know that a < c. Similarly, the relations
<, >, and > on integers are transitive. These four comparison relations are likewise
transitive on the set of real numbers.

However, consider the relation # on the integers (or the reals for that matter).
This relation is not transitive. For instance, let a and ¢ both be 3, and let b be 5.
Then a # b and b # ¢ are both true. If the relation were transitive, we would have
a # c. But that says 3 # 3, which is wrong. We conclude that # is not transitive.

For another example of a transitive relation, consider C, the subset relation.
We might like to consider the relation as being the set of all pairs of sets (S, T)
such that S C T, but to imagine that there is such a set would lead us to Russell’s
paradox again. However, suppose we have a “universal” set U. We can let Cy be
the set of pairs of sets

{(5T)|SCTandTCU}

Then Cy is a relation on P(U), the power set of U, and we can think of Cy as the
subset relation.

For instance, let U = {1,2}. Then C{, 2} consists of the nine (S, T)-pairs shown
in Fig. 7.27. Thus, Cy contains exactly those pairs such that the first component
is a subset (not necessarily proper) of the second component and both are subsets
of {1,2}.

It is easy to check that Cy is transitive, no matter what the universal set U
is. If AC B and B C C, then it must be that A C C. The reason is that for every
z in A, we know that z is in B, because A C B. Since z is in B, we know that z
is in C, because B C C. Thus, every element of A is an element of C. Therefore,
ACC. ¢
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S T
0 0
0 | {1}
0 | {2
0 | {1,2)
o | w
1y |12
2 | @
{2} |{12)
(1,2} | {1,2)

Fig. 7.27. The pairs in the relation C; 3.

Reflexivity

Some binary relations R have the property that for every element a in the declared
domain, R has the pair (a, a); that is, aRa. If so, we say that R is reflexive. Figure
7.28 suggests that the graph of a reflexive relation has a loop on every element of
its declared domain. The graph may have other arrows in addition to the loops.
However, it is not sufficient that there be loops for the elements of the current
domain; there must be one for each element of the declared domain.

Fig. 7.28. A reflexive relation R has xRz for every z in its declared domain.

Example 7.33. The relation > on the reals is reflexive. For each real number
a, we have a > a. Similarly, < is reflexive, and both these relations are also reflexive
on the integers. However, < and > are not reflexive, since a < a and a > a are each
false for at least one value of a; in fact, they are both false for all a.

The subset relations Cy defined in Example 7.32 are also reflexive, since A C A
for any set A. However, the similarly defined relations Cy that contain the pair
(S,T)if T CU and S C T — that is, S is a proper subset of T — are not reflexive.
The reason is that A C A is false for some A (in fact, for all 4). ¢

Symmetry and Antisymmetry

Let R be a binary relation. As defined in Exercise 7.7.7, the inverse of R is the
set of pairs of R with the components reversed. That is, the inverse of R, denoted
Rl is
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{(b,a) | (a,b) € R}

For example, > is the inverse of <, since a > b exactly when b < q. Likewise, > is
the inverse of <.

Fig. 7.29. Symmetry requires that if aRb, then bRa as well.

We say that R is symmetric if it is its own inverse. That is, R is symmetric if,
whenever aRb, we also have bRa. Figure 7.29 suggests what symmetry looks like
in the graph of a relation. Whenever the forward arc is present, the backward arc
must also be present.

We say that R is antisymmetric if aRb and bRa are both true only when
a = b. Note that it is not necessary that aRa be true for any particular a in
an antisymmetric relation. However, an antisymmetric relation can be reflexive.
Figure 7.30 shows how the antisymmetry condition relates to graphs of relations.

never optional

Fig. 7.30. An antisymmetric relation cannot have a cycle involving two
elements, but loops on a single element are permitted.

Example 7.34. The relation < on integers or reals is antisymmetric, because
if a < band b < a, it must be that @ = b. The relation < is also antisymmetric,
because under no circumstances are a < b and b < a both true. Similarly, > and
> are antisymmetric, as are the subset relations Cy that we discussed in Example
.92,

However, note that < is not symmetric. For example, 3 < 5, but 5 < 3 is
false. Likewise, none of the other relations mentioned in the previous paragraph is
symmetric.

