
CHAPTER

++++

The set is the m06t fundamental data model of mathematics. Every concept in
mathematics, from trees to real numbers, is expre8ible 88 a special kind of seto
In this book, we have leen seta in the guise oí events in a probability space. The
dictionary abstract data type is a kind oí set, on which particular operations -
insert, dele te, and lookup - are performed. Thus, it should not be surprising that

sets are aIao a fundamental model of computer 8CÍence. In this chapter, we learn
the basic definitions conceming seta and then consider algorithms for efficiently
implementing set operations.

7.1 What This Chapter Is About++++

This chapter covers the following topics:

+ The baaic definitions of set theory and the principal operations on seta (Sections

7.2-7.3).

+

+

+

+

7

SetThe
Data Model

The three most common data structures used to implement sets: linked lista,
characteristic vectors, and hash tabl~. We compare theae data structures
with respect to their relative efficiency in supporting various operations on seu
(Sections 7.4-7.6).

Relations and functions as seu of pair& (Section 7.7).

Data structures for representing relations and functions (Sections 7.8-7.9).

Special kind8 of binary relations, such as partial orders and equivalence rela-
tions (Section 7.10).

Infinite seu (Section r.ll).

337

Felix Calderon

338 THE SET DATA MODEL

..".... 7.2 Basic Definitions

In mathematics, the term "set" is not defined explicitly. Rather, like terms such as
"point" and "line" in geometry, the term set is defined by its properties. Specifically,
there is a notion of membership that makes sense only for sets. When S is a set and
x is anything, we can ask the question, "lB x a member of set 5'1" The set S then
consists of all those elements x for which x is a member of S. The following points
summarize some important notations for talking about sets.

l. The expression x E S means that the element x is a member of the set S.

2. If Xl, X2, . . ., Xn are all the members of set S, then we can write

S = {Xl, X2, . . ., Xn}

Here, each of the x's must be distinct; we cannot repeat an element twice in a
seto However, the order in which the members of a set are listed is arbitrary.

3. The empty set, denoted 0, is the set that has no members. That is, x E 0 is
false, no matter what x is.

Empty set

Example 7.1. Let S = {l,3,6}j that is, let S be the set that has the integers
1, 3, and 6, and nothing else, as members. We can say 1 E S, 3 E S, and 6 E S.
However, the statement 2 E S is false, as is the statement that any other thing is a
member of S.

Sets can alBO have other sets as members. For example, let T = {{l, 2}, 3, e}.
Then T has three members. First is the set {l,2}, that is, the set with 1 and 2 as
is sale members. Second is the integer 3. Third is the empty seto The following are
true statements: {l,2} E T, 3 E T, and e E T. However, 1 E T is falseo That is,
the fact that 1 is a member of a member of T does not mean that 1 is a member of
T itself. +

+

Atoms
In formal set theory, there really is nothing but sets. However, in our informal
set theory, and in data structures and algorithms baaed on sets, it is convenient to
assume the existence of certain atoms, which are elements that are not sets. An
atom can be a member of a set, but nothing can be a member of an atoro. It
is important to remember that the empty set, like the atoms, has no members.
However, the empty set is a set rather than an atom.

We shall generally assume that integers and lowercase letters denote atoms.
When talking about data structures, it is often convenient to use complex data
types as the types of atoms. Thus, atoms mar be structures or arrays, and not be
very "atomic" at all.

Deftnition of Sets by Abstraction

Enumeration of the members of a set is not the only way we mar define sets. Often,
it is more convenient to start with some set S and some property of elements P,
and define the set of th~ elements in S that have property P. The notation for
this operation, which is called abstmction, is

Multiset or bag

la

l.

18

ft

s.
i&

Set former

J}.
88
~

is,
of

+ Example 7.2. Let S be the eet {1,3,6} from Example 7.1. Let P(z) be the
property "z is odd." Then

la1

to
\n
1&

n.

\)8.

Ioia

be

~,
P,
~or + Example 7 .3. The~t {t,2} is the set that has exactly the elements t and 2 as

members. We can present th~ elements in either arder, so {1, 2} = {2, 1}. There
are also many ways to expr~ this set by abetraction. For example,

SEC.7.2 BASIC DEFINITIONS 339

Sets and Lists

Altbough our notation for a list, 8uch as (%1, %2, . . ., %n), and our notation for a set,
{%1' %2,"" %n}, look very muro alike, tbere are important differences. First, tbe
arder ofelements in a set is irrelevant. Tbe set we write 88 {1,2} could jU8t as well
be written {2, 1}. In contrast, tbe list (1,2) is not the same as tbe list (2,1).

Second, a list may bave repetitions. For example, tbe list (1,2,2) has tbree
elements; tbe first is 1, the second is 2, and tbe tbird is also 2. However, tbe set
notation {l, 2,2} makes no sense. We cannot bave an element, 8ucb as 2, occur as a
member of a set more than once. If tbis notation means anytbing, it is tbe same as
{1,2} or {2, 1} - that is, the set witb 1 and 2 as members, and no otber members.

Sometimes we 8peak of a multiset or bag, wbicb is a set wbose elements are
alJowed to bave a multiplicity greater than l. For example, we could speak of the
multiset that contains 1 once and 2 twice. Multisets are not tbe same as lists,
because they still bave no order associated witb tbeir elements.

{x I x E S and P(x)}

or "tbe set of elements x in S gucb tbat x has property P."
Tbe preceding expression is called a ..et former. The variable x in the set

Corroer is local to the expression, and ~ could just as well bave written

{yly E S and P(y)}

to describe the same seto

{z I z E S and z is odd }

is anotber way of defining tbe set {1,3}. Tbat ia, we accept the elernents 1 and 3
frorn S because they are odd, but we reject 6 because it ia not odd.

As anotber exarnple, consider the set T = {{1,2},3,1} frorn Example 7.1.
Then

{A I A E T and A is a set }

denotes the set {{1, 2}, e}. .

Equality of Sets

We rnust not confuse what a set i.. with how it ia represented. Two sets are equal,
that ia, tbey are really tbe same set, if tbey bave exactly tbe same mernbers. Thús,
most sets have rnany different representations, including those that explicitly enu-
rnerate their elernents in BOrne order and rep~ntations that use abetraction.

340 THE

{z I z E {1,2,3} and z < 3}

is equal to the aet {1,2}. +

Example 7.4. The set former+

{zlzEZandz<3}
stands Cor the set oC al! the negative integers,

{z I z e Z and ..(i e Z)

represents the set oí integers that are perfect sqUare8, that is, {O, 1,4,9,16,... }.
For a third example, let P(z) be the property that z is prime (i.e., z > 1 and

z has no divisora except 1 and z itself). Then the set oí primes is denoted

{% I % E N and P(%)}

This expression denotes the infinite eet {2,3, 5, 7,11,.. .}. .
,

There are some 8U
up the matter again in Section 7.11.

EXERCISES

7.2.1: What are the members ofthe ~t {{a,b},{a},{b,c}}?

7.2.2: Write set-former expressions for the following:

a) The set of integers greater than 1000.
b) The set of even integers.

7.2.3: Find two different
tion, tbe otber noto

a) {a,b,c}.
b) {O, 1,5}.

SET DATA MODEL

plus O, 1, and 2. The set Corroer

btle and interesting properties oí infinite sets.

SEC.7.2 BASIC DEFINITIONS 341

Russell's Paradox

One might wonder why the operation of abstraction requires that we designate some
otber aet from which the elements of tbe new aet must come. Why can't we just
use an expression like {z I P(z)}, for example,

{z I z is blue }

to define tbe set of all blue things? The reason is that alJowing such a general way
to define aets gets us into a logical inconsistency discovered by Bertrand Ru~ll and
called Russell'8 parndoz:. We may bave met this paradox informally when we heard
about the town where the barber shaves everyone who doesn't shave himself, and
then were asked whether the barber shaves himself. If he d~, then he doesn 't, and
if he doesn't, he does. The way out of this anomaly is to realize that the statement
"shaves everyone who doesn't shave himself," while it looka ~nable, actually
makes no formal BenBe.

To understand Ru~ll's paradox concerning aets, Suppose we could define sets
ofthe form {z I P(x)} for any property P. Then let P(z) be Lhe property "z is not
a member of z ." That is, let P be true of a eet z if x is not a member of itself. Let
S be the set

S = {z I z is not a member of z}

Now we can ask, "Is eet S a member of itself?"

Case 1: Suppoee Lhat S is not a member of S. Theo P(S) is true, and so S is
a member of the aet {z I x is not a member of z}. But that set is S, and so by
assumiog that S is not a member of itself, we prove that S is indeed a member of
iteelf. Thus, it caooot be that S is oot a member of itself.

Case .e: Suppose that S is a member of itself. Then S is not a member of

{z I Z is not a member of z}

But again, that set is S, and so we conclude that S is not a member of it8elf.

Thus, when we start by assuming that P(S) is false, we prove that it is true,
and when we start by assuming that P(S) is true, we wind up proviog that it is
falseo Since we arrive at a contradiction either way, we are forced to blame the
notation. That is, the real problem is that it makes no sense to define the set S as
we did.

Anot.her ioteresting oonsequence of Ru~ll's paradox is that it makes no aense
to suppoee there is a "set of all elements." If there were such a "universal set" - -

Universal set Hay U - then we could speak of

{z I z E U and z is not a member of z}

and we would again have Ru~U's paradox. We would then be forced to give up
abstraction altogether, and that operation is far too useful to drop.

~. ~

342 THE SET DATA MODEL

Operations on Sets

There are special operations that are commonly performed on seta, such as union
and intersection. You are probably familiar with many of them, but we shall re-
view the most important operations here. In the next sections we discuss some
implementations of these operations.

U nion, Intersection, and Difference

Perhaps the most common ways to combine seta are with the following three oper-
ations:

..."'...
...

7.3

The unían oí two sets S ud T, denoted S U T, is the set containing tbe
elements that are in S or T, or both.

Tbe íntersectíon oí sets S ud T, written S n T, is the set containing the
elements tbat are in both S ud T.

The dífference oí sets S and T, denoted S - T, is the set containing those
elements that are in S but not in T.

1.

2.

3.

.. Example 7.5. Let S be the set {1,2,3} and T the set {3,4,5}. Then

SUT= {l,2,3,4,5},SnT= {3}, and S-T= {1,2}

That is, S U T contains all the elements appearing in eitber S or T. Although 3
appears in both S and T, there is, of course, only one occurrence of 3 in S U T,
because elements cannot appear more tban once in a seto S n T contains only 3,
because no other element appean in botb S and T. Finally, S - T contains 1 and
2, because these appear in S and do not appear in T. Tbe element 3 is not present
in S - T, because although it appears in S, it alBO appears in T. +

When the sets S and T are events in a probability space, the union, intersection,
and difference have a natural meaning. S U T is the event that either S or T (or
both) occurs. S n T is the event that both S and T occur. S - T is the event that
S, but not T occurs. However, if S is the set that is the entire probability space,
then S - T is the event "T does DOt occur ,n that is, the complement of T.

VeDo
It is often helpful to see operations involving seta as pictures called Venn diagroms.
Figure 7.1 is a VeDo diagram showing two seta, S and T, each of which is represented
by an ellipse. The two ellipses divide the plane into tour regions, which we have
numbered 1 to 4.

1. Region 1 representa th~ elementa that are in neither S nor T.
2. Region 2 representa S - T, th~ elements that are in S but not in T.

3. Region 3 representa S n T, th~ elementa that are in both S and T.
4. Region 4 representa T - S, those elementa that are in T but not in S.

5. Regions 2, 3, and 4 combined reptesent S U T, th~ elementa that are in S or
T, or both.

SEC. 7.3 OPERATIONS ON SETS 343

Flg. 7.1. Regions rep~ntjng Venn diagrama Cor the buic set operatiooa.

What Is an Algebra?

We mar think that the term "algebra" refers to solving word problems, finding
roots of polynomials, and other matters covered in a high school algebra cou~. To
a mathematician, however, the term algebra refers to any sort of system in which
there are operands aod operaton from which one builds expressions. For an algebra
to be interesting aod useful, it usually has special constants and law6 that allow us
to transform one expression into another "equivalent" expression.

Tbe m~t familiar algebra is that in which operands are integers, reals, or per-
haps complex numbers - or variables representing values from one oí these classes
- aod the operators are the ordinary arithmetic operators: addition, multiplica..
tion, subtraction, and division. The constants O and 1 are special and satisfy laws
like z + O = z. In manipulating arithmetic expressions, we use laws such as the
distributive law, which leta us replace any expression of the form a x 6 + a x c by
an equivalent expression a x (6+ c). Notice that by making this transformation, we
reduce the number of arithmetic operations by 1. Often the purpose of algebraic
manipulation of expreMions, such as this one, is to find an equivalent expression
whose evaluation takes leas time than the evaluation of the original.

Throughout this book, we shall meet various kinds of algebras. Section 8.7
introduces relational algebra, a generalisatioD of tbe algebra of seta that we discuss
here. Section 10.5 talb about the algebra oí ~lar ezp~"ions for describing
patterns of character strings. Section 12.8 introduces tbe reader to tbe Booloon
algebra of logic.

While we have suggested that Region 1 in Fig. 7.1 has finite extent, we sbould
remember tbat this region representa everytbing outside S and T. Thus, tbis region .

is not a seto If it were, we could take its un ion witb S aod T to get tbe "univer-
sal set," wbich we know by Russell's paradox does not existo Nevertheless, it is
often convenient to draw as a region the elements tbat are not in any of the seta
represented explicitly in tbe VeDo diagram, as we did in Fig. 7.1.

Aigebraic Laws For U nion, Intersection, and Difference
Mirroring the algebra oí aritbmetic operations such as + and *, one can define an

344 THE SET DATA MODEL

algebra of seta in which the operators are union, intersection, and difference and the
operands are seta or variables denoting seta. Once we allow ourselves to build up
complicated expressions like R U «(5 n T)-U), we can ask whether two expressions
are equivalent, that is, whether they always denote the SalDe set regardless of what
seta we substitute for the operands that are variables. By substituting one expres-
sion for an equivalent expression, sometimes we can simplify expressions involving
sets so that they mar be evaluated more efficiently.

In what follows, we shall list the most important algebroíc laws - that is,
statements asserting that one expression is equivalent to another - Cor unjan, in-

tersection, and difference oC sets. The symbol = is used to denote equivalence oC
expresslons.

In many ofthese algebraic laws, there is an analogy between unjan, intersection,
and difference oC sets, on one hand, and addition, multiplication, and subtraction
of integers on the other bando We shall, however, point out those laws that do not
have analogs for ordinary arithmetic.

a) The commutatíve law o/ union: (5 U T) := (T U 5). That is, it does not matter
which of two seta appears first in a unjan. The reason this law halda is simple.
The element :r. is in 5 U T if:r. is in 5 or if :r. is in T, or both. That is exactly
the condition under which :r. is in TU 5.

b) The assocíatíve law o/ uníon: (S U (T U R» = «(5 U T) U R). That is, the
unían of three seta can be written either by first taking the unjan of the first
two or the last two; in either case, the result will be the same. We can justify
this law as we did the commutative law, by arguing that an element is in the
set on the left if and only if it is in the set on the right. The intuitive reason
is that both seta contain exactly those elements tbat are in either 5, T, or R,
or any two or three of them.

The commutative and associative laws of unjan together ten us that we can
take the unjan of a collection of sets in any order. The result will always be the
same set of elements, namely those elements that are in one or more of the sets. The
argument is like the one we presented for addition, which is another commutative
and associative operation, in Section 2.4. There, we showed that all ways to group
a sum led to the same resulto

Equivalent
expressions

c) The commutative law o/ interaection: (S n T) E (T n 8). Intuitively, an
element z is in the seta S n T and T n S under exactly t.he sarne circumstances:
when z is in S and z is in T.

d) The associative law o/ intersection: (S n (T n R) E «S n T) n R). Intu-
itively, z is in either of these seta exactly when z Í8 in all tbree of S, T, and
R. Like addition or union, the intersection oí any collection oí sets mar be
grouped as we choose, and the result will be the same; in particular, it will be
the set oí elements in all the sets.

Distributive law 01 intersection over un ion: Just as we know that multiplication
distributes over addition - that is, a x (6 + c) = a x 6 + a x c - the law

e)

(8 n (T u R) = «8 n T) u (8 n R)

holds for seta. Intuitively, an element % is in each oí these seta exactly when %
is in 8 and also in at least one of T and R. Similarly, by the commutativity oí

+ Example 7.6. LetS= {1,2,3},T= {3,4,5},and R={1,4,6}. Then
Su(TnRt = {1,2,3}U{{3,4,5}n{1,4,6}}

= {1,2,3}U {4}
- 11? ~ A\

SEC. 7.3 OPERATlONS ON SETS 345

union and interaection, we can diatribute intenectiona from tbe rigbt, as

«T u R) n s) = «T n S) u (R n 8))

Distributive la.., o/ union over intersection: Similarly,

(S U (T n R)) = «S U T) n (S U R))

halda. Botb tbe len and right sides are ~ts that contain an element z exactly
when z is either in S, or is in botb T and R. Notice that tbe analogous law of
arithmetic, wbere union is replaced by addition and intersection by multiplica-
tion, is falseo That is, a+6 x c is generally not equal to (a + 6) x (a + c). Here is
one of several places where the analogy between set operations and arithmetic
operations breaks down. However, as in (e), we can use the commutativity of
unjan to get the equivaJent law

f)

«TnR)US) = «TUS) n(RUS»

=,

346 THE SET

j)Idempotence Idempotence o/ union. An operator is said to be idempotent ir, when applied to
two copies of the salDe value, the result is that value. We 8ee that (5 U 5) = 5.
That is, an element z is in 5 U 5 exactly when it is in 5. Again the analogy
with arithmetic fails, since a + a is generally not equal to a.

k) Idempotence o/ intersection. Similarly, we have (5 n S) = 5.

There are a number of laws relating the empty set to operations besides unjan.
We list them here.

1) (5 - 5) = 0.

m) (0 - S) = 0.

n) (0 n S) == O, and by commutativity of intersection, (S n 0) == ,.
EquivaIeoces by VeDo Diagrams

Figure 7.2 illustrates the distributive law for intersection over union by a VeDo
diagram. This diagram ShOW8 three sets, S, T, and R, which divide the plane into
eight regions, numbered 1 through 8. These regions correspond to the eight possible
relationships (in or out) that an element can have with the three sets.

