
CHAPTER

....

+:+ 9.1 What This

~~

9

~~

GraphThe

~

Data Model

A graph is, in a sense, nothing more than a binary relation. However, it has a
powerful visualization as a set of points (called nades) connected by liDes (called
edges) or by arrows (called arcs). In this regard, the graph is a generalization of the
tree data model that we studied in Chapter 5. Like trees, graphs come in several
forros: directedfundirected, and labeledfunlabeled.

Also like trees, graphs are useful in a wide spectrum of problems such as com-
puting distances, finding circularities in relationships, and determining connectiv-
ities. We have already seen grapbs used to represent tbe structure of programa in
Cbapter 2. Grapbs were u8ed in Cbapter 7 to represent binary relations and to
illustrate certain properties of relations, like commutativity. We sball see grapbs
used to represent automata in Cbapter 10 and to represent electronic circuits in
Chapter 13. Several otber important applications oí graphs are discussed in this

chapter.

Chapter Is About

The main topics of this chapter are

... The definitions conceming directed and undirected graphs (Sections 9.2 and

9.10).

... The two principal data structures for representing graphs: adjacency lists and
adjacency matrices (Section 9.3).

... An algorithm and data structure for finding the connected components of an
undirected graph (Section 9.4).

... A technique for finding minimal spanning trees (Section 9.5).

... A useful technique for exploring graphs, called "depth-first search" (Section

9.6).

451

452 THE ORAPH DATA MODEL

+ Applications of depth-first search to test whether a directed graph has a cycle,
to find a topological arder for acyclic graphs, and to detennine whether there
is a path fram one node to another (Section 9.7).

+ Dijkstra's algorithm for finding shortest paths (Section 9.8). This algorithm
finds the mínimum distance from one "source" node to every nade.

+ Floyd's algorithm for finding the mínimum distance between any two nodes

(Section 9.9).

Many of the algorithms in this chapter are examples of useful techniques that are
much more efficient than the obvious way of solving the given problem.

.:. 9.2 Basic Concepts

Directed graph A directed graph, consista of

l. A set N of node6 and

2. A binary relation A on N. We call A the set of arc6 of the directed graph.
Ara are thus paira of nod5.

Graphs are drawn as suggested in Fig. 9.1. Each node is rep~nted by a
circle, with the name of the node inside. We shall usually name the nodes by
integers starting at O, or we shail use an equivalent enumeration. In Fig. 9.1, the
set of nodes is N = {O, 1,2, 3,4}.

Each arc (u, ti) in A is repre&ented by an arrow from u to ti. In Fig. 9.1, the
~t of arcs is

A = {(O,O), (0,1), (0,2), (1,3), (2,0), (2,1), (2,4), (3,2), (3,4), (4,1)}

Nodes and ara

Head and tail In text, it is customary to repreeent an arc (Ut v) 88 u -+ v. We call v the head
of the arc and u the toil to conform with tbe notion tbat v is at tbe head of tbe

Fig. 9.1. Exampte of a directedgraph.

"'

SEC. 9.1 BASIC CONCEPTS 453

.,,
arrow and u is at its tail. For example, O -t 1 is an arc of Fig. 9.1; its bead is nade
1 and its tail is node O. Anotber arc is O -t O; such an arc froro a nade to itself is

Loop called a loop. For tbis arc, botb tbe bead and tbe tail are node O.

Predecessors and Successors

Wben u -t v is an arc, we can also say tbat u is a predece or of v, and tbat v is a
successor of u. Tbus, the arc O -t 1 tells us that O is a predecessor of 1 and tbat 1
is a successor of O. The arc O -t O tells us that node O is both a predecessor and a
successor of itself.

Labels

As for trees, it is permissible to attach a label to each node. Labels will be drawn
near their nade. Similarly, we can label arca by placing the label near the middle
of tbe arco Any type can be used as a node label or an arc label. For instance, Fig.
9.2 sbows a nade named 1, with a label "dog," a node named 2, labeled "cat," and
an arc 1 -t 2 labeled "bites."

0~~
dog cat

Fig. 9.2. A labeled graph with two nodes.

Again as with trees, we should not confuse the name of a nade with its label.
Node names must be unique in a graph, but two or more nades can have the same
l&bel.