An example of a symmetric relation is # on the integers. That is, if a # b,
then surely b # a. 4
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Pitfalls in Property Definitions

As we have pointed out, the definition of a property is a general condition, one that
applies to all elements of the domain. For example, in order for a relation R on
declared domain D to be reflexive, we need to have aRa for every a € D. It is not
sufficient for aRa to be true for one a, nor does it make sense to say that a relation
is reflexive for some elements and not others. If there is even one a in D for which
aRa is false, then R is not reflexive. (Thus, reflexivity may depend on the domain,
as well as on the relation R.)

Also, a condition like transitivity — “if aRb and bRc then aRc” — is of the form
“if A then B.” Remember that we can satisfy such a statement either by making
B true or by making A false. Thus, for a given triple a, b, and c, the transitivity
condition is satisfied whenever aRb is false, or whenever bRc is false, or whenever
aRe is true. As an extreme example, the empty relation is transitive, symmetric,
and antisymmetric, because the “if” condition is never satisfied. However, the
empty relation is not reflexive, unless the declared domain is 9.

Partial Orders and Total Orders

A partial order is a transitive and antisymmetric binary relation. A relation is said
to be a total order if in addition to being transitive and antisymmetric, it makes
every pair of elements in the domain comparable. That is to say, if R is a total
order, and if a and b are any two elements in its domain, then either aRb or bRa
is true. Note that every total order is reflexive, because we may let a and b be the
same element, whereupon the comparability requirement tells us that aRa.

Example 7.35. The arithmetic comparisons < and > on integers or reals are
total orders and therefore are also partial orders. Notice that for any a and b, either
a < bor b < a, but both are true exactly when a = b.

The comparisons < and > are partial orders but not total orders. While they
are antisymmetric, they are not reflexive; that is, neither a < a nor a > a is true.

The subset relations Cy and Cy on 2V for some universal set U are partial
orders. We already observed that they are transitive and antisymmetric. These
relations are not total orders, however, as long as U has at least two members, since
then there are incomparable elements. For example, let U = {1,2}. Then {1} and
{2} are subsets of U, but neither is a subset of the other. 4+

One can view a total order R as a linear sequence of elements, as suggested in
Fig. 7.31, where whenever aRb for distinct elements @ and b, a appears to the left
of b along the line. For example, if R is < on the integers, then the elements along
the line would be ...,—-2,-1,0,1,2,.... If R is < on the reals, then the points
correspond to the points along the real line, as if the line were an infinite ruler; the
real number z is found z units to the right of the 0 mark if z is nonnegative, and
—z units to the left of the zero mark if = is negative.

If R is a partial order but not a total order, we can also draw the elements of
the domain in such a way that if aRb, then a is to the left of b. However, because
there may be some incomparable elements, we cannot necessarily draw the elements
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1 | 1 |
I I I I
a, das as an

Fig. 7.31. Picture of a total order on ay, az, as,. .., an.

in one line so that the relation R means “to the left.”

+ Example 7.36. Figure 7.32 represents the partial order C{1,2,3- We have
Reduced graph drawn the relation as a reduced graph, in which we have omitted arcs that can be
inferred by transitivity. That is, S C{1,2,3) T if either

- 8=T;
2. There is an arc from S to T, or
3. There is a path of two or more arcs leading from S to 7.

For example, we know that § Cy; 5 3; {1,3}, because of the path from § to {1} to
{1,3}. +

{ier—{1,2}

TN

) — {2} {1,3} ——{1,2,3}

Dot/

(o) ===ty 3}
Fig. 7.32. Reduced graph for the partial order C12,3)-

Equivalence Relations

An equivalence relation is a binary relation that is reflexive, symmetric, and transi-
tive. This kind of relation is quite different from the partial orders and total orders
we have met in our previous examples. In fact, a partial order can never be an
equivalence relation, except in the trivial cases that the declared domain is empty,
or there is only one element a in the declared domain and the relation is {(a,a)}.

+ Example 7.37. A relation like < on integers is not an equivalence relation.
Although it is transitive and reflexive, it is not symmetric. If @ < b, we do not have
b < a, except if a = b.
For an example that is an equivalence relation, let R consist of those pairs of
integers (a, b) such that a — b is an integer multiple of 3. For example 3R9, since
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3-9=-6=3x(-2). Also, 5R(—4), since 5 — (—4) =9 = 3 x 3. However, (1,2)
is not in R (or we can say “1R2 is false”), since 1 — 2 = —1, which is not an integer
multiple of 3. We can demonstrate that R is an equivalence relation, as follows:

1. R is reflexive, since aRa for any integer a, because a — a is zero, which is a
multiple of 3.

2.  Ris symmetric. If a — b is a multiple of 3 — say, 3¢ for some integer ¢ — then
b — ais —3c and is therefore also an integer multiple of 3.