Pig. '1.2. Venn diagram showing the distributive law oí intersection over union:
8 n (T U R) consists oí regions 3, 5, and 6, as does (8 n T) U (8 n R).

We can use the diagram to help os keep track of the values of varioos sub-
expressions. For instance, T u R is regions 3, 4, 5, 6, 7, and 8. Since 5 is regioDs
2, 3, 5, and 6, it foUows that 5 n (T U R) is regioD8 3, 5, and 6. Similarly, 5 n T is
regions 3 and 6, while 5 n R is regioD8 5 and 6. It foUows that (5 n T) U (5 n R)
is the same regions 3, 5, and 6, provi~g that

DATA MODEL

(sn (T u R»= «S n 7') U (S n R)

+

Containment of
sets

Proper 8ubset

+ Example 7.8. The following comparisons are all true:

SEC. 7.3 OPERATIONS ON SETS 347

In general, we can prove &D equivalence by considering one representative ele-
ment from each region and checking that it is either in the eet described by both
sides of the equivalence or in neither of th~ eets. This method is very cloee to
the truth-table method by which we prove algebraic laws for propositionallogic in
Chapter 12.

Proving Equivalences by Applying Transformations

Another way to prove two expressions equivalent is by turniog one ioto the other
using one or more of the algebraic laws we have already seen. We shall give a more
formal treatment of how expressions are manipulated in Chapter 12, but for the
present, let U8 observe that we can

1. Substitute any expre.ion for any variable in an equivalence, provided that we
substitute for all occurrences of that variable. The equivalence remains true.The equivalence remains true.

2. Substitute, for a 8ubexp~ion E in sorne equivalence, an exp~ion F tbat is
known to be equivalent to E. The equivalence rernains true.

In addition, we can write any of tbe equivalences that
888ume tbat equivalence is true.

as laW8 andwere stated

Example 7.7. We shall prove the equivalence (S - (S u R}) = 8. Let usstart
with law (g), the 888OCiative law for union and difference, which is

(S - (T U R») = «S - T) - R)

We substitute S for each of the two occurrences of T to get a new equivalence:
(S - (S U R}) = «S - S) - R)

By law (1), (S - S) = l. Tbus, we mar 8ubstitute I for (S - S) above to get:

(S - (S U R}) = (8 - R)

Law (m), with R substituted for S says that 1- R = 8. We mar thus substitute 8
for t - R and conclude that (S - (S U R») = l. +

The Subset RelatioDship

There is a family of comparison operators among sets that is analogous to the
comparisons among numbers. H S and T are set.s, we 8&Y that S ~ T if every
member of S is al8O a member oí T. We can exprea this in words several ways: "S
is a subeet of T ,tI "T is a superset of S," .. S is contained in T ,tI or "T contains S."

We say that. S c T, if S ~ T, and there is at least one element of T that. is not
alBO a member of S. Tbe S C T relationship can be read "S is a proper subeet of
T," "T is a proper auperset of S," "S is properly contained in T," or "T properly
contains S."

As witb "I~ tban," we can reverse tbe ID oí tbe compariaon; S J T .directio
synonymous with T C S, and S :2 T is synonymous with T ~ S.

348 THE SET DATA MODEL

1. {l,2}~{l,2,3}

2. {l,2}C{l,2,3}

3. {I,2}~{1,2}

Note that a eet is always a subeet of itself but a set is never a proper subeet of itself.
80 that {l. 2} C {l. 2} is falseo +

There are a nurnber of algebraic laws involving the subset operator and the
other operators tbat we have already seen. We list sorne of tbern here.

o) 0 ~ 5 for any set S.

p) If S ~ T. then

i) (SUT):T,
ii) (S n T) : S, and
iii) (5 - T) : 8.

Proving Equivalences by Showing Containments

Two sets S and T are equal if and only if 5 ~ T and T ~ S; tbat is, each is a subset
of the other. For if every elernent in 5 is an element of T and vice versa, tben S
and T have exactly the same rnernbers and tbus are equal. Conversely, if S and T
have ex3(:tly the same mernbers, then surely 5 ~ T and T ~ 5 are true. This rule
is analogous to the arithmetic rule that a = 6 if and only if both a ~ 6 and 6 ~ a
are true.

We can sbow tbe equivalence of two expressions E and F by showing tbat the
set denoted by each is contained in the set denoted by the other. That is, we

1. Consider an arbitrary elernent z in E and prove that it is also in F, and tben

2. Consider an arbitrary elernent z in F and prove that it is also in E.

Note that both proofs are nece8arY in order to prove tbat E = F.

STEP REASON

1) z is in 5 - (T U R) Given
2) z is in 5 Definition oí - ud (1)
3) z is not in TU R Definition oí - aDd (1)
4) z is not in T Definition oí U aDd (3)
5) z is not in R Definition oí U ud (3)
6) z is in 5 - T Definition oí - with (2) and (4)
7) z Í8 in (5 - T) - R Definition oí - with (6) and (5)

Fig.7.3.

.. Example 7.9. Let U8 prove t,he 88JCÍat,ive law for union and dift'erence,

ProoC of one haIf of the assodative law for union and difference.

+ Example 7.10. Aa another exUDple, Jet U8 prove part of (P), the ruJe that if
S ~ T, then S U T = T. We begin by aMuming that % is in S U T. We know by
the definition of union that either

+ Example 7.11. Let. S = {1,2,3}. Then

P(S) = {8,{1},{2},{3},{1,2},{1,3},{2,3},{1,2.3}}

SEC. 7.3 OPERATIONS ON SETS 349

(S-(TUR)) = (S-T}-R)

We stalt by aMUming tbat % is in tbe exp~ion on tbe left. Tbe eequence of steps
is sbown in Fig. 7.3. Note tbat in steps (4) and (5), we ~ tbe definition of union
backwards. Tbat is, (3) tells us that z is not in T U R. If % were in T, (3) would
be wrong, and 80 we can conclude tbat % is not in T. Similarly, z is not in R.

STEP REASON
1) z. Í8 in (5 - T) - R Gi~
2) z. Í8 in 5 - T Definition oí - aod (1)
3) z. Í8 not in R Definition oí - and (1)
4) z. Í8 in 5 Definition oí - and (2)
5) z. Í8 not in T Definition of - aod (2)
6) z. Í8 not in Tu R Definition of U with (3) and (5)
7) z. Í8 in 5 - (T U R) Definition oí - with (4) and (6)

Second haIf of tbe proof of tbe a80ciative law for Wlion and difference.Fig.7.4.

We are not done; we must now start by aMuming that % is in (5 - 71- R and
show that it is in 5 - (T U R). The steps are shown in Fig. 7.4. +

1. zisinSor

2. zisinT.

In case (1), since S f: T is 888umed, we know LhaL z ia in T. In case (2), we
immediat.ely see thaL z is in T. Thus, in either case z is in T, and we have complete<!
the first. hall oí the proof, the statement that (S U T) f: T.

Now let us a.ume that z is in T. Then z is in S U T by the definition oí
unjan. Thus, T f: (S U T), which is the second hall oí the proof. We conclude that
ifSf:Tthen (SuT):T. +

Tbe Power Set oí a Set

If S is any ~t, tbe 1»1IJer .el oí S is tbe ~t oí subeets oí S. We shall use P(S) to
denote tbe power ~t oí S, altbougb tbe notation 2s is alBO used.

350 THE SET DATA MODEL

That is, P(S) is a set with eight membersj each member is itselí a seto The empty
set is in P(S), since surely 0 ~ S. The singletons - seta with one member oí S,
namely, {1}, {2}, and {3} - are in P(S). Likewise, the three seta with two oí the
three members oí S are in P(S), and S itselí is a member oí P(S).

As another example, P(') = {0} since 8 ~ S, but íor no set S besides the
empty set is S ~ 0. Note that {0}, the set containing the empty set, is not the
same as the empty seto In particular, the íormer has a member, namely 0, while
the empty set has no members. +

The Size of Power Sets
If S has n members, then P(S) has 2n members. In Example 7.11 we saw that a
set oí three members has a power set oí ~ = 8 members. Also, 20 = 1, and we saw
that the empty set, which contains zero elements, has a power set oí one elemento

Let S = {al,a2,...,an}, where al,a2,...,an are any n elements. We shall
now prove by induction on n that P(S) has 2n members.

BASIS. If n = O, then S is 0. We have already observed that P(0) has one member.
Since 20 = 1, we have proved the basÍ8.

INDUCTION. Suppose that when S = {al, a2,' . ., an}, P(S) has 2n members. Let
an+l be a new element, and let T = S U {an+l}, a set oí n + 1 members. Nowa
subset oí T either does not have or does have an+l as a member. Let us consider

these two cases in turno

l. The subsets oí T that do not include an+l are also subsets oí S, and thereíore
in P(S). By the inductive hypothesis, there are ex~tly 2n such seta.

2. If R is a subset oí T that includes an+l, let Q = R - {an+l}j that is, Q is R
with an+l removed. Then Q is a subset oí S. By the inductive hypothesis,
there are exactly 2n possible seta Q, and each one corresponds to a unique set

R, which is Q U {an+l}'

We conclude that there are exactly 2 x 2n, or 2n+l, subeets oí T, half that are
subsets oí S, and halí that are formed from a subeet oí S by including an+l. Thus,
the inductive step is provedj given that any set S oí n elements has 2n subsets, we
have shown that any set T of n + 1 elements has 2n+1 subsets.

EXERCISES

7.3.1: In Fig. 7.2, we showed two expressions for the set of regions {3, 5, 6}. How-
ever, each of the regions can be represented by expressions involving S, T, and R and
the operators union, intersection, and difference. Write two different exp~ions for

each oí the íollowing:

a) Region 6 alone
b) Regions 2 and 4 together
c) Regions 2,4, and 8 together

7.3.2: Use Venn diagrams to show the following algebraic laws. For each sub-
expression involved in the equivalence, indicate the set of regioD8 it represents.

Singleton set

.... 7.4 List Implementation of Sets

SEC.7.4 LIST IMPLEMENTATION OF SETS 351

a) (SU (Tn R)) = «(S U T) n (SU R))
'b) «(SU T) - R) = «(S - R) U (T - R»)

c) (S - (T U R») = «(S - T) - R)

7.3.3: Sbow each of the equivalences from Exerclse 7.3.2 by sbowing containment
of ea side in the otber.

7.3.4: Assuming 5 ~ T, prove tbe following by showjng that each sjde of the
equivalence ia a 8Ubeet of tbe otber:

a) (5nT) = 5
b) (5 - T) = 0

7.3.5*: loto how muy regjons does a VeDo djagram with n sets divjde the plane,
assuming that no set is a 8ubset of any other? Suppose that of tbe n sets there js
one tbat ia a 8ubeet of one otber, but tbere are 00 other cootainments. Tben some
regions would be empty. For example, in Fig. 7.1, if 5 ~ T, tben regjon 2 would be
empty, because there is no element tbat is in 5 but not io T. In general, how many
nooempty regjons would tbere be?

7.3.6: Prove tbat if S ~ T, then P(5) ~ P(T).

7.3.7*: lo C we can rep~nt a eet S wb~ members are sets by a Ijnked list
whose elements are the beaders for liats; ea 8Uch list represents a set tbat is one
of the members of 5. Write a C program tbat takes a list of elements representing
a set (i.e., a list in which all tbe elements are distinct) and returns the power set of
tbe given seto Wbat is the running time of your program? Hint: Use the inductive
proof tbat there are 2" members io tbe power set of a set of n elements to devise
a recursive algorjtbm that creates tbe power seto If you are clever, you can use tbe
same list as part of several sets, to avoid copying the liats that represent members
of tbe power set, tbus saving both time and space.

7.3.8: Show that

a) P(S) U P(T) ~ P(5 U T)
b) P(5 n T) ~ P(S) n P(T)

Are either (a) or (b) true if containment ia replaced byeqwvalence?

7.3.9: What is P{P{P{I»)?

7.3.10.: If we apply tbe power-eet operator n times, starting witb 8, bow many
members does tbe resulting eet bave? For an example, Exercise 7.3.9 is the case
n=3.

We have already eeen, in Section 6.4, how to implement tbe dictionary operations
insert, delete, and lookup using a linked-list data structure. We also observed
there tbat tbe expected running time of tb~ operations ia O(n) if tbe aet has n
elements. This running time is not as good as tbe O(log n) average time taken
for the dictionary operations using a balanced binary searcb tree data structure,
as in Section 5.8. On tbe otber band, as we ahall eee in Section 7.6, a lioked-list

352 THE SET DATA MODEL

representation of dictionaries plays an eaential role in the hash-table data structure
for dictionaries, which is generally faster than the binary search tree.

Union, Intersection, and Difference

The basic set operations such as unjan can profit from the use of linked lists as a
data structure, although the proper techniques are somewhat different from what
we use for the dictionary operations. In particular, 8Orting the lists significantly
improvess tbe running time for unjan, intersection, and difference. As we saw
in Section 6.4, 8Orting makes only a small improvement in the running time of

dictionary operations.
To begin, let us see what problems arise when we represent sets by unsorted

lists. In this case, we must compare each element of each set with each element of
tbe other. Tbus, to take tbe unjan, intersection, or difl'erence of sets of size n and
m requires O(mn) time. For example, to create a list U that represents the unjan
of two sets S and T, we may start by copying the list for S ORto the initially empty
list U. Then we examine each element of T and see whether it is in S. If not, we
add the element to U. The idea is sketched in Fig. 7-5.

(1) copy S to U;
(2) for (each z in T)
(3) if (!lookup(z,S})
(4) insert(z,U);

Fig. T.a. P8e\.Iocode 8ketd1 of the algorithm for taking the union
of seu represented by UDIOrted lista.

Suppoee S hu n members and T has m members. The operation in line (1),
copying S to U, can easily be accomplished in O(n} time. Tbe lookup of line (3)
takes O(n} time. We only execute the insertion of line (4) if we know from tiRe (3)
that z is not in S. Since z can only appear once on the list for T, we know tbat z is
not yet in U. Tberefore, it is safe to place z at tbe front of U'slist, and line (4) can
be accomplisbed in 0(1) time. Tbe lar-loop of liDes (2) tbrougb (4) is iterated m
times, and its body takes time O(n). Tbus, tbe time for lin5 (2) to (4) is O(mn),
wbich dominates tbe O(n) for line (1).

There are similar algoritbms for intersection and difference, each taking O(mn)
time. We leave tbese algoritbms for the reader to designo

Union, Intersection, and Difference Using Sorted Lists

We can perform unions, intersections, and set differences mucb faster when the lists
representing tbe ~ts are 8Orted. In fact, we sball see tbat it pays to 8Ort tbe lists
before peñorming these operations, even if the lists are not initially sorted. For
example, consider the computation of S U T, wbere S and T are represented by
8Orted lists. Tbe process is similar to tbe merge algoritbm of Section 2.8. ORe
difference is tbat when tbere is a tic for small5t between tbe elements currently at
tbe fronts of tbe two lista, we make only one copy of tbe element, ratber tban two
copies as we must for merge. Tbe other difl'erence is tbat we cannot simpar remove
elements from the lists for S and T for the unjan, since we sbould not destroy Sor

""",,--' ~

, SECo 7.4 LIST IMPLEMENTATION OF SETS 353
"

T while creating their unían. Instead, we must make copies of all elementa to form
the union.

We 888ume that the types LIST and CELL are defined 88 before, by the macro

DefCell(int. CELL, LIST);

The function .etUnion is shown in Fig. 7.6. It makes use of an auxiliary function
assemble(z,L,M) that creates a new cell at line (1), places element z in that
cell at line (2), and calla .etUnion at line (3) to take the union of the lista L
and M. Then aas_ble retorna a cell for z followed by the list that resulta from
applying .etUnion to L and M. Note that the functions a.._ble and .etUnion
are mutually recursive; each calla the other.

Function .etUnion selects the least element from ita two given sorted lists and
passes to ble the ch<*n element and the remainders of the two lista. There
are six cases for .etUnion, depending on whether or not one of ita lista is BULL, and
if not, which of the two elements at the heads of the lista precedes the other.

l. If both lists are BULL, .etUnion simpiy returns NULL, ending the recursion.
This case is lines (5) and (6) of Fig. 7.6.

2. If L is NULL and M is not, then at liDes (7) and (8) we assemble the unían by
taking the first element from M, foUowed by tbe "union" of the IUIJ. list witb
the tail of M. Note that, in tbis case, succeMive calla to .etUnion result in M
being copied.

3. If M is NULL but L is not, then at liDes (9) and (lO) we do the opposite,
assembling the aoswer from the first element of L and the tail of L.

4. If the first elementa of L and M are the &ame, then at liDes (11) and (12) we
assemble the answer (rom one copy o(this element, referred to 88 L->el.ent,
and the tails of L and M.

5. If the first element of L precedes that of M, then at lines (13) and (14) we
assemble the answer from thi. smallest element, the tail oí L, and the entire
list M.

6. Symmetrically, at lines (15) and (16), if M has the smallest element, then we
assemble the answer from that element, the entire list L, and the tail of M.

+ Example 7.12. Suppoee S is {1,3,6} and T is {5,3}. Tbe sorted lista rep-
resenting these seta are L = (1,3,6) and M = (3,5). We call setUnion(L, M) to
take the union. Since the first element oí L, which is 1, precedes the first element
of M, which is 3, case (5) applies, and we aaemble the answer írom 1, tbe tail
of L, which we shall call L¡ = (3,6), and M. Fundion a..emble(I,L¡,M) calla
3etUnion(L¡, M) at line (3), and the result is the list with first element 1 and tail
equal to whatever the union is.

This call to setUnion is case (4), where the two leading elementa are equal;
both are 3 here. Thus, we assemble the unían from one copy of element 3 and the
taila of the lista L¡ and M. These taila are L2' consisting o(only the element 6, and
M¡, consisting oí only the element 5. The next call is set Union(L2 , M¡), which is an
instance ofcase (6). We thus add 5 to the union and call.dUnion(L2,BULL). That
is case (3), generating 6 for the uniOD and calling .dUnion(IULL,IULL). Here, we

~'T' - - .~ "-:-~- ~---"'--'.'

354 THE SET DATA MODEL

LIST setUnion(LIST L. LIST M);

LIST &ssemble(int x. LIST L. LIST M);

/* assemble produces a list _hose head eleaent is x and

_hose tail is the union of lista L and M */

LIST asseable(int x. LIST L. LIST M)

{
LIST first;

first = (LIST) malloc(sizeof(struct CBLL»;

first->element = x;
first->next = setUnion(L. M);

return tirat;

(1)
(2)
(3)
(4)

LIST aetUnion(LIST L, LIST M)

{

(5
(6
(7
(8
(9

(10

11
12
13
14
15
16

}

have case (1), and the recursion ends. The result oí the initial call to setUnion is
the list (1,3,5,6). Figure 7.7 shows in detail the sequence oí calla and retorna made
on this example data. ..