Paths

A path in a directed graph is a list of nodes (VI, t.I2, . . . , VJr.) such that there is an arc
Length of a froro each node to the next, that is, Vi -t Vi+I for i = 1,2,..., k-l. The length
path of the path is k - 1, the number of arcs along the path. For example, (0,1,3) is a

path of length two in Fig. 9.1.
The trivial case k = 1 is permitted. That is, any node v by itself is a path of

length zero from v to v. This path has no arca.

Cyclic and Acyclic Graphs
A cycle in a directed graph is a path of lengtb 1 or more tbat begins and ends at

Length of a tbe same nade. Tbe length o/ the cycle is the lengtb of tbe patb. Note tbat a trivial
cycle path of length O is not a cycle, even thougb it "begins and ends at tbe same node."

However, a patb consisting of a single arc v -t v is a cycle of lengtb 1.

.. Example 9.1. Consider tbe grapbofFig. 9.1. Tbere is a cycle (0,0) oflengtb 1
because of the loop O -t O. There is a cycle (0,2, O) of lengtb 2 because of the arcs
O -t 2 and 2 -t O. Similarly, (1,3,2,1) is a cycle of lengtb 3, and (1,3,2,4,1) is a
cycle of length 4. ..

1
c,: "O;

-h.!i ~-,~ '---"""'

454 THE GRAPH DATA MODEL

Note that a cycle can be written to start and end at any of its nades. That
is, the cycle (Vi, V2,..., Vk, Vi) could also be written as (f12,..., Vk, Vi, V2) or as
(V3,...,VklVi,V2,V3), and so on. For example, the cycle (1,3,2,4,1) could also
have been written as (2,4,1,3,2).

On every cycle, the first and last nades are the same. We say that a cycle
(Vi,V2,...,V",Vi) is simple ifno nade appears more than once among Vi,'",V,,;
that is, the only repetition in a simple cycle occurs at the final node.

Equivalent
cycles

Simple cycle

... Example 9.2. All the cycles in Example 9.1 are simple. In Fig. 9.1 the
cycle (0,2, O) is simple. However, there are cycles that are not simple, such as
(0,2,1,3,2, O) in which node 2 appears twice. ...

Given a nonsimple cycle oontaining Bode v, we can find a simple cycle contain-
ing v. To see why, write the cycle to begin and end at v, as in (v, V¡, V2,..., Vk, v).
If the cycle is not simple, then either

1. v appears three or more times, or

2. There is some node u other than v that appears twice; that is, the cycle must
look like (v,...,u,...,u,...,v).

In case (1), we can remove everything up to, but not including, the next-to-Iast
occurrence of v. The result is a shorter cycle from v to v. In case (2), we can remove
the section from u to u, replacing it by a single occurrence of u, to get the cycle
(v, . . . , u, . . ., v). The result must still be a cycle in either case, because each arc of
the result is present in the original cycle, and therefore is present in the graph.

It mar be necessary to repeat this transformation severa! times before the cycle
becomes simple. Since the cycle always gets shorter with each iteration, eventually
we must arrive at a simple cycle. What we have just shown is that if there is a cycle
in a graph, then there must be at least one simple cycle.

+ Example 9.3. Given the cycle (0,2,1,3,2, O), we can remove the first 2 and the
following 1,3 to get the simple cycle (0,2, O). In physical terms, we started with
the cycle that begins at O, goes to 2, then 1, then 3, back to 2, and finally back to
O. The first time we are at 2, we can pretend it is the second time, skip going to 1
and 3, and proceed right back to O.

For another example, consider the nonsimple cycle (O, O, O). As O appears three
times, we remove the first O, that is, everything up to but not including the next-
to-Iast O. Physically, we have replaced the path in which we went around the loop
O -+ O twice by the path in which we go around once. +

Cyclic graph Ir a graph has one or more cycles, we say the graph is cyclic. Ir there are no
cycles, the graph is said to be acyclic. By what we just argued about simple cycles,
a graph is cyclic ir and only ir it has a simple cycle, because ir it has any cycles at
all, it will have a simple cycle.

.. Example 9.4. We mentioned in Section 3.8 that we could represent the calls

Calling graph

,.
~

.

)

Direct and
indirect
recursion

~

"

)

)

,
.