3. R is transitive. Suppose aRb and bRc. That is, a — b is a multiple of 3, say, 3d;
and b — ¢ is a multiple of 3, say, 3e. Then

a—c=(a—-b)+(b—c)=3d+3e=3(d+e)

and so a—c is also a multiple of 3. Thus, a Rb and bRc imply a Rc, which means
that R is transitive.

For another example, let S be the set of cities of the world, and let T be the
relation defined by aTb if a and b are connected by roads, that is, if it 1s possible
to drive by car from a to b. Thus, the pair (Toronto, New York) is in T, but

{Honolulu, Anchorage)

is not. We claim that T is an equivalence relation.

T is reflexive, since trivially every city is connected to itself. T is symmetric
because if a is connected to b, then b is connected to a. T is transitive because if
a is connected to b and b is connected to c, then a is connected to ¢; we can travel
from a to c via b, if no shorter route exists. 4

Equivalence Classes

Another way to view an equivalence relation is that it partitions its domain into
equivalence classes. If R is an equivalence relation on a domain D, then we can
divide D into equivalence classes so that

1. Each domain element is in exactly one equivalence class.
2. If aRb, then a and b are in the same equivalence class.

3. If aRb is false, then a and b are in different equivalence classes.

Example 7.38. Consider the relation R of Example 7.37, where aRb when
a — b is a multiple of 3. One equivalence class is the set of integers that are exactly
divisible by 3, that is, those that leave a remainder of 0 when divided by 3. This
classis {...,-3,0,3,6,...}. A second is the set of integers that leave a remainder of
1 when divided by 3, that is, {...,~2,1,4,7,...}. The last class is the set of integers
that leave a remainder of 2 when divided by 3. This class is {...,~-1,2,5,8,...}.
The classes partition the set of integers into three disjoint sets, as suggested by Fig.
7.33.

Notice that when two integers leave the same remainder when divided by 3,
then their difference is evenly divided by 3. For instance, 14 = 3 x 4 + 2 and
5=3x1+2. Thus, 14—5=3x4-3x1+2—-2=3x3. We therefore know that
14R5. On the other hand, if two integers leave different remainders when divided by
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Exactly
Divisible
by 3

Leave
Remainder
of 2

Leave

Remainder
of 1

Fig. 7.33. Equivalence classes for the relation on the integers:
“Difference is divisible by 3.”

3, their difference surely is not evenly divisible by 3. Thus, integers from different
classes, like 5 and 7, are not related by R. 4

"To construct the equivalence classes for an equivalence relation R, let class(a)
be the set of elements b such that aRb. For example, if our equivalence relation is
the one we called R in Example 7.37, then class(4) is the set of integers that leave
a remainder of 1 when divided by 3; that is class(4) = {...,-2,1,4,7,.. }.

Notice that if we let a vary over each of the elements of the domain, we typically
get the same class many times. In fact, when aRb, then class(a) = class(b). To
see why, suppose that c is in class(a). Then aRe, by definition of class. Since we
are given that aRb, by symmetry it follows that bRa. By transitivity, §Ra and aRc
imply bRe. But bRe says that ¢ is in class(b). Thus, every element in class(a) is in
class(b). Since the same argument tells us that, as long as aRb, every element in
class(b) is also in class(a), we conclude that class(a) and class(b) are identical.

However, if class(a) is not the same as class(b), then these classes can have
no element in common. Suppose otherwise. Then there must be some ¢ in both
class(a) and class(b). By our previous assumption, we know that aRc and bRe.
By symmetry, ¢Rb. By transitivity, aRe and ¢Rb imply aRb. But we Just showed
that whenever aRb is true, class(a) and class(b) are the same. Since we assumed
these classes were not the same, we have a contradiction. Therefore, the assumed ¢
in the intersection of class(a) and class(b) cannot exist.

There is one more observation we need to make: every domain element is in
some equivalence class. In particular, a is always in class(a), because reflexivity
tells us aRa.

We can now conclude that an equivalence relation divides its domain into equiv-
alence classes that are disjoint and that place each element into exactly one class.
Example 7.38 illustrated this phenomenon.