Notice that the list generated by .etUnion always comes out in sorted order.
We can see why the algorithm works, by observing that whichever case applies, each
element in lists L or M is either copied to the output, by becoming the first param-
eter in a call to as._ble, or remains on the lists that are passed as parameters in
the recursive call to .etUniOD.

Ruooiog Time of U oion
Ir we call .etUDioD on sets with n and m elements, respectively, then the time taken

if (L = NULL t.t M == RULL)
return RULL;

else if (L == NULL) /* M cannot be RULL here */
return &ssemble(M->eleaent. NULL. M->next);

e18. if (M == NULL) /* L cannot be NULL h.re */
return &ss88ble(L->element. L->next. NULL);

/* if .. reach here. neither L nor M can be NULL */
else if (L->eleaent == M->element)

retnrn as888ble(L->eleaent. L->next. M->next);
e18e if (L->eleaent < M->eleaent)

retnrn a8888ble(L->eleaent. L->next. M);
else /* here. M->element < L->eleaent */

r.tnrn &ssemble(M->eleaent. L. M->next);

Fig. 7.6. union oí seta represented by sorted lists.Computing tbe

call.etUnion(l,3,6), (3,5))
call a..emble(1, (3,6), (3,5))

call.etUnion(3,6),(3,5))
call assemble(3, (6), (5))

call .etUnion(6), (5))
call a.semble(5, (6),IULL)

call.etUnion(6),IULL)
call a..emble(6,RULL,IULL)

call setUnion(NULL, NULL)
retum IULL

retum (6)
retum (6)

retum (5,6)
retum (5,6)

retum (3,5,6)
retum (3,5,6)

retum (1,3,5,6)
return (1,3,5,6)

Fig. 7.7. Sequence of calla aod retUJ'DI for Example 7.12.

Big-Oh for Functioos of More Thao ORe Variable

As we pointed out in Section 6.9, the notion of big-ob, wbich we defined only for
functions of one variable, can be applied naturally to functions of more than one
variable. We say tbat l(zl,..., z,) is O(g(ZI" . ., z,)) if tbere are constants c
and al,...,a, such tbat wbenever Zi ;?: ai for all i = l,...,k, it is tbe case tbat
l(zl"'" z,) .$ cg(Zl," .,z,). In particular, note that even tbougb m+n is greater
than mn when one of m and n is O and tbe otber is greater tban O, we can still 8&Y
that m + n is O(mn), by choosing constanta c, al, and a2 all equal to l.

by ..tUnion is O(m+n). To ~ wby, note tbat calla to aa.~l. spend 0(1) time
creating a cell for tbe output list and tben calling ..tUnion on the remaining lists.
Tbus, tbe calls to u._bl. in Fig. 7.6 can be tbougbt of as coeting 0(1) time plus
tbe time for a call to ..tUnion on lists tbe 8Um of wh~ lengtbs is either ORe l~
tban tbat of L and M, or in ~ (4), two I~. Furtber, all tbe work in ..tUnion,
exclusive of the call to aa._bl., takes 0(1) time.

It folloW8 tbat when ..tUnion is called on lists of totallengtb m+n, it will result
in at m~ m + n recursive calla to setUniol1 and an equal number to u..bl..
Eacb tak~ 0(1) time, exclusive of tbe time taken by tbe recursive callo Tbus, tbe
time to take tbe union is O(m + n), tbat is, proportional to tbe sum of tbe siz~ of
tbe Rts.

Tbis time is leM tban tbat of the O(mn) time needed to take tbe union of Rts
represented by unsorted lists. In fact, if the lists for our seta are not eorted, we
can 80ft them in O(n log n + m log m) time, and tben take the union of tbe eorted
lista. Since n lag n dominates n and m lag m dominates m, we can expreM tbe total

SEC. 7.4 LIST IMPLEMENTATION OF SETS 355

356 THE SET DATA MODEL

cost of sorting and taking the union as O(n log n + m log m). That expression can
be greater than O(mn), but is less whenever n and m are close in value - that is,
whenever the sets are approximately the same size. Thus, it usually makes sense to
sort before taking the union.

Intersection and Difference
The idea in the algorithm for union outlined in Fig. 7.6 works for intersections and
differences of sets as well: when the sets are represented by sorted lists, intersection
and difference are aIso performed in linear time. For intersection, we want to copy
an element to the output only if it appears on both lists, as in case (4). Ir either list
is NULL, we cannot have any elements in the intersection, and so cases (1), (2), and
(3) can be replaced by a step that returns ROLL. In case (4), we copy tbe element at
tbe heads of the lists to the iotersection. lo cases (5) and (6), where the heads oí
the lists are differeot, the smaller cannot appear 00 both lists, and so we do not add
anythiog to the intersection but pop the smaller off its list and take the intersectioo
oí the remainders.

To see why that makes sense, suppose, for example, that a is at the head oí
list L, that b is at the head oí list M, and that a < b. Then a cannot appear on
tbe sorted list M, and so we can rule out tbe possibility that a is on both lists.
However, b can appear on list L somewbere after a, so that we mar still be able
to use b from M. Thus, we need to take tbe intersection oí the tail of L with the
entire list M. Conversely, if b were less than a, we would take tbe intersection of L
with the tail of M. C code to compute the intersection is sbown in Fig. 7.8. It is
alBo necessary to modify &aseable to call intersection instead oí setUnion. We
leave this change as well as a program to compute the difference of sorted lists as
exercises.

LIST intersection(LIST L.

{
if (L = lUu. 11 M = NULL)

return 1Uu.;
else it (L->element == M->element)

return &ssemble(L->el..ent. L->next. M->next);
el se it (L->element < M->element)

return intersection(L->next. M);
e18e /. here. M->eleaent < L->ele.ent ./

return intersection(L. M->next);

}

Fig. 7.8. Computing the intenection of seta 1~I~ted by aorted lista.
A new vemon of a88eable is required.

EXERCISES

LIST 11)

+ + + 7.5 Characteristic- Vector Implementation of Sets
+

+

SEC.7.5 CHARACTERJSTlC-VECTOR IMPLEMENTATlON OF SETS 357

1.4.3: The functioD8 u._ble and .etUnion from Fig. 7.6 leave the lista wh~
union they take intact; that is, they make copies of elementa rather than use tbe
cens of tbe given lista tbemaelves. Can you simplify tbe program by allowing it to
destroy tbe given lista as it takes their union?

1.4.4.: Prove by induction on the sum oftbe lengtbs ofthe lista given as parameters
tbat ..tUnion from Fig. 7.6 returns tbe union of tbe given lisis.

1.4.5.: Tbe symmetric difference of two seta 8 and T is (8 - T) U (T - 8), that
is, the elementa tbat are in exactly one of 8 and T. Write a program to take tbe
symmetric difference of two seta tbat are rep~nted by sorted lista. Your program
should make one pass through the lista, like Fig. 7.6, rather than call routines for
unjan and difference.

1.4.6.: We analyzed tbe program of Fig. 7.6 informally by arguing that if the total
of tbe lengtba of tbe lista was n, tbere were O(n) calls to .etUnion and &.seable
and each call took 0(1) time plus whatever time tbe recursive call took. We can
formalize this argument by letting Tu(n) be tbe running time for setUnion and
T A (n) be the running time of asseable on lista of total lengtb n. Write recursive
roles defining Tu and TA in tenns of each otber. Subetitute t.o eliminate TAl and
set up a conventional recunence for Tu. Solve tbat recurrence. Does it show tbat
setUnion takes O(n) time?

Frequently, the sets we encounter are each subeets of BOrne small set U, which we
shaU refer to as the "universal set." 1 For example, a hand of cards is a subset of tbe

set of all 52 cards. When the aets with which we are concerned are each subsets of
sorne srnall set U, tbere is a representation of aets that is much more efficient than
the list representation discussed in the previous eectioo. We order the elernents of U
in sorne way BO that each element of U can be a880ciated with a unique "position,"
which is an ioteger frorn O up to n - 1, where n is the ournber of elemeots in U.

Theo, given a set S that is cootained in U, we can represent S by a charoc-
temtic vector of O's and 1 's, 8uch that for each elemeot z of U, if z is in S, the
position correspooding to z has a 1, and if z is not in S, then that position has a O.

Example 7.13. Let U be the set ofcarda. We may arder the carda any way we
ch~, but one reasonable scheme is to arder them by suits: clubs, then diamonds,
then hearls, then spad~. Then, within a suit, ft arder the carda ace, 2, 3,. . .,10,
jack, queen, king. For instance, the position of the ace of clubs is O, the king of
clubs is 12, the ace of diamonds is 13, and the jack of spad~ is 49. A royal flush in
hearts is represente<! by the characteristic vedor

00000000000000000000000000 1 00000000 1111 0000000000000

I Oí COUI'8e U cannot be a true uniyenaJ Rt, 01" -* of aU seta, whidl - arsued does not exiat
becau8e of Ruaell'. paradox.

358 THE SET DATA MODEL

The first 1, in position 26, the ace of heartsj and the other four 1 's, in
positions 35 through 38, represent 10, jack, queen, and king of hearts.

Tbe set of all clubs is represented by

1111111111111000000000000000000000000000000000000000

and the set of all picture cards is represented by

0000000000111000000000011100000000001110000000000111

..

Array Implementation oí Sets

We can represent characteristic vectors íor subsets oí a universal set oí n elements
using Boolean arrays oí the íollowing type:

typedef BOOLEAN USET[n];

The type BOOLEAN is as described in Section 1.6. To insert the element corresponding
to position i into a set S declared to be oí type USET, we have only to execute

S[i] = TRUE;

Similarly, to delete the element corresponding to position i from S, we do

S[i] = FALSE;

If we want to look up this element, we have only to return the value S(11, which
tells us whether the ith element is present in S or noto

Note that each of the dictionary operations insert, delete, and lookup thus
takes 0(1) time, when sets are represented by characteristic vectors. The only
disadvantage to this technique is that all sets must be subsets of some universal set
U. Moreover, the universal set must be smallj otherwise, the length of the arrays
becomes 80 large that we cannot store them conveniently. In fact, since we shall
normally have to initialize all elements of the array for a set S to TRUE or FALSE,
the initialization of any subset of U (even 0) must take time proportional to the
size of U. If U had a large number of elements, the time to initialize a set could
dominate the cost of all other operations.

To forro the union of two sets that are subsets of a common universal set of
n elements, and that are represented by characteristic vectors S and T, we define
another characteristic vector R to be the bitwise DR of the characteristic vectors S
and T:

R[i] = S[i] 11 T[i], for O .s i < n

Similarly, we can make R represent the intersection of S and T by taking the bitwise
AND of S and T:

R[i] = S[i] U T[i], for O.s i < n

Finally, we can make R represent the set difference S - T as follows:

R[i] = S[i] U IT[i]. for O.s i < n

+

SEC. 7.5 CHARACTERISTIC- VECTOR IMPLEMENTATION OF SETS 359

The arrays representing characteristic vectors and the Boolean operations on them
can be implemented using the bitwiae operators oí C ií we define the type BOOLBO
appropriately. However, the code is machine specific, and 80 we shall not preaent
any details here. A portable (but more space coD8uming) implementation oí char-
acteristic vectors can be accomplished with arrays oí int's oí the appropriate size,
and this is the definition of BOOLEd that we have assumed.

Example 7.14. Let U8 consider ~ts oí apple varieties. Our univenal set will
consist of tbe six varieties listed in Fig. 7.9; tbe order oí their listing indicates their
position in characteristic vectors.

Fig. 7.9. Cbaracteri8tics of some apple varieties.

The set of red apples is represented by the characteristic vector

Red = 101110

and the set of early apples is representOO by

Early = 011100

Thus, the set of apples that are either red or early, that is, Red U Early, is repre-
seoted by the characteristic vector 111110. Note that this vector has a 1 in thc»e
positions where either the vector for Red, tbat is, 101110, or tbe vector for Early,
that is, 011100, or botb, have a 1.

We can find the characteristic vector for Red n Early, the set oí apples that
are both red and early, by placing a 1 in th~ poeitioD8 where both 101110 and
011100 have 1. The resultiog vector is 001100, representing tbe set of apples
{Gravenstein, Jonathan}. Tbe set of apples that are red but not early, that is,

Red - Early

is represented by tbe vector 100010. Tbe Iet is {Delicious, McIntosh}. +

Notice tbat tbe time to períorm union, intersection, and difl'erence using cbar-
act.erist.ic vectors is proponional to tbe lengtb of the vectors. That length is not
directly related to the size of the sets, but is equal to the size of the universal seto
If the sets have a reasonable fraction of the elements in the universal set, then the
time for union, intersection, and difl'erence is proportional to the sizes of the sets
involved. That is better than the O(n log n) time for M>rted Ü8t.s, and much better
than the O(n2) time for unsorted lists. However, the drawback of characteristic

360 THE SET DATA MODEL

vectors is that, should the seta be much smaller than the universal set, the running
time of these operatioDs can be far greater than the sizes of the sets involved.

EXERCISES

T .5.1: Give the characteristic vecton of the following seta oí carda. For convenience,
you can use O" to represent k consecutive O'a and 1" for k consecutive l's.

a) The cards found in a pinochle deck

b) The red cards

c) The one-eyed jacb and the suicide king

1.5.2: Using bitwiae operators, write C programs to compute tbe (a) union and (b)
difference oí two sets oí cards, tbe first represented by words al and a2, the aecond
represented by 61 ud 62.

1.5.3-: Suppoee we wanted to represent a bag (multiset) wbose elements were
contained in sorne small universal set U. How could we generalize the cbaracteristic-
vector method oí representat.ion to bags? Sbow bow to perform (a) in_ert, (b)
delete, and (c) lookup on bags repreeented this way. Note that bag lookup(z)
retorna the number oí times z appears in the hago

..."'... 7.6 Hashing
...

The characteristic-vector representation of dictionaries, when it can be used, allows
us to access directly the place where an element is represented, that is, to access the
position in the array that is indexed by the value of the elemento However, as we
mentioned, we cannot allow our universal set to be toa large, or the array will be toa
long to lit in the available memory of the computer o Even ir it did lit, the time to
initialize the array would be prohibitive. For example, suppose we wanted to store
a real dictionary of words in the English language, and aIso suppose we were willing
to ignore words longer than 10 letters. We would still have 2610 + 269 + o o o + 26
possible words, or ayer 1014 wordso Each of these possible words would require a
position in the arrayo

At any time, however, there are only about a million words in the English
language, 80 that only one out of 100 million of the array entries would be TaURo
Perhape we could collapee the arfar, 80 that many pO8ible words could share an
entry. For example, suppose we aaigned the first 100 million possible words to the
first cell of the array, the next 100 mili ion possibilities to the second cell, and 80 on,
up to the millionth cello There are two problems with this arrangement:

1. It is no longer enough just to put TaUR in a rell, because we won 't know which
ofthe 100 mili ion possible words are actually p~nt in the dictionary, or irán
fact more than one word in any one group is presento

SEC.7.6 HASHING 361

2. If, for example, tbe first 100 million pO8ible words include aIl tbe sbort words,
tben we would expect many more tban tbe average number of words from tbe
dictionary to fall into tbis group of possible words. Note tbat our arrangement
bu u many ceUs of tbe array as tbere are words in tbe dictionary, and 80 we
expect tbe average celI to rep~t oRe word; but surely tbere are in Englisb
many tbousands of words in tbe first group, wbich would include all tbe words
of up to five letters, and 8Ome of tbe six-letter words.

To solve problem (1), we need to list, in each cell of tbe array, all tbe words
in its group tbat are p~t in tbe dictionary. Tbat is, tbe array cell becomes
tbe beader of a linked list witb tb~ words. To sol ve problem (2), we need 10
be careful bow we assign potential words to groups. We must distribute elements
among groups 80 tbat it is unlikely (althougb Rever impossible) that there will be
many elements in a single group. Note that if tbere are a large number of elements
in a group, and we repreaent groupe by linked lista, tben lookup will be very slow
for members of a large group.

The Hash Table Data Structure
We have now evolved from the characteristic vector - a valuable data structure that
is of limited use - to a structure called a ha.sh table tbat is useful for any dictionary

wbatsoever, and for many other purpCMles as well.2 The speed of the hasb table for
the dictionary operations can be made O(1) on the average, independent of the size
oí the diction&ry, and independent of the size of the universal set from which the
dictionary is drawn. A picture oí a hash table appears in Fig. 7.10. However, we
show the list for only one group, that to wbich r. belongs.

headera

b
lJ i '!

.

h
~ . h(~)

B-l

-"f~I:~

Fig. 7.10.

2 Althoup in 8ÍtuatioD8 where a dJar8CteIi8tic vedor is feaaible, - _Id normally prefer
that repreeentation oftr any other.

Felix Calderon

362 THE SET DATA MODEL

There is a hash function that takes ao element % as argument and produces ao
integer value between O and B - 1, where B is the number of buckets in the hash
table. The value h(%) is the bucket in which we place the element %. Thus, the
buckets correspond to the "groups" of words that we talked about in the preceding
informal discussion, and the hash function is used to decide to which bucket a given
element belongs.

The appropriate hash function to use depends on the type of the elements. For

example,

1. If elements are integers, we could let h(%) be % ~ B, that is, the remainder
when % is divided by B. That number is always in the required range, O to
B-l.

2. If the elements are character strings, we can take ao element % = ala2.. .a".
where each ~ is a character, and compute y = al + a2 +... + ak. since a char
in C is a small integer. We then have an integer y that is the sum of the integer
equivalents of al\ the characters in the string %. If we divide y by B and take
the remainder, we have a bucket number in the raoge O to B - 1.

What is importaot is that the hash function "hashes" the elemento That is, h wildly
mixes up the buckets into which elements fall, so they tend to fan in approximately
equal numbers into al\ the buckets. This equitable distribution must occur even for
a fairly regular pattern of elements, such as consecutive integers or character strings
that differ in only one position.

Each bucket consists of a linked list wherein are stored all the elements of the
set that are sent by the hash function to that bucket. To find an element x, we
compute h(x), wroch gives us a bucket number. If % is anywhere, it is in that bucket,
so that we mar search for x by running down the list for that bucket. In effect, the
hash table al\ows us to use the (slow) list representation for sets, but, by dividing
the set into B buckets, al\ows us to search lists that are only 1/ B as long as the size
of the set, on the average. If we make B roughly as large as the set, then buckets
will average only one element, and we can find elements in ao average ofO(l) time,
just as for the characteristic-vector representation of sets.