.

SEC.9.2 BASIC CONCEPTS 455

made by a collection of functions with a directed graph called the "calling graph."
The nodes are the functions, and there is an arc P -+ Q if function P calls function
Q. For instance, Fig. 9.3 shows the calling grapb &S8OCÍated witb tbe merge sort
algoritbm of Section 2.9.

The existence of a cycle in the calling graph implies a recursion in the algorithm.
In Fig. 9.3 there are four simple cycles, one around each of the nodes MakeLiat,
MergeSort, aplit, and aerge. Each cycle is a trivial loop. Recall that all these
functions call themselv~, and thus are recursive. Recursions in which a function
calls itself are by far the most common kind, and each of these appears as a loop in
the calling graph. We call these recursions directo However, one occasionally sees an
indirect recursion, in which there is a cycle of length greater than 1. For instance,
the graph

r""""'--~-"""~~
(~r-""-.'--\~) o(~)

representa a function P that calls function Q, which calls function R, which calls
function P. +

456 THE GRAPH DATA MODEL

Acyclic
A path is said to be acyclic iCno nade appears more than once on the path. Clearly,
no cycle is acyclic. The argument that we just gave to show that Cor every cycle
there is a simple cycle also demonstrates the Collowing principie. If there is any path
at all Crom u to v, then there is an acyclic path Crom u to v. To see why, start with
any path Crom u to v. If there is a repetition oC some nade w, which could be u or
v, replace the two occurrences oC w and everything in between by one occurrence of
w. As Cor the case oC cycles, we may have to repeat this process several times, but
eventually we reduce the path to an acyclic path.

Example 9.5. Consider the graph of Fig 9.1 again. The path (0,1,3,2,1,3,4)
is a path fraro O to 4 that contains a cycle. We can focus on the two occurrences of
nade 1, and replace them, and the 3,2 between them, by 1, leaving (0,1,3,4), which
is an acyclic path because no nade appears twice. We could also have obtained the
same result by focusing on the two occurrences of node 3. +

U ndirected Graphs

Sometimes it makes sense to connect nades by liDes that have no direction, called
edges. Formally, an edge is a set of two nades. The edge {u, v} says that nades u
and v are connected in both directions.l If {u,v} is an edge, then nodes u and v
are said to be adjacent or to be neighbors. A graph with edges, that is, a graph
with a symmetric arc relation, is called an undirected groph.

.

Edge

Neighbors

+ Example 9.6. Figure 9.4 represents a partial road rnap of the Hawaiian Islands,
indicating BOrne of the principal cities. Cities with a road between thern are indicated
byan edge, and the edge islabeled by the driving distance. It is natural to represent
loada by edges, rather than arcs, because roads are norrnally two-way. +

Paths and Cycles in U ndirected Graphs

A path in an undirected graph is a list of nodes (v¡, V2, . . . , Vk) such that each
node and the next are connected by an edge. That is, {Vi, Vi+ 1} is an edge for
i = 1,2,..., k - l. Note that edges, being sets, do not have their elernents in any
particular order. Thus, the edge {Vi, Vi+¡} could just 88 well appear 88 {Vi+¡, Vi}.

The length of the path (v¡, V2, . . . , VIr) is k-l. As with directed graphs, a node
by itself is a path of length O.

Defining cycles in undirected graphs is a little tricky. The problern is that we
do not want to consider a path such 88 (u, V, u), which exists whenever there is an
edge {u, v}, to be a cycle. Sirnilarly, if (V¡, V2,. . ., VIr) is a path, we can traverse it
forward and backward, but we do not want to call the path

(V¡,V2,.. .,VIr-¡,Vk,Vk-¡,.. .,V2'Vl)

1 Note tbat the edse is ~quired to have exactly two nodes. A singleton set consisting of one

node is not an edge. Thus, although an are from a node to itself ia permitted, we do not
pemlit a looping edge from a node to itself. Some definitioDs of "undi~cted graph" do pemlit
such loop..

Paths

Simple cycle

Equivalent
cycles

...