Closures of Relations

A common operation on relations is to take a relation that does not have some
property and add as few pairs as possible to create a relation that does have that
property. The resulting relation is called the closure (for that property) of the
original relation.
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Example 7.39. We discussed reduced graphs in connection with Fig. 7.32.
Although we were representing a transitive relation, Cy1 2 3), we drew arcs corre-
sponding to only a subset of the pairs in the relation. We can reconstruct the entire
relation by applying the transitive law to infer new pairs, until no new pairs can
be inferred. For example, we see that there are arcs corresponding to the pairs
({1}, {1,3}) and ({1,3},{1,2,3}), and so the transitive law tells us that the pair
({1}, {1,2,3}) must also be in the relation. Then this pair, together with the pair
(8, {1)) tells us that (@, {1,2,3}) is in the relation. To these we must add the “re-
flexive” pairs (S, S), for each set S that is a subset of {1,2,3}. In this manner, we
can reconstruct all the pairs in the relation C(; 2.3). ¢

Another useful closure operation is topological sorting, where we take a partial
order and add tuples until it becomes a total order. While the transitive closure
of a binary relation is unique, there are frequently several total orders that contain
a given partial order. We shall learn in Chapter 9 of a surprisingly efficient algo-
rithm for topological sorting. For the moment, let us consider an example where
topological sorting is useful.

Example 7.40. It is common to represent a sequence of tasks that must be per-
formed in a manufacturing process by a set of “precedences” that must be obeyed.
For a simple example, you must put on your left sock before your left shoe, and
your right sock before your right shoe. However, there are no other precedences
that must be obeyed. We can represent these precedences by a set consisting of
the two pairs (leftsock,leftshoe) and (rightsock, rightshoe). This set is a partial
order.

We can extend this relation to six different total orders. One is the total order
in which we dress the left foot first; this relation is a set that contains the ten pairs

(leftsock,leftsock) (leftsock,leftshoe) (leftsock,rightsock) (leftsock, rightshoe)
(leftshoe,leftshoe) (leftshoe,rightsock) (leftshoe,rightshoe)

(rightsock, rightsock) (rightsock, rightshoe)

(rightshoe, rightshoe)

We can think of this total order as the linear arrangement

leftsock — le ftshoe — rightsock — rightshoe

There is the analogous procedure where we dress the right foot first.

There are four other possible total orders consistent with the original partial
order, where we first put on the socks and then the shoes. These are represented
by the linear arrangements

leftsock — rightsock — leftshoe — rightshoe

leftsock — rightsock — rightshoe — lefishoe

rightsock — le ftsock — leftshoe — rightshoe

rightsock — le ftsock — rightshoe — le ftshoe
‘

A third form of closure is to find the smallest equivalence relation containing a
given relation. For example, a road map represents a relation consisting of pairs of
cities connected by road segments having no intermediate cities. To determine the
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road-connected cities, we can apply reflexivity, transitivity, and symmetry to infer
those pairs of cities that are connected by some sequence of these elementary roads.
This form of closure is called finding the “connected components” in a graph, and
an efficient algorithm for the problem will be discussed in Chapter 9.

EXERCISES

7.10.1: Give an example of a relation that is reflexive for one declared domain but
not reflexive for another declared domain. Remember that for D to be a possible
domain for a relation R, D must include every element that appears in a pair of R
but it may also include more elements.

7.10.2**: How many pairs are there in the relation C{(1,2,3)7 In general, how many
pairs are there in Cy, if U has n elements? Hint: Try to guess the funztion from a
few cases like the two-element case (Fig. 7.27) where there are 9 pairs. Then prove
your guess correct by induction.

7.10.3: Consider the binary relation R on the domain of four-letter strings defined
by sRt if t is formed from the string s by cycling its characters one position left.
That is, abcd Rbcda, where a, b, ¢, and d are individual letters. Determine whether
R is (a) reflexive, (b) symmetric, (c) transitive, (d) a partial order, and/or (e) an
equivalence relation. Give a brief argument why, or a counterexample, in each case.

7.10.4: Consider the domain of four-letter strings in Exercise 7.10.3. Let S be
the binary relation consisting of R applied 0 or more times. Thus, abcdSabed,
abedSbeda, abcdScdab, and abedSdabe. Put another way, a string is related by S to
any of its rotations. Answer the five questions from Exercise 7.10.3 for the relation
S. Again, give justification in each case.