Bucket

Hash function

Example 7.15. Suppose we wisb to atore a set oí cbaracter strings oí up to
32 characters, where each string is terminated by tbe null character. We sball use
tbe basb íunction outlined in (2) above, witb B = 5, tbat is, a five-bucket bash
table. To compute tbe basb value oí each element, we sum tbe integer values oí tbe
characters in eacb string, up to but not including tbe null character. Tbe following
declarations give us tbe desired types.

(1) ~efine B 6
(2) typedef char ETYPE[32];
(3) DefCell(ETYPE. CELL. LIST);
(4) typedef LIST HASHTABLE[B];

Line (1) defines tbe constant B to be tbe number ofbuckets, 5. Line (2) defines
tbe type ETYPE to be arrays oí 32 characters. Line (3) is our usual definition oí cells
and linked lists, but bere tbe element ty:pe is ETYPE, tbat is, 32-<:baracter arrays.
Line (4) defines a basbtable to be an array oí B lista. Ií we tben declare

+

SEC. 7.6 HASHING 363

HASHT OLE header.

the array header. is oí the
hash table.

to contain tbe bucket beaders Cor ourappropriate type

int h(ETYPE x)
{

int i, su.;

su. = o;
tor (i . o; xCi]

su. += x[i];
retum 8ua X B;

'\0'; i++)

}

FIg.7.11. A hash functioo that 8UID8 the integer equivalents of dJaracten,
assuming ETYPE Í8 an alTaY of maracten.

Now, we must define the hash function h. The code for this function is shown
in Fig. 7.11. The integer equivalent of each of tbe characters of the string .r is
summed in tbe variable su. Tbe last step computes and retums as tbe value of
tbe bash function h the remainder of tbis sum when it is divided by tbe number of
buckets B.

Let us consider some examples of words and the buckets into which tbe function
h puta tbem. We shall enter into tbe bash table the seven words3

anyone liYed in a prettJ ho. toVD

In arder to compute h(aDJone), we need to understand the integer values of char-
acters. In tbe usual ASCII code for charaders, the lower~ letters bave integer
values starting at 97 for a (that's 1100001 in binary), 98 for b, and so on, up to
122 for z. Tbe upper-case letters correspond to integers that are 32 less than their
lower-case equivalents - that is, from 65 for A (1000001 in binary) to 90 for Z.

Thus, tbe integer equivalents for the charaders in aDJone are 97,110,121,111,
110, 101. The sum of theae is 650. Wben we divide by B, wbicb is 5, we get tbe
remainder O. Tbus, aDJone belongs in bucket O. The seven words of our example
are a.igned, by tbe hash function oí Fig. 7.11, to the buckets indicated in Fig. 7.12.

We see tbat tbree oí tbe seven words bave been a.igned to one bucket, number
O. Two words are a.igned to bucket 2, and one each to buckets 1 and 4. Tbat is
somewbat less even a distribution tban would be typical, but witb a small number oí
words and bucketa, we should expect anomalies. As the number of words becomes
large, they will tend to distribute themselves among the five buckets approximately
evenly. The basb table, &Íter insertion oftbese eeven words, is shown in Fig. 7.13. +

Implementing the Dictionary Operations by a Hash Table

To ineert, delete, or looK up an element .r in a dictionary that is represented by a
basb table, tbere is a simple tbree-step proceM:

s The worda ace IroIO a poem 01 the aarne name by e. e. cumminp. The poem d- 't set any
eMie1" to decode. The next line ia "with up 80 ftoatin& many bella down."

364 THE SET DATA MODEL

l. Compute the proper bucket, which is h(z).

2. Use the array of header pointers to find the list of elements (or the bucket
numbered h(z).

3. Perform the operation on this list, just as i(the list represented the entire seto

The algorithms in Section 6.4 can be used for the list operations after suitable mod-
ifications (or the fact that elements here are character strings while in Section 6.4
elements were integers. As an example, we show the complete function (or inserting
an element into a hasb table in Fig. 7.14. You can develop similar functions for
delete and lookup as an exercise.

To understand Fig. 7.14, it helps to notice that the function bucketInsert is
similar to the function insert Crom Fig. 6.5. At line (1) we test to see whether we
have reached the end o(the listo I(we have, then we create a new cell at line (2).
However, at line (3), instead of storing an integer into the newly created cell, we
use tbe function strcpy from tbe standard header lile string.h to copy the string
z into the element field o(the cell.

Also, at line (5), to test i(z has not yet been found on the list, we use function
strcap from string. h. That (unction returns O if and only if z and tbe element in
the current cell are equal. Thus, we continue clown the list as long as tbe value of
the comparison is nonzero, tbat is, as long as the current element is not z.

The function insert here consists o(a single line, in wbich we call buck-

Worda,Fig. 7.12. their values, and their buckets.

~

o
1

2

3

4

Fig.7.13. Hash table holding seven elements

... Example 7.16. SUppOBe we wish to delete the element in from the hash table
of Fig. 7.13, assuming the hash function deacribed in Example 7.15. The delete
operation is carried out eMentially like the function in..rt of Fig. 7.14. We compute
h(in), which is O. We thus go to the header for bucket number O. The ~d cell
on the list for this bucket holds in, and we delete that cell. Tbe detailed C program
is left as an exercise. +

SEC.7.6 HASHING 365

linclude <8tring.h>

yoid bucketIn.ert (ETYPE x. LIST .pL)
{

(1) if «.pL) :2 IUU) {
(2) (.pL) = (LIST) aalloc(.izeof(8truct CELL»;

(3) .trcpy«.pL)->eleaent. x);
(4) (.pL)->next = RULL;

}
(5) el.e if (8trc8p«.pL)->el..ent. x» /. x and ele.ent

are differeut ./
(6) bucketIn.ert(x, a«.pL)->next»;

}

yoid in8ert(ETYPE x, HASHTABLE H)
{

(7) bucketIn8ert(x. a(H[h(x)]»;
}

Fig. 7.14. Inserting an dement joto a hash table.

et In8.rt alter first finding the element of the &fray that ia tbe header for tbe
appropriate bucket, h(z). We assume that the hash function h ia defined elsewhere.
Also recall that the type HASHTABLE means that H is an &fray of pointers to cells
(i.e., an array of lists).

Running Time of Hash Table Operations
As we can see by examining Fig. 7.14, tbe time taken by the function inserl to find
the beader of the appropriate bucket is 0(1), BMuming that tbe time to compute
h(z) is a constant independent of tbe number of elementa stored in the huh table.4
To this constant we must add on the average an additional O(nl B) time, if n is
tbe number of elements in the bub table &ud B is the number of buckets. Tbe
reason is that bucketlnserl will take time proportional to the leogth of tbe list, and
that length, on the average, must be the total number of elements divided by the
number of buckets, or nI B.

An interesting coosequence is that if we make B approximately equal to the
number of elements in the set - tbat is, n and B are cloee - then nI B is about 1

4 Tbú would be the ~ for the h_h fundion oí Fig. 7.11, or mc»t other ~ functiona
eocountered in pnctice. The time for computin¡ the bucket number may depend on the type
oí the element - longer árinp may require tbe .ummation oí moce integen. for example -

but the time i. not dependent on the number of elementa .tored.

366 THE SET DATA MODEL

and the dictionary operations on a hash table take 0(1) time each, on the average,
just as when we use a characteristic-vector representation. If we try to do better
by making B much larger than n, so that most buckets are empty, it still takes
us 0(1) time to find the bucket header, and so the running time does not improve
significantly once B becomes larger than n.

We must also consider that in some circumstances it mar not be possible ta
keep B clase to n all the time. If the set is growing rapidly, then n increases while
B remains fixed, so that ultimately ni B becomes large. It is possible to restructure
the hash table by picking a larger value for B and then inserting each of the elements
into the new table. It takes O(n) time to da so, but that time is no greater than
the O(n) time that must be spent inserting the n elements into the hash table in
the first place. (Note that n insertians, at 0(1) average time per insertian, require
O(n) time in all.)

Restructuring
hash tables

EXERCISES

7.6.1: Continue filling the hash table of Fig. 7.13 with the words with up so
floating many bella down.

7.6.2.: Comment on how effective the following hash functions would be at dividing
typical sets of English words into buckets of roughly equal aire:

a) Use B = 10, and let h(x) be the remainder when the length of the word x is
divided by 10.

b) Use B = 128, and let h(x) be the integer value of the last character of x.

c) Use B = 10. Take the sum of the values of the characters in x. Square the
result, and take the remainder when divided by 10.

7.6.3: Write C programs for performing (a) delete and (b) lookup in a hash table,
using the same assumptions as for the code in Fig. 7.14.

+ + + 7.7 Relations and l4\1nctions

+

While we have generally assumed that elements of sets are atomic, in practice it is
often useful to give elements some structure. For example, in the previous section we
talked about elements that were character strings of length 32. Another important
structure for elements is fixed-Iength lists, whicll are similar to C structures. Lists
used as set elements will be called tuples, and each list element is called a component
of the tuple.

'l\¡ple,

The number of components a tuple has is caUro its arity. For example, (a, b)
is a tuple of arity 2; its first component is a and its second component is b. A tuple
of arity k is algo caUro a k-tuple.

A set of elements, each of which is a tuple of the salDe arity, - say, k - is

called a relation. Tbe arity of tbis relation is k. A tuple or relation of arity 1 is
unary. H the arity is 2, it is binary, and in general, if the arlty is k, then the tuple
or relation is k-ary.

Arity:
binary

unary,

A
c

...

+

SEC.7.7 RELATIONS ANO FUNCTIONS 367

Example 7.17. The relation R = {(1,2), (1,3), (2,2)} is a relation oí arity
2, or a binary relation. Its members are (1,2), (1,3), and (2,2), each oí which is a
tuple oí arity 2. +

In this section, we shall consider primarily binary relations. There are also
many important applications oí nonbinary relations, especially in representing and
manipulating tabular data (as in relational databases). We shall discuss this topic
extenaively in Chapter 8.

ProductsCartesian

Before studying binary relationa fonnally, we need to define anotber operator on
seu. Let A and B be two seu. Tben tbe product of A and B, denoted A x B, is
defined as the set of pairs in which tbe first component is ch~n from A and tbe
second component from B. That is,

AxB={(a,h)la E Aandh E B}

The product is eometimes called tbe Carle$ian product, after the French mathe-
matician René Descartes.

Example 7.18. Recall that Z is the conventional symbol íor the set oí all
integers. Thus, Z X Z stands íor the set oí pairs oí integers.

As another example, ií A is the two-dement set {l, 2} and B is the three-
element set {a, 6, c}, then A x B is the six-element set

{(l,a), (1,6), (l,c), (2,a), (2,6), (2,c)}

Note that the product ofseta is aptly named, because ií A and B are finite seta,
then the number oí elementa in A x B is the product oí the number oí elements in
A and the number oí elementa in B. +

Product of More Than Two SetsCartesian

Unlike the arithmetic product, the Cartesian product d~ not have the common
properties of commutativity or 888OCiativity. It is easy to find examples where

AxB~BxA

disproving commutativity. The aMOCiative law does not even make sense, becauae
(AxB)xC would bave as members pairs like «a, 6),c), whilemembersof Ax(BxC)
would be pairs of tbe forrn (a, (6, c)).

Since we sball need on several occasions to talk about eets of tuples witb more
tban two components, we need to extend tbe product notation to a k-way producto
We let Al x A2 X ... X Ak, stand for the prrJduct ofsets Al, A2"" ,Ak" that is, the
setofk-tuples(al,a2,...,ak,)suchthatal E Al,a2 E A2,...,andak, E Ak,.

368 THE SET DATA MODEL

Example 7.19. Z x Z x Z representa the set oí triples oí integers (i,j, k) -
it contains, for example, the triple (1,2,3). This three-way product should not be
coníused with (Z x Z) x Z, which representa pairs like ((1,2),3), or Z x (Z x Z),

+

which representa pairs like (1, (2, 3)).
On the other hand, note that all three product expressions can be represented

by structures consisting oí three integer fields. The distinction is in how one inter-
prets the structures oí this type. Thus, we often feel free to "confuse" parenthesized
and unparenthesized product expressions. Similarly, the three C type declarations

struct {int ti; int t2; int t3;};
struct {struct {int ti; int t2;}; int t3;};

struct {int ti; struct {int t2; int t3;};};

would all be stored in a Slffi
dift'er. +

Binary Relations
A binary relation R is a set of pairs that is a 8ubset of the product of two sets A
and B. If a relation R is a subset of A x B, we say that R is from A fo B. We call
A the domain and B tbe mnge of tbe relatioo.
R is a relatioo on A or "00 tbe dornaio" A.

Domain, range

... Example 7.20. The arithmetic relation < 00 integers is a subset of Z x Z,
consistiog of those pairs (a, b) such tbat a is less tban b. Tbus, the symbol < may
be regarded as the oame of the set

{(a,b) I (a,b) E Z x Z, and a is less than b}

We tben use a < b as a shorthand for "(a, b) E <," or "(a, b) is a member of the
relation <." The other arithmetic relations on integers, such as > or ~, can be
defined siroilarly, as can the aritbmetic coroparisons on real numbers.

For another example, consider the relation R from Example 7.17. Its domain
and range are uncertain. We know that 1 and 2 must be in the domain, because
these integers appear as first components of tuples in R. Similarly, we know that
the range of R roust include 2 and 3. However, we could regard R as a relation froro
{1,2} to {2, 3}, or as a relation from Z to Z, as two examples among an infinityof
choices. ...

Infix Notation for Relations
As we suggested in Example 7.20, it is common to use an infix notation for binary
relations, 80 that a relation like <, which is really a set of pairs, can be written
between the components of pairs in the relation. That is wby we coromonly find
expressions like 1 < 2 and 4 ~ 4, rather tban tbe more pedantic "(1,2) E <" or
"(4,4) E ~."

Example 7.21. Tbe salDe notation can be used Cor arbitrary binary relatioDS.
For instance, tbe relation R from Example 7.17 can be written as tbe tbree "(&cts"
lR2, lR3, and 2R2. ...

..

iJar way - only the notation Cor accessing fields would

If B is the SalDe as A, we say that

Current

domain, range

Declared

domain, range

... Example 1.22. The graph Cor the relation R Croro Example 7.17 is shown in
Fig. 7.15. It has nodes Cor the elements 1,2, and 3. Since lR2, there is an arc Crom
node 1 to node 2. Since lR3, there is an aI"C Croro 1 to 3, and since 2R2, there is an
aI"C Crom node 2 to itselC. There are no other arca, becauae there are no other pairs
in R. ...

SEC.7.7 RELATIONS ANO FUNCTIONS 369

Declared and Current Domains and Ranges
The second part of Example 7.20 underacores the point that we cannot ten the
domain or range of a relation just by looking at it. Surely the set of elements
appearing in first components must be a subeet of the domain, and the set of
elements that occur in second components must be a 8ubeet of the range. However,
there could be other elements in the domain or range.

The difl'erence is not important when a relation does not change. However,
we shall see in Sections 7.8 and 7.9, and also in Chapter 8, that relations whoee
values change are very important. For example, we rnight speak of a relation whose
domain is the students in a cla., and wh<Me range is integers, representing total
scores on homework. Before the cla. starts, there are no pairs in this relation.
After the first assignrnent is graded, there is one pair for each student. As time
goes on, students drop the cla. or are added to the cla., and scores increase.

We could define the domain o(this relation to be the set of all students reg-
istered at the university and the range to be the set of integers. Surely, at aoy
time, the value of the relation is a subeet of the Cartesian product of tbese two sets.
On the other haod, at any time, the relation has a current domain and a current
ronge, which are the sets of elements appeariog in first and second cornponents,
respectively, of the pairs in the relation. When we need to make a distinction, we
can can the domain and range the declared domain and range. The current dornajo
and range win always be a subeet of tbe declared domain and range, respectively.

Graphs for Bioary Relatioos

We can represent a relation R whose domain is A and wh~ range is B by a graph.
We draw a nade for each element that is in A and/or B. If aRb, then we draw an
arrow ("arc") (rom a to b. (General graphs are discussed in more detail in Chapter

9.)

Flg. 7.16. Grapb for tbe reIation {(1.2), (1.3), (2,2)}.

370 THE SET DATA MODEL

Functions

Suppose a relation R, from domain A to range B, has the property that for every
member a of A there is at most one element b in B such that aRb. Then R is said
to be a partial function from domain A to mnge B.

If for every member a of A there is exactly one element b in B such that aRb,
then R is said to be a total function from A to B. The difference between a partial
function and a total function is that a partial function can be undefined on some
elements of its domain; for example, for some a in A, there may be no b in B such
that aRb. We shall use the term "function" to refer to the more general notion of
a partial function, but whenever the distinction between a partial function and a
total function is important, we shall use the word "partial."

There a common notation used to describe functions. We often write R(a) = b
if b is the unique element such that aRb.

Partia! function

Total function

Example 7.23. Let 5 be the total function from Z to Z given by

{(a,b) lb = a2}

that is, the set of pairs of integers whose second component is the square of the
first component. Then 5 has such members as (3,9), (-4,16), and (O, O). We can
express the fact that 5 is the squaring function by writing 5(3) = 9, 5(-4) = 16,
and 5(0) = O. .

.

Notice that the set-theoretic notion of a function is not much different from the
notion of a function that we encountered in C. That is, suppose 8 is a C function
declared 88

int .(int a)
{

return a*a;
}

that takes an integer and retums its square. We usually think of s(a) as being the
same function as S(a), although the Corroer is a way to compute squares and the
latter only defines the operation of squaring abstractly. Also note that in practice
s(a) is always a partial function, since there are many values of a for which s(a)
will not retum an integer because of the finiteness of computer arithmetic.

C has functions that take more than one parameter. A C function f that takes
two integer parameters a and b, retuming an integer, is a function from Z x Z to
Z. Similarly, if the two parameters are of types that make them belong to sets A
and B, respectively, and f retums a member of type C, then f is a function from
A x B to C. More generally, if f takes k parameters - say, from sets Al, A2' . . ., Ak,
respectively - and retums a member of set B, then we say that f is a function
from Al x A2 X ... X Ak to B.

For example, we can regard the function lookup(x,L) from Section 6.4 as a
function from Z x L to {TROE, FALSE}. Here, L is the set of linked lists of integers.