SEC.9.2 BASIC CONCEPTS 457

~~~

An undirected grapb representing roads in three Hawaiian Islands
Oahu, Maui, and Hawaii (clockwise from tbe left).

Fig. 9.4.

a cycle.
Perhaps the easiest approach is to define a simple cycle in an undirected graph

to be a path of length three or more that begins and ends at the same node, and
with the exception of the last node does not repeat any node. The notion of a
nonsimple cycle in an undirected graph is not generally useful, and we shall not
purgue this concept,

As with directed cycles, we regard two undirected cycles 88 the same if they
consist of the same nades in the same order, with a different starting point, Undi-
rected cycles are also the same if they consist of the same nades in reverse order.
Formally, the simple cycle (VI, V2,o o o, VIt) is equivalent, for each i between 1 and k,
to the cycle (Vi, Vi+I"", VIt, VI, V2,..', Vi-l) and to the cycle

(tli, tli-1 , . . . , tl1, ti", tI"-1, . . . , "'+1)

Example 9.7. In Fig. 9.4,

(Wahiawa, Pearl City, Maili, Wahiawa)

is a simple cycle oí length three. It could have been written equivalently as

(Maili, Wahiawa, Pearl City, Maili)



458 THE GRAPH DATA MODEL

by starting at Maili and proceeding in the same order around the circle. Likewiae,
it could have been written to start at Pearl City and proceed around the circle in
reverse order:

(Pearl City, Maili, Wahiawa, Pearl City)

For another example,

(Laie, Wahiawa, Pearl City, Honolulu, Kaneohe, Laie)

is a simple cycle of length five. +

EXERCISES

9.2.1: Consider the graph of Fig. 9.5.

a) How many arcs are there?
b) How many acyclic paths are there from node a to node d? What are they?
c) What are the predecessors of node 6?
d) What are the succeaors of node 6?
e) How many simple cycles are there? List them. Do not repeat paths that differ

only in the starting point (see Exercise 9.2.8).
() List all the nonsimple cycl~ o( lengt.h up to 7.

9.2.2: Consider the graph o( Fig. 9.5 to be an undirected graph, by replacing each
arc u -+ v by an edge {u,v}.

a) Find all the patbs from a to d that do not repeat any nade.
b) How many simple cycles are there that include all six nades? List theae cycles.
c) What are the neighbors of nade a?

9.2.3-: If a graph has 10 nades, what is tbe larg~t number of arcs it can have?
What is the smallest po88ible number of arca? In general, if a graph has n nod~,
what are the mínimum and maximum number of arca?

9.2.4-: Repeat Exercise 9.2.3 for the edg~ of an undireded graph.

9.2.5-.: If a directed graph is acyclic and has n nades, what is the large8t p<8ible
number of arca?

Fig. 9.5. grapb fcr ~--!.~ 9.2.1 and 9.2.2.Directed



.... 9.3 Implementation of Graphs

SEC. 9.3 IMPLEMENTATION OF GRAPHS 459

Find an of indirect recursion among the functions 80 lar in this9.2.6:
book.

9.2.7: Write tbe cycle (0,1,2, O) in all possible ways.

9.2.8*: Let G be a directed grapb and let R be tbe relation on tbe cycles of G defined
by (UI".. ,Uk,UI)R(Vl," .,Vk,VI) ifand only if(UI,'.. ,Uk,UI) and (VI,... ,Vk, VI)
represent tbe same cycle. Sbow that R is an equivalence relation on the cycles of
G.

9.2.9*: Show that the relation S defined on tbe nades of a grapb by uSv if and only
if u = V or there is some cycle that includes both nades u and v, is an equivalence
relation.

9.2.10*: When we discussed simple cycles in undirected graphs, we mentioned
that two cycles were really the same if they were the same nades, either in order,
or in reverse order, but with a different starting point. Show that the relation R
consisting of pairs of representations for the same simple cycle is an equivalence
relation.

There are two standard ways to represent a graph. Que, called adjacency lists, is
familiar from the implementation oí binary relations in general. The second, called
adjacency matrices, is a new way to represent binary relations, and is more suitable
for relations where the number of pairs is a sizable fraction of the total number
of pairs that could poesibly emt over a given domain. We shall consider these
representations, first for directed , then for undirected graphs.grapbs

Adjacency Lists

Let nodes be named either by the integers 0,1, . .., M AX - 1 or by an equivalent
enumerated type. In general, we shall use NODE as the type of nodes, but we