7.10.5*: What is wrong with the following “proof”?
(Non)Theorem: If binary relation R is symmetric and transitive, then R is reflexive.

(Non)Proof : Let  be some member of the domain of R. Pick y such that zRy. By
symmetry, yRz. By transitivity, Ry and yRz imply zRz. Since z is an arbitrary
member of R’s domain, we have shown that zRz for every element in the domain
of R, which “proves” that R is reflexive.

7.10.6: Give examples of relations with declared domain {1,2, 3} that are

Reflexive and transitive, but not symmetric

-4
—

b) Reflexive and symmetric, but not transitive
c) Symmetric and transitive, but not reflexive
d) Symmetric and antisymmetric

e) Reflexive, transitive, and a total function
f)  Antisymmetric and a one-to-one correspondence

7.10.7*: How many arcs are saved if we use the reduced graph for the relation Cu,
where U has n elements, rather than the full graph?

7.10.8: Are (a) Cy and (b) Cy either partial orders or total orders when U has
one element? What if U has zero elements?
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7.10.9*: Show by induction on n, starting at n = 1, that if there is a sequence of
n pairs agRay,a;Ray,...,an_1 Ra,, and if R is a transitive relation, then agRa,.
That is, show that if there is any path in the graph of a transitive relation, then
there is an arc from the beginning of the path to the end.

7.10.10: Find the smallest equivalence relation containing the pairs (a,b), (a,c),

(d,e), and (b, f)-

7.10.11: Let R be the relation on the set of integers such that aRb if a and b
are distinct and have a common divisor other than 1. Determine whether R is (a)
reflexive, (b) symmetric, (c) transitive, (d) a partial order, and/or (e) an equivalence
relation.

7.10.12: Repeat Exercise 7.10.11 for the relation Ry on the nodes of a particular
tree T defined by aRpb if and only if a is an ancestor of b in tree T'. However, unlike
Exercise 7.10.11, your possible answers are “yes,” “no,” or “it depends on what tree
Tis"

7.10.13: Repeat Exercise 7.10.12 for relation Sy on the nodes of a particular tree
T defined by aStb if and only if a is to the left of b in tree T'.

Infinite Sets

All of the sets that one would implement in a computer program are finite, or
limited, in extent; one could not store them in a computer’s memory if they were
not. Many sets in mathematics, such as the integers or reals, are infinite in extent.
These remarks seem intuitively clear, but what distinguishes a finite set from an
infinite one?

The distinction between finite and infinite is rather surprising. A finite set is
one that does not have the same number of elements as any of its proper subsets.
Recall from Section 7.7 that we said we could use the existence of a one-to-one
correspondence between two sets to establish that that they are equipotent, that is,
they have the same number of members.

If we take a finite set such as S = {1,2,3,4} and any proper subset of it, such
as T' = {1, 2,3}, there is no way to find a one-to-one correspondence between the
two sets. For example, we could map 4 of Sto3of T, 3of Sto20of T, and 2 of S
to 1 of T, but then we would have no member of T' to associate with 1 of S. Any
other attempt to build a one-to-one correspondence from S to 1" must likewise fail.

Your intuition might suggest that the same should hold for any set whatsoever:
how could a set have the same number of elements as a set formed by throwing away
one or more of its elements? Consider the natural numbers (nonnegative integers)
N and the proper subset of N formed by throwing away 0; call it N — {0}, or
{1,2,3,...}. Then consider the one-to-one correspondence F from N to N — {0}
defined by F(0) =1, F(1) = 2, and, in general, F(i) =i+ 1.

Surprisingly, F is a one-to-one correspondence from N to N — {0}. For each
i in N, there is at most one j such that F(:) = j, so F is a function. In fact,
there is exactly one such j, namely i + 1, so that condition (1) in the definition
of one-to-one correspondence (see Section 7.7) is satisfied. For every j in N — {0}
there is some 7 such that F'(i) = j, namely, i = j — 1. Thus condition (2) in the
definition of one-to-one correspondence is satisfied. Finally, there cannot be two




SEC. 7.11 INFINITE SETS 397

Infinite Hotels

To help you appreciate that there are as many numbers from 0 up as from 1 up,
imagine a hotel with an infinite number of rooms, numbered 0, 1, 2, and so on; for
any integer, there is a room with that integer as room number. At a certain time,
there is a guest in each room. A kangaroo comes to the front desk and asks for
a room. The desk clerk says, “We don’t see many kangaroos around here.” Wait
— that’s another story. Actually, the desk clerk makes room for the kangaroo as
follows. He moves the guest in room 0 to room 1, the guest in room 1 to room 2,
and so on. All the old guests still have a room, and now room 0 is vacant, and the
kangaroo goes there. The reason this “trick” works is that there are truly the same
number of rooms numbered from 1 up as are numbered from 0 up.

distinct numbers i; and 7, in N such that F(i;) and F(i3) are both j, because then
i, + 1 and 73 + 1 would both be j, from which we would conclude that i; = i,. We
are forced to conclude that F' is a one-to-one correspondence between N and its
proper subset N — {0}.