Formally, a function from domain Al x ... X Ak to range B is a set of pairs of

the forro ((al,.. .,ak),b), where each a.- is in set Ai and bis in B. Notice that the
first element of the pair is itself a k-tuple. For example, the function lookup(x,L)
discussed above can be thought of as the set of pairs ((z, L), t), where z is an

The Many Notations for Functions

A function F from, say, A x B to C is technically a subset of (A x B) x C. A typical
pair in the function F would thU8 have the form (a,6), c), where a, 6, and c are
members of A, B, and C, respectively. Using the special notation for functions, we
can write F(a,6) = c.

We can aOO view F as a relation from A x B to C, since every function is a
relation. Using the inftx notation for relations, the fact that «a, b), c) is in F could
a1so be written (a, b)Fc.

When we extend the Cartesian product to more than two sets, we mar wish to
remove parentheses from product, expressions. Tbus, we might identify (A x B) x C
with t,he technicalIy inequivalent expression A x B xC. In that case, a typical
member of F could be written (a, b, c). If we stored F as a set of such triples,
we would have to remember that the first two components togetber make up t,be
domain element and the third component is the range elemento

ioteger, Lisa list of iotegers, and t is either TRUE or FALSE, depending 00 whether
z is or is not on the list, L. We can think of a function, whether written in C or
as formally defined in set theory, as a box that takes a value from the domain set
and produces a value from the rauge set, as suggested in Fig. 7.16 for the function
lookup.

Surjection

Injection

SEC.7.7RELATIONS AND FUNCTIONS 371

(z, L) --i~~J- t

8. A function a8Oclata elements from the domain
. - -Fig. 7.16.

One-to-One Correspondences
Let F be a partía! funct.ion frorn domain A to range B with the following properties:

l. For every element a in A, tbere is an element b in B such that F(a) = b.
2. For every b in B, tbere is sorne a in A such tbat F(a) = b.
3. For no b in B are tbere two elements al ud a2 in A sucb tbat F(al) and F(a2)

are botb b.

Tben F is Raid to be a one-to-one coM'espondence from A to B. Tbe term bijection
is also used for a one-to-one correspondence.

Property (1) says tbat F is a total function from A to B. Property (2) is the
condition of being onto: F is a total function frorn A onto B. Some rnatbematicians
use tbe term surjection for a total function tbat i8 onto.

Properties (2) and (3) together say that F bebaves like a total function from
B to A. A total function with property (3) is sometirnes called an injection.

A one-to-one correspondence is basically a total function in both directions, but
it i8 important to observe that whetber F i8 a one-to-one correspondence dependa
not only on the pairs in F, but on the declared domain ud ruge. For example, we
could talce any one-to-one correspondence from A to B and change the domain by

372 THE SET DATA MODEL

adding to Asome new element e not mentioned in F.
correspondence from A U {e} to B.

Example 7.24. The squaring function S from Z to Z of Example 7.23 is not
a one-to-one correspondence. It does satisfy property (1), since for every integer i
there is some integer, namely, i2, such that S(i) = i2. However, it fails to satisfy
(2), since there are some 6's in Z - in particular all the negative integers - that

are not S(a) for any a. S algo fails to satisfy (3), since there are many examples
of two distinct a's for which 5(a) equals the same b. For instance, 5(3) = 9 and
5(-3) = 9.

For an example of a one-to-one correspondence, consider the total function P
from Z to Z defined by P(a) = a + l. That is, P adds 1 to any integer. For instance,
P(5) = 6, and P(-5) = -4. An alternative way to look at the situation is that P
consista of the tuples

{..., (-2,-1), (-1,0), (0,1), (1,2),...}

or that it has the graph of Fig. 7.17.
We claim that Pis a one-to-one correspondence from integers to integers. First,

it is a partial function, since when we add 1 to an integer a we get the unique integer
a+ l. It satisfies property (1), since for every integer a, there is some integer a+ 1,
which is P(a). Property (2) is algo satisfied, since for every integer b there is some
integer, namely, b - 1, such that P(b - 1) = b. Finally, property (3) is satisfied,
because for an integer b there cannot be two distinct integers such that when you
add 1 to either, the result is 6. ...

..

---"Ev---"Ev---""(~)--"(~) (~~

Fig.7.17.

A one-to-one correspondence from A to B is a way of establishing a unique
association between the elemeots of A and B. For example, if we clap our banda
together, the left and right thumbs touch, the left and right index fiogers touch, aod
so oo. We can think of this associatioo betweeo the set of fiogers 00 the left haod
and the fiogers on the right hand as a one-to-one correspondence F, defined by
F("left thumb") = "right thumb", F("left index finger") = "right index finger",
aod so oo. We could similarly think of the association as the ioverse function, from
the right hand to the left. In general, a one-to-one correspoodence from A to B
can be ioverted by switchiog the arder of components in its pairs, to become a
one-to-one correspondence from B to A.

A consequence of the existence of this ooe-to-one correspondeoce between haods
is that the number of fingers on each hand is the same. That seems a natural and
iotuitive notion; two sets have the same number of elemeots exactly when there is
a one-to-ooe correspoodence from ooe set to the other. However, we shall see in
Section 7.11 that when sets are infinite, there are some surprisiog conclusions we
are forced to draw from this definition of "same number of elements."

F would not be a one-to-one

Graph for the relation that is the function P(o) =0+1.

SEC. 7.8 IMPLEMENTING FUNCTIONS AS DATA 373

EXERCIS ES

1.1.1: Give an example of sets A and B for which A x B is not the sarne 88 B x A.

1.1.2: Let R be the relation defined by aRb, bRc, cRd, aRc, and bRd.

a) Draw the graph of R.
b) Is R a function?
c) Name two possible dornains for R; name two possible ranges.
d) What is the srnallest set S such that R is a relation on S (i.e., the dornajo and

the range can both be S)?

1.1.3: Let T be a tree and Jet S be the set of nodes of T. Let R be the "child-
parent" relation; that is, cRp if and only if c is a child of p. Answer the following,
and justify your answers:

a) Is R a partial function, nornatter what tree T is?
b) Is R a total function from S to S no rnatter what T is?
c) Can Rever be a one-to-one correspondence (i.e., for sorne tree T)?
d) What does the graph for R look like?

7.1.4: Let R be the relation on the set of integers {1, 2, . . ., lO} defined by aRb if a
and b are distinct and have a common divisor other than 1. For example, 2R4 and
6R9, but not 2R3.

a) Draw the graph for R.
b) Is R a function? Why or why not?

1.7.5*: Although we observed that S = (A x B) x C and T = A x (B x C) are
not the same set, we can show that they are "essentially the same" by exhibiting a
natural one-to-one correspondence between them. For each ((a, b), c) in S, Jet

F(((a,b),c») = (a,(b,c))

Show that F is a one-to-one correspondence from S to T.

7.1.6: What do the three statements F(10) = 20, 10F20, and (10,20) E F have
in cornrnon?

Inverse relation 7.7.7*: The inverse of a relation R is the set of pairs (b, a) such that (a, b) is in R.

a) Explain how to get the graph of the inverse of R from the graph for R.
b) If R is a total function, is the inverse of R necessarily a function? What if R

is a one-to-one correspondence?

7.7.8: Show that a relation is a one-to-one correspondence if and only if it is a total
function and its inverse is also a total function.

+:... 7.8 Implementing Functions as Data

In a prograrnming language, functions are usually impJemented by code, but when
their dornain is small, they can be implemented using techniques quite similar to
the ones we used for sets. In this section we shall discuss the use of linked lists,
characteristic vectors, and hash tables to implement finite functions.

-',. $;;;:,,~. ="""",=,,,'_-::::.~~:

374 THE SET DATA MODEL

Operations 00 Fuoctioos

Tbe operations we most commonly perforro on functions are similar to tb~ for
dictionaries. Suppose F is a function from domain set A to range set B. Then we

may

1. lnsert a new pair (a, b), sucb that F(a) = b. The only nuance is that, since
F must be a function, should tbere already be a pair (a,c) for any c, this pair
must be replaced by (a, b).

2. Delete the value associated with F(a). Mere, we need to give only tbe domain
value a. If tbere is any b such tbat F(a) = b, tbe pair (a, b) is removed from
the seto If there is no such pair, then no change is made.

3. Lookup the value associated with F(a)j that is, given domain value a, we return
the value b such that F(a) = b. If there is no such pair (a, b) in the set, then
we return some special value warning that F(a) is undefined.

Example 7.25. Suppose F consists of tbe pairs {(3,9), (-4,16), (O, O)}; that
is, F(3) = 9; F(-4) = 16, and F(O) = O. Tben lookup(3) returns 9, and lookup(2)
returns a value indicating tbat no value is defined for F(2). If F is tbe "squaring"
function, tbe value -1 might be used to indicate a missing value, since -1 is not
the true square of any integer.

Tbe operation delete(3) removes tbe pair (3,9), while delete(2) has no effect.
H we execute insert(5,25), the pair (5,25) is added to tbe set F, or equivalently,
we now bave F(5) = 25. If we execute insert(3, 10), tbe old pair (3,9) is removed
from F, and the new pair (3, 10) is added to F, 80 tbat now F(3) = 10. ...

.

SEC. 7.8 IMPLEMENTING FUNCTIONS AS DATA 375

Linked-List Representation of Functions

A Cunction, being a set oC pairs, can be stored in a linked list just like any other seto
It is useCul to define cells with three fields, one Cor the domain value, one Cor the
range value, and one Cor a next-cell pointer. For example, we could define cells as

typedet struct CELL .LIST;
struct CELL {

DTYPE doaain;
RTYPE range;
LIST next;

};

where DTYPE is the type for domain elements and RTYPE is the type for range
elements. Then a function is represented by a pointer to (the first cell oí) a linked
listo

The function in Fig. 7.18 performs the operation insert(a, 6, L), assurning that
DTYPE aod RTYPE are both arrays of 32 characters. We search for a celI contaioiog
a in the domain field. If fouod, we set its range field to b. If we reach the eod of
the list, we create a new celI and store (a, b) therein. Otherwise, we test whether
the celI has dornain elernent a. If so, we change the range value to b, and we are
done. If the dornaio has a value other than a, then we recursively iosert into the
tail of the listo

typedef char DTYPE [32]. RTYPE [32] ;

void insert(DTYPE a. RTYPE b. LIST *pL)
{

if «.pL) == IULL) {/* at end of list */
(.pL) = (LIST) aalloc(sizeof(struct CELL»;

strcpy«.pL)->doaain. a);
strcpy«*pL)->range. b);
(~L)->next = NULL;

else if (!strcap(a. (*pL)->doaain» /* a = doaain element;
change F(a) */

strcpy«*pL)->range. b);
e1se /* domain eleaent is not a */

insert(a. b. a«*pL)->next»;
};

Fig. 7.18. Inserting a new fact joto a function represented as a linked listo

If the functioo F has n pairs, theo insert takes O(n) time 00 the average.
Likewise, the aoalogous delete aod lookup fuoctions for a fuoctioo represeoted as a
lioked list require O(n) time 00 the average.

376 THE SET DATA MODEL

Vector Representation of Functions

Suppose the declared dornain is the integers o through DNU M - 1, or it can be

regarded 88 such, perhaps by being an enurneration type. Then we can use a
generalization of a characteristic vector to represent functions. Define a type FUIlCT
for the characteristic vector 88

typedef RTYPE FUIlCT[DNUM];

Here it is essential that either the function be total or that RTYPE contain a value
that we can interpret 88 "no value."

Example 7.26. Suppose we want to store information about apples, like the
harvest information of Fig. 7.9, but we now want to give the actual month of harvest,
rather than the binary choice early /late. We can associate an integer constant with
each element in the domain and range by defining the enumeration types

enum APPLES {Delicioua, GrannySaith, Jonathan, "clntosh,
Gravenstein, Pippin};

enum "ONTHS {Unknovn, Jan, Feb, Mar, Apr, "ay, Jun, Jul, Aug,
Sep, Oct, Nov, Dec};

This declaration associates O with the identifier Delicioua, 1 with GrannySaith,
and so oo. It also associates O with Unknovn, 1 with Jan, and so oo. The identifier
Unknovn indicates that the harvest month is not known. We can now declare an
array

int Harvest[6];

with the intention that the array Harvest representa the set of pairs in Fig. 7.19.
Then the array Harvest appears as in Fig. 7.20, where, for example, the entry
Harvest [Delicious] = Oct means Harvest [O] = 10. ..

..

Hash-Table Representation of Functions
We can store the pairs belonging to a function in a hash table. The crucial point
is that we apply the hash function only to the domain element to determine the
bucket of the pair. The cells in the linked lists forming the buckets have one field
for the domain element, another for the corresponding range element, and a third
to link one cell to the next on the listo An example should make the technique élear.

APPLE ~ MoNTH

Delicious Oct
Granny Smitb Aug
Jonathan Sep
McIntosh Oct
Gravenstein Sep
Pippin Nov

Fig. 7.19. Harvest months of apples.

+ Example 7.27. Let us use the same data about apples that appeared in Exam-
pIe 7.26, except now we shall use the actual names rather than integers to represent
the domain. To represent the function HarTest, we shall use a hash table with
five buckets. We shall define APPLES to be 32-character arrays, while MOIITHS is an
enumeration as in Example 7.26. The buckets are linked lists with field variety
for a domain element of type APPLES, field harvested for a range element of type
int (a month), and a link field n.x~ to the next element of the listo

We shall use a hash function h similar to that shown in Fig. 7.11 of Section
7.6. Of course, h is applied to domain elements only - that is, to character strings
of length 32, consisting of the name of an apple variety.

Now, we can define the type HASHTABLE as an arfar of B LIST's. B is the
number of buckets, which we have taken to be 5. All these declarations appear in
the beginning of Fig. 7.22. We mar then declare a hash table Harvest to represent
the desired function.

SEC.7.8 IMPLEMENTINO FUNCTIONS AS DATA 377

Oct

.0.

Delicioua

GrannySai th

Jonathan

McIntoah

GraveDstein

Pippin

Fig. 7.20. The array Harvest.

~

Harvest

o

1

~"'

3

4

and their harvest months stored in a hash table.Fig. 7.21. Apples

After inserting the six varieties listed in Fig. 7.19, the arrangement of cells
within buckets Í8 shown in Fig. 7.21. For example, the word Oelicious yields the
sum 929 if we add up the integer values oí the nine characters. Since tbe remainder

378 THE SET DATA MODEL

when 929 is divided by 5 is 4, the Delicious apple belongs in bucket 4. The cell
for Delicious has tbat string in tbe variety field, the montb Dct in tbe harveated
field, and a pointer to the next cell of tbe bucket. ..

#include <string.h>

Idef ine B 5

typedef char APPLES [32) ;
enum MONTRS {Unknown, Jan, Feb, Mar,

Sep, Oct, Nov, Dec};
typedef struct CELL .LIST;
struct CELL {

APPLES variety;
int harvested;
LIST next;

};
typedef LIST HASHTABLE[B);

int lookupBucket(APPLES a, LIS! L)
{

}

int lookup(APPLES a. HASHTABLE H)
{

)

Operations on Functions Represented by a Hash Table

Each of the operations insert, delete, and lookup start with a domain value that we
hash to find a bucket. To insert the pair (a, b), we find the bucket h(a) and search
its listo The action is then the same as the function to insert a function pair into a
list, given in Fig. 7.18.

To execute delete(a), we find bucket h(a), search for a cell with domain value a,
and delete that cell from the list, when and if it is found. The lookup(a) operation
is executed by again hashing a and searching the bucket h(a) for a cell with domain
value a. If such a cell is found, tbe associated range value is retumed.

For example, the function lookup(a. H) is shown in Fig. 7.22. The fuDction
lookupBucket(a. L) ruos dOWD the list L for a bucket and returos the value

haroested(a)

Apr. May, Jun, Jul, Aug,

if (L = NULL)

return Unknovn i

if (!8trcap(a. L->variety» /. found ./

return L->harveatedi

e18e /. a not foundi exaaine tai1 ./

return lookupBucket(a, L->next);

return lookupBucket(a. H(h(a)]);

Fig.7.22. Lookup for a function represented by a hash table.

SEC. 7.8 IMPLEMENTING FUNCTIONS AS DATA 379

Vectors versus Hash Tables

There is a fundamental difference in the way we viewed the information about apples
in Examples 7.26 and 7.27. In the characteristic-vector approach, apple varieties
were a fixed set, which became an enumerated type. There is no way, while a C
program is running, to change the set of apple names, and it is meaningless to
perform a lookup with a name that is not part of our enumerated seto

On the other hand, when we set the same function up as a hash table, we treated
the apple names as character strings, rather than members of an enumerated type.
As a consequence, it is possible to modify the set of names while the program is
running - Bar, in response to some input data about new apple varieties. It makes
sense for a lookup to be performed for a variety not in the hash table, and we had
to make provisions, by the addition of a "month" Unknown, for the possibility that
we would look up a variety that was not mentioned in our table. Thus, the hash
table offers increased flexibility over the characteristic vector, at some cost in speed.

that is, the month in which apple variety a is harvested. If the month is undefined,
it returns the value Unknovn.

Efficiency of Operations on Functions

The times required for the operations on functions for the three representations
we have discussed here are the same as for the operations of the same llames on
dictionaries. That is, if the function consists of n pairs, then the linked-list represen-
tation requires O(n) time per operation on the average. The characteristic-vector
approach requires ooly 0(1) time peroperatioo, but, as for dictiooaries, it can be
used only if the domain type is of limited size. The hash table with B buckets offers
average time per operation of O(nI B). If it is possibJe to make B cJose to n, then
0(1) time per operation, 00 the average, can be achieved.

EXERCISES

7.8.1: Write functions that perform (a) delete and (b) lookup on functions repre-
sented by linked lists, analogous to the insert function of Fig. 7.18.

7.8.2: Write functions that perform (a) insert, (b) delete, and (c) lookup on a
function represented by a vector, tbat is, an array of RTYPE's indexed by integers
representing DTYPE's.

7.8.3: Write functions that perform (a) insert and (b) delete on functions repre-
sented by hash tables, analogou8 to the lookup function of Fig. 7.22.

7.8.4: A binary search tree can alBO be used to represent functions as data. Define
appropriate data structures for a binary search tree to hold the apple information in
Fig. 7.19, and implement (a) insert, (b) delete, and (c) lookup using these structures.

7.8.5: Design an information retrieval system to keep track of information about
at bats and hits for basebaIl players. Your system should accept triples of the form

Ruth 6 2

380 THE SET DATA MODEL

to indicate that Ruth in 5 at bata got 2 hita. The entry for Ruth should be updated
appropriately. You should al80 be able to query the number of at bata and bita
for any player. Implement your system 80 that the functions insert and lookup will
work on anY data structure as long as they use the proper subroutines and types.

..:.. 7.9 Implementing Binary

The implementation of binary relations differs in some details from the implemen-
tation of functions. Recall that both binary relations and functions are sets of pairs,
but a function has for each domain element a at most one pair of the form (a,b)
for any b. In contrast, a binary relation can have any number of range elements
associated with a given domain element a.

In this section, we shall first consider the meaning of insertion, deletion, and
lookup for binary relations. Then we see how the three implementations we have
been using - linked lists, characteristic vectors, and hash tables - generalize to

binary relations. In Chapter 8, we shall disc~ implementation of relations with
more than two components. Frequently, data structures for such relations are built
from the structures for functions and binary relations.

Operatioos 00 Bioary Relatioos

When we insert a pair (a,6) joto a binary relation R, we do not have to concero
ourselves with whether or not there already is a pair (a, c) in R, for sorne c # 6, as
we do when we insert (a,6) into a function. The reason, of course, is that there is
no lirnit on the number of pairs in R that can have the dornain value a. Thus, we
shall sirnply insert the pair (a,6) into R as we would insert an elernent into any seto

Likewise, deletion of a pair (a,6) frorn a relation is similar to deletion of an
elernent frorn a set: we look for the pair and rernove it if it is presento

The lookup operation can be defined in several ways. For example, we could
take a pair (a,6) and ask whether this pair is in R. However, ifwe interpret lookup
thus, along with the insert and delete operations we just defined, a relation behaves
like any dictionary. The fact that the elernents being operated upon are pairs, rather
than atornic, is a rninor detailj it just affects the type of elernents in the dictionary.

However, it is often useful to define lookup to take a dornain elernent a and
returo all the range elernents b such that (a,6) is in the binary relation R. This
interpretation of lookup gives us an abstract data type that is sornewhat different
írorn the dictionary, and it has certain uses that are distinct frorn those oí the
dictionary ADT.

Example 7.28. Most varieties of plums require one of several other specific
varieties for pollination; witbout the appropriate "pollinizer ," tbe tree cannot bear
fruit. A few varieties are "self-fertile": they can serve as their own pollinizer. Figure
7.23 shows a binary relation on the set of plum varieties. A pair (a, b) in this relation
means that variety b is a pollinizer for variet,y a.

Inserting a pair joto t,his table corresponds t,o asserting that one variet,y is a
pollinizer for anot,her. For example, if a new variety is developed, we migbt enter
joto the relat,ion facts about which variet,ies pollinize tbe new variet,y, and which it

.

Relations

SEC. 7.9 IMPLEMENTING BINARY RELATIONS 381

V ARJETV POLLINIZER

Beauty Santa Rosa
Santa Rosa Santa Rosa
Burbank Beauty
Burbank Santa Rosa
Eldorado Santa Rosa
Eldorado Wickson
Wickson Santa Rosa
Wickson Beauty

Fig. 7.23. Pollimzers for certain plum vaneties.

More General Operations on Relations

We may want more information than the three operations insert, delete, and lookup
can provide when applied to the plum varieties of Example 7.28. For example, we
may want to ask "What varieties does Santa Rosa pollinate?" or "Does Eldorado
pollinate Beauty?" Some data structures, such as a linked list, allow us to answer
questions like these as fast as we can pedorro the three basic dictionary operations,
if for no other reason than that linked lists are not very eflicient for any of these
operations.

A hash table based on domain elements does not help answer questions in which
we are given a range element and must find all the associated domain elements -
for instance, "What varieties does Santa Rosa pollinate?" We could, of course,
base the hash function on range elements, but then we could not answer easily
questions like "What pollinates Burbank?" We could base the hash function on a
combination of the domain and range val ues , but then we couldn't answer either
type of query efliciently; we could only answer easily questions like "Does Eldorado
pollinate Beauty?"

There are ways to get questions of all these types answered efficiently. We shall
have to wait, however, until the next chapter, on the relational model, to learn the
techniques.

can pollinize. Deletion of a pair corresponds to a retraction of the assertion that
one variety can pollinize another.

The lookup operation we defined takes a variety a as argument, looks in the
first column for all pairs having the value a, and returns the set of associated range
values. That is, we ask, "What varieties can pollinize variety a?" This question
seems to be the one we are most likely to ask about the information in this table,
because when we plant a plum tree, we must make BUfe that, if it is not self-fertile,
then there is a pollinizer nearby. For instance, if we invoke lookup(Burbank), we
expect the answer {Beauty, Santa Rosa}. +

Linked-List Implementation ol Binary Relations

We can link the pairs of a relation in a list if we like. The cells of this list consist

382 THE SET DATA MODEL

oc a domain element, a range element, and a pointer to the next cell, just like
the cells Cor fundions. lnsertion and deletion are carried out &8 Cor ordinary eets,
&8 discu88ed in Section 6.4. The only nuance is that equality oC set members is
determined by comparing both the field holding the domain element and the field
holding the range elemento

Lookup is a somewhat different operation from the operations of the sarne narne
we have encountered previously. We must go down the list, looking Cor celas with
a particular domain value a, and we must assemble a list oC the aMOCiated range
values. An example will show the mechanics oC the lookup operation 00 linked lists.

+ Example 7.29. Suppose we want to implement the plum relation of Example
7.28 as a linked listo We could define the type PVARIETY as a character string of
length 32; a.nd cells, whose type we shall call RCELL (relation cell). can be defined
by a structure:

typedef char PVARIETY[32];
typedef .truct RCELL .RLIST;
.truct RCELL {

PVARIETY yarietJ;
PVARIBTY pollinizer;
RLIST next;

};

We also need a cell containing one plum variety and a pointer to the next cell, in
order to build a list oí the pollinizers oí a given variety, and thus to answer a lookup
query. This type we sball call PCELL, and we define

tYped8f .truct PCELL .PLIST;
atruct PCELL {

PVARIETY pollinizer;
PLIST next;

};

We can then define lookup by the function in Fig. 7.24.
Tbe function lookup takes a domain element a and a pointer to the first cell oí a

linked list of pairs as argumenta. We pedorro the lookup(a) operation on a relation
R by calling lookup(a,L) , wbere Lisa pointer to the first cell on tbe linked list
representing relation R. Lines (1) and (2) are simple. If the list is empty, we return
IULL, since surely there are no pairs witb first component a in an empty listo

Tbe hard case occurs wben a is íound in tbe domain field, called variety, in
tbe first cell oí tbe listo Tbis case is detected at line (3) and bandled by liDes (4)
tbrough (7). We create at line (4) a new cell of type PCELL, which becomes the
first cell on the list oí PCELL 's that we shall return. Line (5) copies tbe a880ciated
range vaJue into this new cell. Tben at line (6) we call1ookup recunively on tbe
tail oí the list L. The retum value írom this call, which is a pointer to the first cell
on the resulting list (WLL if the list is empty), becomes the n8xt field of tbe cell
we created at line (4). Then at line (7) we return a pointer to the newly created
cell, which holds one range value and is linked to cella holding otber range vaJues
for domain value a, if any existo

The last case occurs when the desired domain vaJue a is not found in the first
cell of the list L. Then we just call1ookup on the tail oí the list, at line (8), and

.

SEC.7.9 IMPLEMENTING BINARY RELATIONS 383

PLIST lookup(PVARIETY a. RLIST L)

{
PLIST P;

(1) if (L = 1lULL)

(2) return 1lULL;

(3) else if (!strcap(L->variety. a» /* L->variety == a./ {
(4) P = (PLIST) aalloc(sizeof(8truct PCELL»;

(5) strcpy(P->polliDizer. L->pollinizer);
(6) P->next = lookup(a. L->next);

(1) return P;

}
e18e /* a not the domain value of current pair */

(8) return lookup(a. L->next);
}

Fig. 7.24. Lookup in a binary relation represented by a linked listo

return whatever that call returns. ...

A Characteristic- Vector Approach

For sets and for functions, we saw that we could create an array indexed by elernents
oí a "universal" set and place appropriate values in the array. For sets, the appro-
priate array values are TRUE and FALSE, and for functions they are those values that
can appear in the range, plus (usually) a special value that rneans "none."

For binary relations, we can index an array by mernbers of a small declared
dornajo, just as we did for functions. However, we cannot use a single value as an
array elernent, becauae a relation can have any nurnber oí range values for a given
dornain value. The best we can do is to use as an array elernent the header of a
linked list that contains all the range values associated with a given dornajo value.

Example 7.30. Let us redo the plum example using this organization. As was
pointed out in the last section, when we use a characteristic-vector style, we must
fix the set of values, in the domain at least; there is no such constraint for linked-list
or hash-table representations. Thus, we must redeclare the PVARIETY type to be an
enumerated type:

enua PVARIETY {Beauty, SantaRosa, Burbank, Eldorado, Wickson};

We can continue to use the PCELL type for lists of varieties, as defined in Example
7.29. Then we mar define the array

PLIST Pollinizers[5];

That is, the arfar representing the relation of Fig. 7.23 is indexed by the varieties
mentioned in that figure, and the value associated with each variety is a pointer
to the first cell on its list of pollinizers. Figure 7.25 shows the pairs of Fig. 7.23
represented in this way. +

384 THE SET DATA MODEL

Beauty

SantaRosa

Burbank

Eldorado

Wickson

Fig. 7.25.

lnsertion and deletion of pairs is performed by going to the appropriate array
element and thence to the linked listo At that point, insertion in or deletion from
the list is performed normally. For example, if we determined that Wickson cannot
adequately pollinate Eldorado, we could execute the operation

delete(Eldomdo, Wickson)

The header of the list for Eldorado is found in Pollinizers [El dorado] , and from
there we go down the list until we find a cell holding Wickaon and delete it.

Lookup is trivialj we have only to return the pointer found in the appropriate
arrayentry. For example, to answer the query lookup(Burbank, Pollinizera) ,
we simply return the list Pollinizera [Burbank] .

Hash-Table Implementation al Binary Relations
We may store a given binary relation R in a hash table, using a hash function that
depends only on the first component oí a pair. Tbat is, tbe pair (a, b) will be placed
in bucket h(a), where h is the bash function. Note that tbis arrangement is exactly
the same as that for a functionj the only difference is that for a binary relation a
bucket may contain more tban one pair with a given value a as tbe first component,
whereas for a function, it could never contain more than one such pair.

To insert tbe pair (a, b), we compute h(a) and examine the bucket with that
number to be sure that (a, b) is not already there. If it is not, we append (a, b) to
the end of the list for that bucket. To delete (a, b), we go to the bucket h(a), search
for this pair, and remove it from the list if it is there.

To execute lookup(a), we again find the bucket h(a) and go down tbe list for
this bucket, collecting all the b's that appear in cells with first component a. Tbe
lookup function of Fig. 7.24, which we wrote for a linked list, applies equally well to
the list that forms one bucket of a bash table.

Running Time of Operations on a Binary Relation
The peñormance of the tbree representations for binary relations is not much dif-
ferent from the peñormance of the same structures on functions or dictionaries.
Consider first the list representation. While we have not written the functions for
insert and delete, we should be able to visualize that these functions will run clown
the entire list, searching for the target pair, and stop upon finding it. 00 a list of

Poll inuera

+ Example 7.31. Suppose there is arelation of 1000 pairs, distributed among 100
domain values. Then the typical dornain value has 10 ~iated range values; that
is, m = 10. If we use 1000 buckets - that is, B = 1000 - then m is greater than

nI B, which is 1, and we expect the average bucket that we might actually search
(because its number is h(a) for some domain value a that appears in the relation)
to have about 10 pairs. In fact, it will have 00 the average slightly more, because by
coincidence, the same bucket could be h(a1) and h(a2) for different domain values
al and a2. If we choose B = 100, then m = nI B = 10, and we would again expect
each bucket we might search to have about 10 elements. As just mentiooed, the
actual number is slightly more because of coiocidences, where two or more domain
values hash to the same bucket. +

SECo 7.9 IMPLEMENTING BINARY RELATIONS 385

length n, this search takes O(n) average time, since we must scan the entire list if
the pair is not found and, on the average, half the list if it is found.

For lookup, an examination of Fig. 7.24 should convince us that this function
takes 0(1) time plus a recursive call on the tail oc a listo We thus make n calls if
the list is of length n, for a total time of O(n).

Now consider the generalized characteristic vector. The operation lookup(a) is
easiest. We go to the array element indexed by a, and there we find OUt answer, a
list of all the b's such that (a, b) is in the relation. We don't even have to examine the
elements or copy them. Thus, lookup takes 0(1) time when characteristic vectors
are used.

On the other hand, ínsert and delete are less simple. To insert (a, b), we can
go to the array element indexed by a easily enough, but we must search the entire
list to make sute that (a, b) is not already there.5 That requires an amount oí
time proportional to the average length of a list, that is, to the average number oí
range values associated with a given domain value. We shall call this parameter m.
Another way to look at m is that it is n, the total number oí pairs in the relation,
divided by the number oc difFerent domain values. Ir we assume that any list is as
likely to be searched as any other, then we require O(m) time on the average to
perform an ínsert or a delete.

Finally, let us consider the hash table. Ir there are n pairs in OUt relation and
B buckets, we expect there to be an average oc n/ B pairs per bucket. However,
the parameter m must be figured in as well. Ir there are n/m difFerent domain
values, then at most n/m buckets can be nonempty, since the bucket Cor a pair is
determined only by the domain value. Thus, m is a lower bound on the average size
oí a bucket, regardless oí B. Since n/Bis alBO a lower bound, the time to perform
one ofthe three operations is O(max(m,n/B»).

EXERCISES

tbat takes a
a list of tbe

1.9.1: Using the data types from Example 7.29, write a function
pollinizer value b and a list of variety-pollinizer pairs, and returns
varieties that are pollinized by b.

5 We could insert the pair without regard for whether it is already present, but that would
have both the advantages and disadvantages of the list representation discussed in Section
6.4, where we allowed duplicates.

THE SET DATA MODEL386

.

"Dictionary Operations" on Functions and Relations
A set of pairs might be thought of as a set, as a function, or as a relation. For each
ofthese cases, we have defined opera.tions insert, delete, and lookup suita.bly. These
operations differ in formo Most of the time, the operation takes both the dornajo
and range element of the pair. However, sometimes only the domain element is
used as an argumento The table below summarizes the differences in the use of

these three operations.

Set of Pairs Function Relation

Iosert Domain and Range Domain and Range Domain and Range
De1ete Domain and Range Dornain on1y Domain and Range
Lookup Domain and Range Domain only Domain only

7.9.2: Write (a) insert and (b) delete routines for variety-pollinizer pairs using the

assumptions of Example 7.29.

7.9.3: Write (a) insert, (b) delete, and (c) lookup functions for a relation repre-
sented by the vector data structure of Example 7.30. When inserting, do not forget
to check for an identical pair already in the relation.

7.9.4: Design a hash-table data structure to represent the pollinizer relation that
forms the primary example ofthis section. Write functions for the operations insert,
delete, and lookup.

7.9.5*: Prove that tbe function lookup of Fig. 7.24 works correctly, by showing
by induction on the length of list L tbat lookup retums a list of all the elements b
such that the pair (a, b) is on the list L.

7.9.6*: Design a data structure tbat allows 0(1) average time to perform each of
the operations insert, delete, lookup, and inverseLookup. The latter operation
takes a range element and finds the associated domain elements.

7.9.7: In tbis section and tbe previous, we defined some new abstract data types
tbat had operations we called insert, delete, and lookup. However, tbese operations
were defined slightly differently from tbe operations of the same name on dictio-
naries. Make a table for the ADT's DICTIONARY, FUNCTION (as discussed in
Section 7.8), and RELATION (as discussed in tbis section) and indicate the possi-
ble abstract implementations and tbe data structures tbat support them. For each,
indicate the running time of each operation.

..".. 7.10 Some Special
..

In this section we shall consider some of the special properties that certain useful
binary relations have. We begin by defining some basic properties: transitivity,
reflexivity, symmetry, and antisymmetry. These are combined to forro common
types of binary relations: partial orders, total orders, and equivalence relations.

Properties of Binary Relations

..

Transitivity of
subset

SEC.7.10 SOME SPECIAL PROPERTIES OF BINAR Y RELATIONS 387

Transitivity
Let R be a binary relation on the domain D. We say that the relation R is tmnsitive
if whenever aRb and bRc are true, aRc is also true. Figure 7.26 illustrates the
transitivity property as it appears in the graph of a relation. Whenever the dotted
arrows from a to b and from b to c appear in the diagram, for some particular a, b,
and c, then the salid arrow from a to c must algo be in the diagram. It is important
to remember that transitivity, like the other properties to be defined in this section,
pertains to the relation as a whole. It is not enough that the property be satisfied
for three particular domain elements; it must be satisfied for all triples a, b, and c
in the declared domain D.

0~~~:~~~~~)
Fig. 7.26. Transitivity condition reqwres that if both the arcs aRb and bRc

are present in the graph of a relation, then so is tbe arc aRco

Example 7.32. Consider the relatioo < 00 Z, the set oí integers. That is, <
is the set oí pairs oí integers (a, b) 8uch that a is less than b. The relation < is
transitive, because if a < b and b < c, we know tbat a < c. Similarly, the relations
.5:, >, and ~ on integers are transitive. These íour comparison relations are likewise
transitive on the set of real numbers.

However, consider the relation I on the iotegers (or the reals íor that matter).
This relation is not transitive. For instance, let a and c botb be 3, and Jet b be 5.
Then a I b and b I c are botb true. If the relation were transitive, we would have
a I c. But that says 3 I 3, which is wrong. We conclude that I is not transitive.

For another example oí a transitive relation, consider ~, the subset relation.
We might like to consider the relation as being the set oí all pairs oí sets (S, T)
such that S ~ T, but to imagine that there is such a set would lead os to Russell's
paradox again. However, suppose we have a "universal" set U. We can let ~u be
the set oí pairs oí sets

{(S,T) I s ~ T and T ~ U}

Then ~u is a relatioo 00 P(U), the power set of U, and we can think of ~u as the
subset relation.

For instance, Jet U = {l, 2}. Then ~{1,2} consists ofthe nine (S, T)-pairs shown
in Fig. 7.27. Thus, ~u contains exactly those pairs such that the first component
is a subset (not necessarily proper) of the second component and both are subsets
of {1,2}.