Formal Definition of Infinite Sets

The definition accepted by mathematicians of an infinite set is one that has a one-
to-one correspondence between itself and at least one of its proper subsets. There
are more extreme examples of how an infinite set and a proper subset can have a
one-to-one correspondence between them.

Example 7.41. The set of natural numbers and the set of even natural numbers
are equipotent. Let F'(i) = 2i. Then F is a one-to-one correspondence that maps 0
to 0, 1to 2, 2 to 4, 3 to 6, and in general, every natural number to a unique natural
number, its double.

Similarly, Z and N are the same size; that is, there are as many nonnegative
and negative integers as nonnegative integers. Let F'(i) = 2i for all 7 > 0, and let
F(i)=—-2i—1fori<0. Then 0 goesto 0, 1 to 2, —1 to 1, 2 to 4, —2 to 3, and so
on. Every integer is sent to a unique nonnegative integer, with the negative integers
going to odd numbers and the nonnegative integers to even numbers.

Even more surprising, the set of pairs of natural numbers is equinumerous with
N itself. To see how the one-to-one correspondence is constructed, consider Fig.
7.34, which shows the pairs in N x N arranged in an infinite square. We order the
pairs according to their sum, and among pairs of equal sum, by order of their first
components. This order begins (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), (0,3), (1,2),
and so on, as suggested by Fig. 7.34.

Now, every pair has a place in the order. The reason is that for any pair (¢, j),
there are only a finite number of pairs with a smaller sum, and a finite number
with the same sum and a smaller value of 7. In fact, we can calculate the position
of the pair (7,j) in the order; it is (i + j)(¢ + j + 1)/2 + i. That is, our one-
to-one correspondence associates the pair (7,j) with the unique natural number
(E+)GE+7+1)/2+14.

Notice that we have to be careful how we order pairs. Had we ordered them
by rows in Fig. 7.34, we would never get to the pairs on the second or higher rows,




398 THE SET DATA MODEL

5 15
T 4| 10 16
i3 611
2 ok o418
1 1 4 @ g
0 ‘ § = B0y
s o e e G
S
Fig. 7.34. Ordering pairs of natural numbers.

Every Set Is Either Finite or Infinite

At first glance, it might appear that there are things that are not quite finite and not
quite infinite. For example, when we talked about linked lists, we put no limit on
the length of a linked list. Yet whenever a linked list is created during the execution
of a program, it has a finite length. Thus, we can make the following distinctions:

1. Every linked list is finite in length; that is, it has a finite number of cells.

2. The length of a linked list may be any nonnegative integer, and the set of
possible lengths of linked lists is infinite.

because there are an infinite number of pairs on each row. Similarly, ordering by
columns would not work. 4+

The formal definition of infinite sets is interesting, but that definition may not
meet our intuition of what infinite sets are. For example, one might expect that
an infinite set was one that, for every integer n, contained at least n elements.
Fortunately, this property can be proved for every set that the formal definition
tells us is infinite. The proof is an example of induction.

STATEMENT S(n): If ] is an infinite set, then I has a subset with n elements.
BASIS. Let n = 0. Surely § C 1.

INDUCTION. Assume S(n) for some n > 0. We shall prove that I has a subset
with n+ 1 elements. By the inductive hypothesis, I has a subset T with n elements.
By the formal definition of an infinite set, there is a proper subset J C I and a 1-1
correspondence f from I to J. Let a be an element in I — J; surely a exists because
J is a proper subset.