It is easy to check that ~u is transitive, no matter what the universal set U
is. If A ~ B and B ~ C, then it must be that A ~ C. The reason is that for every
z in A, we know that z is in B, because A ~ B. Since z is in B, we know that z
is in C, becaU8e B ~ C.
A~C. .

Thus, every element of A is an element of C. Therefore,

388 THE SET DATA MODEL

Reflexivity
Some binary relations R have the property that for every element a in the declared
domain, R has the pair (a, a); that is, aRa. If so, we say that R is refte.J:ive. Figure
7.28 suggests that the graph of a refiexive relation has a loop on every element of
its declared domain. The graph mar have other arrows in addition to the loops.
However, it is not sufficient that there be loops for the elements of the current
domain; there must be one for each element of the declared dornajo.

Fig.7.28.

Example 7.33. The relation ~ on the reals is reftexive. For each real nurnber
a, we have a ~ a. Sirnilarly, ~ is reftexive, and both these relatioDS are also reftexive
on the integers. However, < and > are not reftexive, since a < a and a > a are each
false for at least one value of a; in fact, they are both false for all a.

The subset relatioDS ~u defined in Example 7.32 are alBO reftexive, since A S;;; A
for any set A. However, the sirnilarly defined relatioDS Cu that contain the pair
(S, T) if T S;;; U and S C T - that is, S is a proper subset of T - are not reftexive.

The reason is that A c A is false for sorne A (in fact, for al1 A). ..

+

Symmetry and Antisymmetry

Let R be a binary relation. As defined in Exercise 7.7.7, the inverse of R is the
set of pairs of R with the components reversed. That is, the inverse of R, denoted
R-l, is

Inverse relation

S T

. .

.. {1}

. {2}
e {),2}

{l] {l}
{l} {.l.2}
{2} 42t
{2} {l,2}

{1,2} {l,2}

Flg. 7.27. The pairs in the relation ~ { 1 ,2} .

88 8
A reOexive relation R has s:& Cor every s: in its declared domain.

d
e
)(
;.
t

+

SEC.7.10 SOME SPECIAL PROPERrIES OF BINARY RELATIONS 389

{(b,a) I (a,b) E R}

For example, > is the ioverse of <, since a > b exactly when b < a. Likewise, ~ is
the inverse of $.

í;~ ~'~ ~
\..~ ;;)

~

Fig. 7.29. Syrnrnetry requires that ir aRb, then bRa as well.

We say that R is $ymmetric if it is its own inverse. That is, R is symmetric ir,
whenever aRb, we also have bRa. Figure 7.29 suggests what symmetry looks like
in the graph of a relation. Wheoever the forward arc is present, the backward arc
must also be presento

We say that R is antisymmetric if aRb and bRa are both true only when
a = b. Note that it is oot oecessary that aRa be true for aoy particular a in
ao antisymmetric relation. However, ao antisymmetric relation can be reflexive.
Figure 7.30 shows how the antisymmetry coodition relates to graphs of relatioos.

n~o
optionalnever

Fig. 7.30. Ao antisymmetric relatioo cannot have a cycle involving two
elemeots, but loops 00 a single element are permitted.

Example 7.34. The relatioD $ on integers or reals is antisymmetric, because
if a $ b and b $ a, it must be that a = b. The relation < is alBO antisymmetric,
because under no circumstances are a < b and b < a both true. Similarly, ~ and
> are antisymmetric, as are the subset relations ~u that we discussed in Example
7.32.

However, note that $ is not symmetric. For example, 3 $ 5, but 5 $ 3 is
falseo Likewise, Done of the other relations mentioned in the previous paragraph is
symmetric.

An example of a symmetric relation is I on the integers. That is, if a I b,
then surely b I a. +

390 THE SET DATA MODEL

Pitfalls in Property Deftnitions
As we have pointed out, the definition of a property is a general condition, one that
applies to all elements of the dornajo. For example, in order for a relation Ron
declared dornain D to be reflexive, we need to have aRa for every a E D. It is not
sufficient for aRa to be true for one a, nor does it make sense to say that a relation
is reflexive for sorne elernents and not others. Ir there is even one a in D for which
aRa is false, then R is not reflexive. (Thus, reflex.ivity rnay depend on the dornain,
as well as on the relation R.)

Also, a condition like transitivity - "ir aRb and bRc then aRc" - is of the forrn

"ir A then B." Rernember that we can satisfy such a statement either by rnaking
B true or by rnaking A falseo Thus, for a given triple a, b, and c, the transitivity
condition is satisfied whenever aRb is false, or whenever bRc is false, or whenever
aRc is true. As an extreme example, the empty relation is transitive, syrnrnetric,
and antisymrnetric, because the "if" condition is never satisfied. However, the
ernpty relation is not reflexive, unless the declared dornain is 0.

Partial Orders and Total Orders

A partial omer is a transitive and antisyrnrnetric binary relation. A relation is said
to be a total arder if in addition to being transitive and antisymrnetric, it makes
every pair of elernents in tbe domain comparoble. That is to say, if R is a total
order, and if a and b are any two elements in its domain, then either aRb or bRa
is true. Note that every total order is reflex.ive, because we may let a and b be the
same element, whereupon the comparability requirement tells us that aRa.

Comparable
elements

.. Example 7.35. The aritbmetic comparisons :$ and ~ on integers or reals are
total orders and therefore are alBO partial orders. Notice tbat for any a and b, either
a :$ b or b :$ a, but both are true exactly when a = b.

The comparisons < and > are partial orders but not total orders. While tbey
are antisymmetric, they are not reflexive; that is, Deither a < a Dor a > a is true.

The subset relations ~u and Cu on 2u for some universal set U are partial
orders. We already observed that they are transitive and antisymmetric. These
relatioDs are not total orders, bowever, as long as U has at least two members, since
then there are incomparable elements. For example, let U = {1,2}. Then {l} and
{2} are subeets of U, but neither is a subset oí the other. ..

One can view a total order R as a linear sequence of elements, as suggested in
Fig. 7.31, where whenever aRb for distinct elernents a and b, a appears to the left
of b along the line. For example, if R is $ on the integers, then the elernents along
the line would be ..., -2, -1,0, 1,2,... . If R is $ on the reals, then the points
correspond to the points &long the re&lline, as if the line were an infinite ruler; the
real number z is found z units to the right of the O mark if z is nonnegative, and
-z units to the left of the zero rnark if z is negative.

If R is a partial order but not a total order, we can also draw the elements of
the domain in such a way that if aRb, then a is to the left of b. However, because
there mar be sorne incomparable elernents, we cannot necessarily draw the elements

+ Example 7.36. Figure 7.32 represents the partial arder ~{1.2.3}' We have
Reduced graph drawn the relation as a reduced graph, in which we have omitted arcs that can be

inferred by transitivity. That is, S ~{1,2.3} T if either

l. S= T,
2. There is 3D arc from S to T, or

3. There is a path of two or more arcs leading from S to T.

For example, we know that 0 ~{1.2.3} {1,3}, because of the path from 8 to {l} to
{1,3}. +

... Example 7.37. A relation like .s: on integers is not an equivalence relation.
Although it is transitive and reflexive, it is not symmetric. If a .s: b, we do not have
b .s: a, except ií a = b.

For an example that is an equivalence relation, let R consist oí th~ pairs oí
integers (a, b) such that a - b is an integer multiple oí 3. For example 3R9, since

SEC.7.10 SOME SPECIAL PROPERTIES OF BINARY RELATIONS 391

I I I I
al a2 a" ~

Flg.7.31. Pictm-e Gf a total order onal, a2,03,... ,a".

in one line so that the relation R means "to the left."

0

Fig. 7.32. Reduced graph for the partía! order ~(I,2")'

Equivalence Relations

An equivalence relation is a binary relation that is reflexive, symmetric, and transi-
tive. This kind of relation is quite different from the partial orders and total orders
we have met in our previous examples. In fact, a partial arder can never be an
equivalence relation, except in the trivial cases that the declared domain is empty,
or there is only one element a in the declared domain and the relation is {(a,a)}.

392 THE SET DATA MODEL

3 - 9 = -6 = 3 x (-2). Also, 5R(-4), lince 5 - (-4) = 9 = 3 x 3. However, (1,2)
is not in R (or we can say "1R2 is false"), since 1- 2 = -1, which is not an integer
rnultiple of 3. We can dernonstrate that R is an equivalence relation, as follows:

1. R is reftexive, since aRa for any integer a, because a - a is zero, which is a
rnultiple of 3.

2. R is syrnrnetric. If a - 6 is a rnultiple of 3 - say, 3c for sorne integer c - then
6 - a is -3c and is therefore also an integer rnultiple of 3.

3. R is transitive. Suppose aRb and 6Rc. That is, a - 6 is a rnultiple of 3, say, 3d;
and 6 - c is a rnultiple of 3, say, 3e. Then

a - c = (a - 6) + (6 - c) = 3d + 3e = 3(d + e)

and so a - c is also a rnultiple of 3. Thus, aRb and 6Rc irnply aRc, which rneans
that R is transitive.

For another exarnple, let S be the set of cities of the world, and let T be the
relation defined by aT6 if a and 6 are connected by roads, that is, if it is p<aible
to drive by cal frorn a to b. Tbus, tbe pair (Toronto, New York) is in T, but

(Honolulu, Anchorage)

is noto We clairn that T is an equivalence relation.
T is reftexive, since trivially every city is connected to itself. T is syrnmetric

because if a is connected to 6, tben 6 is connected to a. T is transitive because if
a is connected to 6 and 6 is connected to c, then a is connected to c; we can travel
frorn a to c via 6, if no sborter route exists. +

Equivalence Classes

Another way to view an equivalence relation is tbat it partitions its domain into
equivalence classes. If R is an equivalence relation on a domain D, tben we can
divide D into equivalence classes 80 tbat

l. Each domain element is in exactly one equivalence class.

2. If aRb, tben a and b are in the same equivalence class.

3. If aRb is false, then a and b are in different equivalence classes.

Example 7.38. Consider the relation R oí Example 7.37, where aRb when
a - b is a multiple oí 3. One equivalence class is the set oí integers that are exactly

divisible by 3, that is, those that leave a remainder oí O when divided by 3. This
class is {. . . , -3, O, 3, 6, . . .}. A second is the set oí integers that leave a remainder oí
1 when divided by 3, that is, {. . ., -2, 1,4,7,. . .}. The last class is the set oíinteger8
that leave a remainder oí 2 when divided by 3. This class is {. . ., -1, 2, 5, 8,.. .}.
The classes partition the set oí integers joto three disjoint seta, as suggested by Fig.
7.33.

Notice that when two integers leave the same remainder when divided by 3,
then their difference is evenly divided by 3. For instance, 14 = 3 x 4 + 2 and
5 = 3 x 1 + 2. Thus, 14 - 5 = 3 x 4 - 3 x 1 + 2 - 2 = 3 x 3. We therefore know that
14R5. On the other hand, iítwo integers leave different remainders when divided by

..

SEC.7.10 SOME SPECIAL PROPERrIES OF BINAR Y RELATIONS 393

Fig. 7.33. Eqwvaleoce classes for the relatioo 00 the integers:
"Differeoce is divisible by 3."

3, their difference surely is not evenly divisible by 3.
classes, like 5 and 7, are not related by R. ...

Tbus, integers from different

To construct the equivalence classes for an equivalence relation R, let class(a)
be the set of elements b such that aRb. For example, if OUt equivalence relation is
the one we called R in Example 7.37, then class(4) is the set of integers that leave
a remainder of 1 when divided by 3; that is class(4) = {..., -2,1,4,7,.. .}.

Notice that if we let a vary ayer each of the elements of the domain, we typically
get the same class many times. In fact, when aRb, then class(a) = class(b). To
see why, suppose that c is in class(a). Then aRc, by definition of class. Since we
are given that aRb, by symrnetry it follows that bRa. By transitivity, bRa and aRc
imply bRc. But bRc says that c is in class(h). Tbus, every element in class(a) is in
class(b). Since the same argument tells us that, as long as aRb, every element in
class(b) is also in class(a), we conclude that class(a) and class(b) are identical.

However, if class(a) is not the same as class(b), then these classes can have
no element in common. Suppose otherwise. Then there must be BOrne c in both
dass(a) and class(b). By our previous assumption, we know that aRc and bRc.
By syrnmetry, cRb. By transitivity, aRc and cRb imply aRb. But we just showed
that whenever aRb is true, class(a) and class(b) are the same. Since we assumed
these classes were not the same, we have a contradiction. Therefore, the assumed c
in the intersection of class(a) and class(b) cannot existo

There is one more obeervation we need to make: every domain element is in
BOrne equivalence class. In particular, a is always in class(a), because reftexivity
tells us aRa.

We can now conclude that an equivalence relation divides its domain into equiv-
alence classes that are disjoint and that place each element into exactly one class.
Example 7.38 illustrated this phenomenon.

Closures of Relations

A COmmOD operatioD on relatioDS is to take a relatioD that does DOt have sorne
property and add as few pairs as possible to create a relation that does have that
property. Tbe resulting
original relation.

of tberelation is called clo$ure (Cor that property)

394 THE SET DATA MODEL

Example 7.39. We discussed reduced graphs in connection with Fig. 7.32.
Although we were representing a transitive relation, ~{1.2.3}, we drew arcs corre-
sponding to only a subset of the pairs in the relation. We can reconstruct the entire
relation by applying the transitive law to infer new pairs, until no new pairs can
be inferred. For example, we see that there are arce corresponding to the pairs
({1},{1,3}) and ({1,3},{1,2,3}), and so the transitive law tells us that the pair
({l}, {1,2,3}) must also be in the relation. Then this pair, together with the pair
(0,{1}) tells us that (0,{1,2,3}) is in the relation. To these we must add the "re-
flexive" paila (8,8), for each set 8 tbat is a subset of {1,2,3}. In this manner, we
can reconstruct all tbe pairs in the relation ~{1,2.3}' ...

Transitive
closure

+

Another useful closure operation is topological sorting, where we take a partí al
arder and add tuples until it becomes a total order. While the transitive closure
of a binary relation is uníque, there are frequently several total orders that contain
a given partial order. We shall learn in Chapter 9 of a surprisingly efficient algo-
rithm for topological sorting. For the moment, let us consider an example where
topological sortíng ís useful.

Topological
sorting

Example 7.40. It is common to represent a sequence of tasks that must be per-
formed in a manufacturing process by a set of "precedences" that must be obeyed.
For a simple example, you must put on your left sock before your left shoe, and
your right sock before your right shoe. However, there are no other precedences
that must be obeyed. We can represent these precedences by a set consisting of
the two pairs (leftsock,leftshoe) and (rightsock,rightshoe). This set is a partial

order.
We can extend this relation to six different total orders. One is the total order

in which we dress the left foot first; this relation is a set that contains the ten pairs

(le f tsock, le f tsock) (le f tsock, le f t6hoe) (le f tsock, rightsock) (le f tsock I rightshoe)
(leftshoe,leftshoe) (leftshoe, right6ock) (leftshoe, rightshoe)
(rightsock, rightsock) (rightsock, rightahoe)
(rightshoe,right6hoe)

We can think of this total order 88 the linear arrangement

leftsock -+ leftshoe -+ rightsock -+ rightshoe

There is the analogous procedure where we dress the right foot first.
There are four other possible total orders consistent with the original partial

order, where we first put on the socks and then the shoes. These are represented
by the linear arrangements

leftsock -+ rightsock -+ leftshoe -+ rightshoe
leftsock -+ rightsock -+ rightshoe -+ leftshoe
rightsock -+ leftsock -+ leftshoe -+ rightshoe
rightsock -+ leftsock -+ rightshoe -+ leftshoe

+

A third form of closure is to find the smallest equivalence relation containing a
given relation. For example, a road map represents a relation consisting of pairs of
cities connected by road segments having no intermediate cities. To determine the

.

SEC.7.10 SOME SPECIAL PROPERTIES OF BINAR Y RELATIONS 395

roM-connected cities, we can apply reflexivity, transitivity, and symmetry to infer
those pairs of cities that are connected by some sequence of these elementary roMs.

Connected This form of closure is called finding the "connected components" in a graph, and
components an efficient algorithm for the problem will be discussed in Chapter 9.

EXERCISES
1

7 1.10.1: Give an example of a relation that is reflexive for one declared domain but

not reflexive for another declared domain. Remember that for D to be a possible
domain for a relation R, D must include every element that appears in a pair of R
but it mar also include more elements.

1.10.2**: How many pairs are there in the relation ~{1.2.3}? In general, how many
pairs are there in ~u, if U has n elements? Hint: Try to guess the fun::tion from a
few cases like the two-element case (Fig. 7.27) where there are 9 pairs. Then prove
your guess correct by induction.

1.10.3: Consider the binary relation Ron the domain of four-letter strings defined
by sRt if t is formed from the string B by cycling its characters one position left.
That is, abcdRbcda, where a, b, c, and d are individualletters. Determine whether
R is (a) reflexive, (b) symmetric, (c) transitive, (d) a partial arder, and/or (e) an
equivalence relation. Give a brief argument why, or a counterexample, in each case.

7.10.4: Consider the dornajo of four-letter strings in Exercise 7.10.3. Let S be
the binary relation consisting of R applied O or more times. Thus, abcdSabcd,
abcdSbcda, abcdScdab, and abcdSdabc. Put another way, a string is related by Sto
any of its rotations. Answer the five questions from Exercise 7.10.3 for the relation
S. Again, give justification in each case.

1.10.5*: What is wrong with the following "proo!"?

(Non) Theorem: Ifbinary relation R is symmetric and transitive, then R is reflexive.

(Non)Proof: Let z be some member of the domain of R. Pick y such that zRy. By
symmetry, yRz:. By transitivity, zRy and yRz: imply zRz:. Since z is an arbitrary
member of R's domain, we have shown that -rRz: for every element in the domain
of R, which "proves" that R is reftexive.

1.10.6: Give examples of relations with declared domain {t, 2, 3} that are.
a) Reftexive and transitive, but not symmetric
b) Reflexive and symmetric, but not transitive
c) Symmetric and transitive, but not reflexive
d) Symmetric and antisymmetric
e) Reflexive, transitive, and a total function
f) Antisymmetric and a one-to-one correspondence

1.10.7*: How many arcs are saved ifwe use the reduced graph for the relation ~u,
where U has n elements, rather than the full graph?

7.10.8: Are (a) ~u and (b) Cu either partial orders or total orders when U has
one element? What if U has zero elements?