Consider R, the image of T under f, that is, if T = {b;,...,b,}, then R =
{f(b1),...,f(bs)}. Since f is 1-1, each of f(b1),..., f(bn) are different, so R is of
size n. Since f is from I to J, each of the f(bx)’s is in J; that is, R C J. Thus, a
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Cardinality of Sets

We defined two sets S and T to be equipotent (equal in size) if there is a one-to-one
correspondence from S to T. Equipotence is an equivalence relation on any set of
sets, and we leave this point as an exercise. The equivalence class to which a set S
belongs is said to be the cardinality of S. For example, the empty set belongs to an
equivalence class by itself; we can identify this class with cardinality 0. The class
containing the set {a}, where a is any element, is cardinality 1, the class containing
the set {a, b} is cardinality 2, and so on.

The class containing N is “the cardinality of the integers,” usually given the
name aleph-zero, and a set in this class is said to be countable. The set of real
numbers belongs to another equivalence class, often called the continuum. There
are, in fact, an infinite number of different infinite cardinalities.

cannot be in R. It follows that R U {a} is a subset of / with n + 1 elements, proving
S(n+1).

Countable and Uncountable Sets

From Example 7.41, we might think that all infinite sets are equipotent. We’ve seen
that Z, the set of integers, and N, the set of nonnegative integers, are the same
size, as are some infinite subsets of these that intuitively “seem” smaller than N.
Since we saw in Example 7.41 that the pairs of natural numbers are equinumerous
with N, it follows that the nonnegative rational numbers are equinumerous with the
natural numbers, since a rational is just a pair of natural numbers, its numerator
and denominator. Likewise, the (nonnegative and negative) rationals can be shown
to be just as numerous as the integers, and therefore as the natural numbers.

Any set S for which there is a one-to-one correspondence from $ to N is said
to be countable. The use of the term “countable” makes sense, because S must have
an element corresponding to 0, an element corresponding to 1, and so on, so that we
can “count” the members of S. From what we just said, the integers, the rationals,
the even numbers, and the set of pairs of natural numbers are all countable sets.
There are many other countable sets, and we leave the discovery of the appropriate
one-to-one correspondences as exercises.

However, there are infinite sets that are not countable. In particular, the real
numbers are not countable. In fact, we shall show that there are more real numbers
between 0 and 1 than there are natural numbers. The crux of the argument is that
the real numbers between 0 and 1 can each be represented by a decimal fraction
of infinite length. We shall number the positions to the right of the decimal point
0, 1, and so on. If the reals between 0 and 1 are countable, then we can number
them, ro, ry, and so on. We can then arrange the reals in an infinite square table,
as suggested by Fig. 7.35. In our hypothetical listing of the real numbers between
0 and 1, #/10 is assigned to row zero, 5/9 is assigned to row one, 5/8 is assigned to
row two, 4/33 is assigned to row three, and so on.

However, we can prove that Fig. 7.35 does not really represent a listing of all
the reals in the range 0 to 1. Our proof is of a type known as a diagonalization,
where we use the diagonal of the table to create a value that cannot be in the list
of reals. We create a new real number r with decimal representation .agajaz - - .
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Fig. 7.35. Hypothetical table of real numbers, assuming that the reals are countable.

The value of the ith digit, a;, depends on that of the ith diagonal digit, that is, on
the value found at the ith position of the ith real. If this value is 0 through 4, we
let a; = 8. If the value at the ith diagonal position is 5 through 9, then a; = 1.

Example 7.42. Given the part of the table suggested by Fig. 7.35, our real
number r begins .8118 - - - . To see why, note that the value at position 0 of real 0 is
3, and so ag = 8. The value at position 1 of real 1 is 5, and so a; = 1. Continuing,
the value at position 2 of real 2 is 5 and the value at position 3 of real 3 is 2, and
so the next two digits are 18. 4

We claim that r does not appear anywhere in the hypothetical list of reals, even
though we supposed that all real numbers from 0 to 1 were in the list. Suppose r
were r;, the real number associated with row j. Consider the difference d between
r and r;. We know that aj, the digit in position j of the decimal expansion of r,
was specifically chosen to differ by at least 4 and at most 8 from the digit in the jth
position of r;. Thus, the contribution to d from the jth position is between 4/ 10741
and 8/10/+1.

The contribution to d from all positions after the jth is no more than 1/107+!,
since that would be the difference if one of r and r; had all 0’s there and the other
had all 9’s. Hence, the contribution to d from all positions j and greater is between
3/107+! and 9/107 1.

Finally, in positions before the jth, r and r; are either the same, in which case
the contribution to d from the first j — 1 positions is 0, or r and r; differ by at least
1/107. In either case, we see that d cannot be 0. Thus, r and r; cannot be the same
real number.

We conclude that r does not appear in the list of real numbers. Thus, our
hypothetical one-to-one correspondence from the nonnegative integers to the reals
between 0 and 1 is not one to one. We have shown there is at least one real number
in that range, namely r, that is not associated with any integer.

EXERCISES

7.11.1: Show that equipotence is an equivalence relation. Hint: The hard part
is transitivity, showing that if there is a one-to-one correspondence f from S to
T, and a one-to-one correspondence g from T to R, then there is a one-to-one
correspondence from S to R. This function is the composition of f and g, that is,
the function that sends each element z in S to g(f(z)) in R.




*
¥ .12

SEC. 7.12 SUMMARY OF CHAPTER 7 401

7.11.2: In the ordering of pairs in Fig. 7.34, what pair is assigned number 1007

7.11.3*: Show that the following sets are countable (have a one-to-one correspon-
dence between them and the natural numbers):

a) The set of perfect squares

) The set of triples (i, j, k) of natural numbers
) The set of powers of 2

) The set of finite sets of natural numbers

& o o

7.11.4**: Show that P(N), the power set of the natural numbers, has the same
cardinality as the reals — that is, there is a one-to-one correspondence from P(N)
to the reals between 0 and 1. Note that this conclusion does not contradict Exercise
7.11.3(d), because here we are talking about finite and infinite sets of integers, while
there we counted only finite sets. Hint: The following construction almost works,
but needs to be fixed. Consider the characteristic vector for any set of natural
numbers. This vector is an infinite sequence of 0’s and 1’s. For example, {0, 1} has
the characteristic vector 1100 - - -, and the set of odd numbers has the characteristic
vector 010101 - -- . If we put a decimal point in front of a characteristic vector, we
have a binary fraction between 0 and 1, which represents a real number. Thus, every
set is sent to a real in the range 0 to 1, and every real number in that range can
be associated with a set, by turning its binary representation into a characteristic
vector. The reason this association is not a one-to-one correspondence is that certain
reals have two binary representations. For example, .11000-- - and .10111 - - - both
represent the real number 3/4. However, these sequences as characteristic vectors
represent different sets; the first is {0, 1} and the second is the set of all integers
except 1. You can modify this construction to define a one-to-one correspondence.

7.11.5**: Show that there is a one-to-one correspondence from pairs of reals in the
range 0 to 1 to reals in that range. Hint: It is not possible to imitate the table of
Fig. 7.34 directly. However, we may take a pair of reals, say, (r,s), and combine
the infinite decimal fractions for 7 and s to make a unique new real number . This
number will not be related to » and s by any simple arithmetic expression, but from
t, we can recover r and s uniquely. The reader must discover a way to construct
the decimal expansion of ¢ from the expansions of r and s.

7.11.6**: Show that whenever a set S contains subsets of all integer sizes 0, 1, .. .,
then it is an infinite set according to the formal definition of “infinite”; that is, S
has a one-to-one correspondence with one of its proper subsets.

Summary of Chapter 7

You should take away the following points from Chapter 7:
4 The concept of a set is fundamental to both mathematics and computer science.

4 The common operations on sets such as union, intersection, and difference can
be visualized in terms of Venn diagrams.

4 Algebraic laws can be used to manipulate and simplify expressions involving
sets and operations on sets.
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4 Linked lists, characteristic vectors, and hash tables provide three basic ways to
represent sets. Linked lists offer the greatest flexibility for most set operations
but are not always the most efficient. Characteristic vectors provide the great-
est speed for certain set operations but can be used only when the universal set
is small. Hash tables are often the method of choice, providing both economy
of representation and speed of access.

4+ (Binary) relations are sets of pairs. A function is a relation in which there is
at most one tuple with a given first component.

4 A one-to-one correspondence between two sets is a function that associates a
unique element of the second set with each element of the first, and vice versa.

4 There are a number of significant properties of binary relations: reflexivity,
transitivity, symmetry, and asymmetry are among the most important.

4 Partial orders, total orders, and equivalence relations are important special
cases of binary relations.

4 Infinite sets are those sets that have a one-to-one correspondence with one of
their proper subsets.

4 Some infinite sets are “countable,” that is, they have a one-to-one correspon-
dence with the integers. Other infinite sets, such as the reals, are not countable.

4 The data structures and operations defined on sets and relations in this chapter
will be used in many different ways in the remainder of this book.
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