-~'. ,
~""cO

Felix Calderon

THE SET DATA MODEL396

7.10.9*: Sbow by induction on n, starting at n = 1, tbat if there is a sequence of
n pairs ClO&1,Cl1&2,.. .,an-1Ran, and if R is a transitive relation, tben CloRan.
That ia, show that if tbere is any path in tbe grapb of a transitive relation, then
there is an arc frorn the beginning of the path to the end.

7.10.10: Find the smallest equivaJence relation containing the pairs (a,6), (a, c),
(d, e), and (6, n.

7.10.11: Let R be the relation on the set of integers such tbat aRb if a and b
are distinct and have a cornrnon divisor other than l. Determine whetber R is (a)
reflexive, (b) syrnrnetric, (c) transitive, (d) a partial arder, and/or (e) an equivalence
relation.

7.10.12: Repeat Exercise 7.10.11 for tbe relation RT on tbe nades of a particular
tree T defined by aRT6 if and only if a is an ancestor of 6 in tree T. However, unlike
Exercise 7.10.11, your possible answers are "yes," "no," or "it dependa on what tree
T . "

18.

7.10.13: Repeat Exercise 7.10.12 for relation S-r on tbe nades ora particular tree
T defined by aST6 if and only if a is to the left of 6 in tree T.

+++ 7.11 Infinite Sets
+

AlI of the sets that one would implement in a computer program are finite, or
limited, in extentj one could not store them in a computer's memory if they were
noto Many seta in mathematics, such as the integen or reaIs, are infinite in extent.
These remarks seem intuitively clear, but what distinguishes a finite set from an
infinite one?

The distinction between finite and infinite is rather surprising. A finite set is
one that does not have tbe same number of elements as any of its proper subsets.
Recall from Section 7.7 tbat we said we could use the existence of a one-to-one
correspondence between two sets to establish that that they are equipotent, that is,
they have the sarne number of memben.

If we take a finite set such &8 S = {1, 2, 3, 4} and any proper subset of it, such
as T = {1, 2, 3}, there is no way to find a one-to-one corre8pondence between the
two sets. For example, we could map 4 of Sto 3 of T, 3 of Sto 2 of T, and 2 of S
to 1 of T, but then we would have no member of T to a880citte witb 1 of S. Any
other attempt to build a one-to-one correspondence from S to T must likewise fail.

Your intuition might suggest that the same should hold for any set whatsoever:
how could a set have the same number of elements as a set formed by throwing away
ORe or more of its elements? Consider the natural numben (nonnegative integen)
N and the proper subset of N íormed by throwing away O; call it N - {O}, or
{1, 2, 3,.. .}. Then consider the one-to-one correspondence F from N to N - {O}
defined by F(O) = 1, F(l) = 2, and, in general, F(i) = i + l.

Surprisingly, F is a one-to-one correspondence from N to N - {O}. For eacb
i in N, tbere is at m~t ORe j such tbat F(i) = j, so F is a function. In fact,
there is exactly one sucb j, namely i + 1, so tbat condition (1) in the definition
ofone-to-one correspondence (see Section 7.7) is 8at.isfied. Por every j in N - {O}
there is some i such that F(i) = j, namely, i = j - l. Tbus condition (2) in the
definition oí one-to-one corr~pondence is satisfied. Finally, tbere cannot be two

Equipotent sets

...

SEC. 7.11 INFINITE SETS 397

Inftnite Hotels

To help you appreciate that there are as many numbers from O up as from 1 up,
imagine a hotel with an infinite number of rooms, numbered O, 1,2, and 80 on; for
any integer, there is a room witb tbat integer as room number. At a certain time,
there is a guest in each room. A kangaroo comes to tbe front desk and asks for
a room. The desk clerk saya, "We don 't see many kangaroos around here." Wait
- that's another story. Actually, the desk clerk makes room for the kangaroo as
follows. He moves the guest in room O to room 1, the guest in room 1 to room 2,
and 80 on. All tbe old guests still have a room, and now room O is vacant, and the
kangaroo goes there. The reason this "trick" works is that there are truly tbe same
number oí rooms numbered írom 1 up as are numbered from O up.

distinct numbers i1 and i2 in N Buch that F(i1) and F(i2) are both j, because then
i1 + 1 and i2 + 1 would both be j, írom which we would conclude that i1 = i2. We

are íorced to conclude that F is a one-to-one correspondence between N and its
proper subset N - {O}.

Formal Deftnition oí Inftnite Sets
The definition accepted by mathematicians oí an infinite set is one that has a one-
to-one correspondence between itselí and at least one of its proper subsets. There
are more extreme examples oí how an infinite set and a proper Bubset can have a
one-to-one correspondence between them.

Example 7.41. The set oí natural numbers and the set oí even natural numbers
are equipotent. Let F(i) = 2i. Then F is a one-to-one correspondence that mapa O
to O, 1 to 2, 2 to 4, 3 to 6, and in general, every natural number to a unique natural
number, its double.

Similarly, Z and N are the same sizej that is, there are as many nonnegative
and negative integers as nonnegative integers. Let F(i) = 2i íor all i ~ O, and let
F(i) = -2i - 1 íor i < o. Then O goes to O, 1 to 2, -1 to 1,2 to 4, -2 to 3, and so
oo. Every integer is sent to a uBique nonnegative integer, with tbe negative integers
going to odd numbers and the nonnegative integers to even numbers.

Even more surprising, the set oí pairs oí natural numbers is equinumerous with
N itselí. To see how the one-to-one correspondence is constructed, consider Fig.
7.34, which shows the pairs in N x N arranged in an infinite square. We order the
pairs according to their sum, and among pairs oí equal sum, by order oí their first
components. This order begins (O, O), (0,1), (1, O), (0,2), (1,1), (2, O), (0,3), (1,2),
and so on, as suggested by Fig. 7.34.

Now, every pair has a place in the order. The reason is that íor any pair (i, j),
there are only a finite number oí pairs with a smaller sum, and a finite number
with the same sum and a smaller value oí i. In íact, we can calculate the position
oí the pair (i,j) in the orderj it is (i + j)(i + j + 1)/2 + i. That is, OUt one-
to-one correspondence associates the pair (i,j) with the unique natural number
(i + j)(i + j + 1)/2 + i.

Notice tbat we have to be careful how we order pairs. Had we ordered them
by rows in Fig. 7.34, we would never get to the pairs on the second or higher rows,

398 THE SET DATA MODEL

Every Set Is Either Finite or Inftnite

At first glance, it might appear that there are things that are not quite finite and not
quite infinite. For example, when we talked about linked li8t.8, we put no limit on
the length of a linked listo Yet whenever a linked list is created during the execution
of a program, it has a finite length. Thus, we can make the following distinctions:

l. Every linked list is finite in length; that is, it has a finite number of cells.

2. The length of a linked list may be anY nonnegative integer, and the set of
possible lengths of linked lists is infinite.

because there are an iofioite oumber oí pairs 00 each row.
columna would not work. ...

The formal definition of infinite sets is interesting, but that definition may not
meet our intuition of what infinite sets are. For example, one might expect that
an infinite set was one that, for every integer n, contained at least n elements.
Fortunately, this property can be proved for every set that the formal definition
telJs us is infinite. The proof is 3D example of induction.

STATEMENT S(n):

BASIS. Let n = O. Surely . ~ l.

INDUCTION. A.ume S(n) for some n ?: o. We shall prove tbat 1 has a subeet
with n + 1 elements. By the inductive hypoth5is, 1 has a subeet T with n elements.
By the formal definition of an infinite set, there is a proper subeet J C 1 and a 1-1
corr5pondence / from 1 to J. Let a be an element in 1 - J j surely a exists because
J is a proper subeet.

Consider R, the imoge of T under /, that is, if T = {61,..., 6" }, then R =
{/(61),. .., /(6,,)}. Since / is 1-1, each of /(61),..., /(6,,) are different, so R is of
size n. Since / is írom 1 to J, each oí the /(6.)'s is in Jj that. is, R ~ J. Thus, a

5
4
3
2
1
O

15

10

6
t
i

lG
11V AA

3 7 12

1 4. 8

-+

Fig. 7.34..

Similarly, ordering by

set, then 1 has a 8Ubeet with n elements.Ir J is a.n infinite

SEC.7.11 INFINITE SETS 399

Cardinality of Seta

We defined two seta S ud T to be equipotent (equa.! in size) if there is a one-to-one
correspondence from S to T. Equipotence is an equiva.!ence relation on any set of
sets, and we leave this point as an exercise. The equivalence claM to which a set S
belongs is said to be the cardinalityof S. For example, the empty set belongs to an
equivalence claM by itself; we can identify this class with cardinality O. The claM
containing the set {a}, where a is any element, is cardina.!ity 1, the claM containing
the set {a, b} is cardinality 2, and so on.

The claM containing N is "the cardinality of the integers," usually given the
Countable set, name aleph-zero, and a set in this class is said to be countable. The set of real
aleph-zero numbers belongs to another equivalence claM, often called the continuum. There

are, in fact, an infinite number of dift'erent infinite cardinalities.

cannot be in R. It follows that R U {a} is a subset of 1 with n + 1 elements, proving
S(n + 1).

Countable and U ncountable Sets

From Example 7.41, we might think that all infinite sets are equipotent. We've seen
that Z, the set of integers, and N, the set of nonnegative integers, are the same
size, as are some infinite subseta of these that intuitively "seem" smaller than N.
Since we saw in Example 7.41 that the pairs of natural numbers are equinumerous
with N, it follows that the nonnegative rational numbers are equinumerous with the
natural numbers, since a rational is just a pair of natural numbers, its numerator
and denominator. Likewise, the (nonnegative and negative) rationals can be shown
to be just as numerous as the integers, ud therefore as the natural numbers.

Any set S for which there is a one-to-one correspondence from S to N is said
to be countable. The use of the term "countable" makes sense, because S must have
an element corresponding to O, u element corresponding to 1, and so on, so that we
can "count" the members oíS. From what wejust said, the integers, the rationa.!s,
the even numbers, and the set of pairs of natural numbers are a.!l countable sets.
There are many other countable sets, and we leave the discovery of the appropriate
one-to-one correspondences as exercises.

However, there are infinite sets that are not countable. In particular, tbe real
numbers are not countable. In fact, we sball show tbat there are more real numbers
between O and 1 than there are natural numbers. Tbe crux of tbe argument is that
the real numbers between O and 1 can eacb be represented by a decimal fraction
of infinite length. We shall number tbe positioDS to tbe rigbt of the decimal point
O, 1, and so on. If the reals between O and 1 are countable, tben we can number
them, ro, rl, ud so on. We can then arrange the reals in an infinite square table,
as suggested by Fig. 7.35. In our hypotheticallisting of the real numbers between
O and 1, 'K/10 is assigned to row zero, 5/9 is assigned to rowone, 5/8 is assigned to
row two, 4/33 is assigned to row three, and so oo.

However, we can prove that Fig. 7.35 does not really represent a listing of a.!l
Diagonalization the reals in the range O to l. Our proaf is of a type known as a diagonalization,

wbere we use the diagona.! of the table to create a value that cannot be in the list
of reals. We create a new rea.! number r with decima.! representation .aOala2'" .

" .""c .

400 THE SET DATA MODEL

Fig. 7.35. Hypotbetical table of real numbers, assuming that the reals are countable.

The value of the ith digit, as", depends on that of the ith diagonal digit, that is, 00
the value found at the ith positioo of the ith real. If this value is O through 4, we
let Os" = 8. If the value at the ith diagonal position is 5 through 9, then as" = 1.

Example 7.42. Given the part of the table suggested by Fig. 7.35, our real
number r begins .8118 To see why, note that the value at position O oí real O is
3, and 80 ao = 8. The value at position 1 oí real 1 is 5, and 80 al = 1. Continuing,
the value at position 2 oí real 2 is 5 and the value at position 3 of real 3 is 2, and
so the next two digits are 18. +

..

We claim that r does not appear anywhere in the hypotheticallist of reals, even
though we suPposed that all real numbers from O to 1 were in the listo Suppose r
were rj, the real number associated with row j. Consider the difference d between
r and rj. We know that °j, the digit in position j of the decimal expansion of r,
was specifically chosen to differ by at least 4 and at most 8 from the digit in the jth
position of rj. Thus, the contribution to d from the jth position is between 4/lOí+l
and 8/lOí+l.

The contribution to d from all positions after the jth is no more than l/lOí+l,
since that would be the difference if one of r and rj had all 0'8 there and the other
had all 9'8. Hence, the contribution to d from all positions j and greater is between
3/lOí+l and 9/lOí+l.

Finally, in positions before the jth, r and rj are either the same, in which case
the contribution to d úom the first j - 1 positions is O, or r and rj differ by at least
l/lOí. In either case, we see that d cannot be O. Thus, r and rj cannot be the same
real number.

We conclude tbat r does not appear in the list of real numbers. Tbus, our
hypothetical one-to-one correspondence from the nonnegative integers to the reals
between O and 1 is not one to one. We have shown there is at least one real number

that range, namely r, that is not associated with any integer.10

EXERCISES

1.11.1: Show that equipotence is an equivalence relation. Hint: The hard part
is transitivity, sbowing that if there is a one-to-one correspondence j from S to
T, and a one-to-one correspondence 9 from T to R, then there is a one-to-one
correspondence from S to R. This fundían is the composition of j and g, that is,
the function that sends each element z in Sto g(j(z») in R.

Composition of
functions

o
1
2
3
4

5

6
1

5
2
2

ó
ó o o
1 2 1

5 5REAL
NUMBERS

.J.

o o
1

.... 7.12 Summary of Chapter 7

SEC.7.12 SUMMARY OF CHAPTER 7 401

7.11.2: In the ordering of pairs in Fig. 7.34, what pair is aseigned number 1007

7.11.3.: Show that the following sets are countable (have a one-to-one correspon-
dence between them and the natural numbers):

a) The set of perfect squares
b) The set oftriples (i,j,k) ofnatural numbers
c) The set of powers of 2
d) The set of finite sets of natural numbers

7.11.4..: Show that P(N), the power set of the natural numbers, has the same
cardinality as the reals - that is, there is a one-to-one correspondence from P(N)
to the reals between O and 1. Note that this conclusion does not contradict Exercise
7 .11.3(d), because here we are talking about finite and infinite sets of integers, while
there we counted only finite sets. Hint: The following construction almost works,
but needs to be fixed. Consider the characteristic vector for any set of natural
numbers. This vector is an infinite sequence of O's and 1 's. For example, {O, 1} has
the characteristic vector 1100. . . , and the set of odd numbers has the characteristic
vector 010101 If we put a decimal point in front of a characteristic vector, we
have a binary fraction between O and 1, which represents a real number. Thus, every
set is sent to a real in the range O to 1, and every real number in that range can
be associated with a set, by tuming its binary representation into a characteristic
vector. The reason this association is not a one-to-one correspondence is that certain
reals have two binary representations. For example, .11000... and .10111... both
represent the real number 3/4. However, these sequences as characteristic vectors
represent different sets; the first is {O, 1} and the second is the set of all integers
except 1. You can modify this construction to define a one-to-one correspondence.

7.11.5..: Show that there is a one-to-one correspondence from paila of reals in the
range O to 1 to reals in that range. Hint: It is not possible to imitate the table of
Fig. 7.34 directly. However, we mar take a pair of reals, Bar, (r,s), and combine
the infinite decimal fractions for r and 8 to make a unique new real number t. This
number will not be related to r and s by any simple arithmetic expression, but from
t, we can recover r and 8 uniquely. The reader must discover a way to construct
the decimal expansion of t from the expansions of r and 8.

7.11.6**: Show that whenever a set S contains subsets of all integer sizesO, 1,... ,
then it is an infinite set according to the formal definition of "infinite" i that is, S
has a one-to-one correspondence with one of its proper subsets.

You should take away the following points from Chapter 7:

.. The concept of a set is fundamental to both mathematics and computer science.

.. The common operations on sets such 88 unjan, intersection, and difference can
be visualized in terms of Veno diagrams.

+ Algebraic laws can be used to manipulate and simplify expressions involving
operationssets and 00 sets.

402 THE SET DATA MODEL

Linked lista, characteristic vectors, and huh tables provide three basic ways to
represent eeta. Linked lista offer the greatest flexibility for most set operations
but are not always the most efficient. Characteriatic vectors provide the great-
est speed for certain set operations but can be used only when the universa.l set
is ama}}. Hash tables are often the method of choice, providing both economy
of representation and speed of access.

(Binary) relations are sets of pairs. A function is a relation in which there is
at most one tuple with a given first component.

A one-to-one correspondence between two sets is a function that associates a
unique element of the second set with each element of the first, and vire versa.

.

...

...

...

...

...

...

...

There are a number O(significant properties O(binary relatioDS: reflexivity,
transitivity, symmetry, and asymmetry are among the most important.

Partial orders, total orders, and equivalence relatioD8 are important special
cases o(binary relations.

Infinite seta are those sets that have a one-to-one cor~poDdence with one of
their proper 8ubsets.

Some infinite sets are "countable," that is, they have a one-to-one cor~pon-
dence witb the integers. Other infinite sets, such as the reata, are not countable.

The data structures and operations defined on sets and relations in this chapter
will be used in many difl'erent ways in the remainder of this book.

+++ 7.13 Bibliographic
+

Halm~ [1974] provides a good introduction to aet tbeory. Hashing techniques were
first developed in the 1950's, and Peterson [1957] covers the early techniques. Knuth
[1973] and Morris [1968] contain additional material on hashing techniques. Rein-
gold [1972] dÍ8CU8es tbe computational complexity oí basic set operations. The
tbeory oí infinite eets was developed by Cantor [1916].

Cantor, G. [1916]. "Contributions to tbe íounding oí the tbeory oí transftnite num-
bers," reprinted by Dover Prea, New York.

Halmos, P. R. [1974]. Naive Set Theory, Springer-Verlag, New York.

Knuth, D. E. [1973]. The Art of Computer Programming, Vol. m, Sortíng aod
SeardJíng, Addi8OD-Wesley, Reading, MaM.

Morris, R. [1968]. "Scatter storage techniques," Comm. ACM 11:1, pp. 35-44.

Peterson, W. W. [1957]. "Add~ing íor random acceM storage," IBM J. Re8eardJ
aod Development 1:7, pp. 130-146.

Reingold, E. M. [1972]. "On the optimality oí BOme aet algorithms," J. ACM 19:4,
pp. 649-659.

Notes for Chapter 7