may 8UPPose that NODE is a synonym for int. Then we can use the generalized
characteristic-vector approach, introduced in Section 7.9, to represent the set of
arcs. This representation is called adjacency lists. We define linked lists of nodes

by
typedet struct CELL .LIST;
struct CELL {

NODE nodeName;
LIST next;

};

and then create an array

succeaaora[MAX];LIST

That is, the entry successors [u] contains a pointer to a linked list oí all the
8Uccessors of nade u.



460 THE GRAPH DATA MODEL

Fig. 9.6.

Example 9.8. Tbe grapb oí Fig. 9.1 can be represented by the adjacency lists
shown in Fig. 9.6. We have sorted the adjacency lista by Bode number, but the
successors of a node can appear in any order on ita adjacency listo +

+

Adjacency Matrices

Another cornrnon way to represent directed grapbs is as adjacency matrices. We
can create a two-dirnensional array

BOOLEAN

in which the value or arca [u] [v] is TRUE ir there is an arc u -+ v, and FALSE ir noto

... Example 9.9. The adjacency matrix for
9.7. We use 1 for TRUE and O for FALSE. ...

Operations on

We can see some of the distinctions between the two graph representations if we
consider BOrne simple operations on graphs. Perhaps the m~t basic operation i8
to determine whether there is an arc u -+ v (rom a node u to a nade v. In the
adjacency matrix, it takes 0(1) time to look up arca [u] [y] to see whether the
entry there is TRUE or noto

8UCC8SS0rs

o
1

2

3

4

Adjacency-list representation of the graph shown in Fí¡. 9.1.

arC8 (MllJ [MAl] ;

of Fig. 9.1 is shown in Fig.the graph

o
1
O
O

o
1

1

O

1

2
3
4

1

O
O
O

o
o
1

O

o
1

O

1

Fig.9.7. the gnph oí Fig. 9.1.AdjKency matrix

Graphs



Dense and

sparse graphs

SECo 9.3 IMPLEMENTATION OF GRAPHS 461

Comparison of Adjacency Matrices and Adjacency Lists

We tend to prefer adjacency matrices when the graphs are dense, that is, when the
number of arcs is near the maximum possible number, which is n2 for a graph of n
nodes. However, if the graph is sparse, that is, if most of the possible arcs are not
present, then the adjacency-list representation mar save space. To see why, note
that an adjacency matrix for an n-node graph has n2 bita (provided we represent
TRUE and FALSE by single bita rather than integers as we have done in this section).

In a typical computer, a structure consisting of an integer and a pointer, like our
adjacency list cells, will use 32 bita to represent the integer and 32 bita to represent
the pointer, or 64 bita total. Thus, if the number of arcs is a, we need about 64a
bita for the lista, and 32n bits for the array of n headers. The adjacency list will use
less space than the adjacency matrix if 32n + 64a < n2, that is, if a < n2/64 - n/2.
If n is large, we can neglect the n/2 term and approximate the previous inequality
by a < n2/64, that is, if fewer than l/64th of the possible arcs are actually presento
More detailed argumenta favoring one or the other representation are presented
when we discuss operations on graphs. The following table summarizes the preferred
representations for various operations.

OPERATION DENSE GRAPH SPARSE GRAPH

Look up an arc Adjacency matrix Eitber
Find 8U~rs Eitber Adjacency lists
Find predecessors Adjacency matrix Eitber

With adjacency lists, it takes 0(1) time to find tbe beader of tbe adjacency
list for u. We must tben traverse this list to the end if v is not there, or half the
way clown the list on the average if v is presento If there are a arcs and n nades in
the graph, then we take time 0(1 + a/n) on the average to do the 100kup. If a is
no more than a constant factor times n, this quantity is 0(1). However, the larger
a is when compared with n, the longer it takes to tell whether an arc is present
using the adjacency list representation. In the extreme case where a is around n2,
its maximum possible value, there are around n nades on each adjacency listo In
this case, it takes O(n) time on the average to find a given arco Put another way,
the denser a graph is, the more we prefer the adjacency matrix to adjacency lists,
when we need to look up a given arco

On tbe otber hand, we often need to find all tbe successors of a given node
U. Using adjacency lists, we go to 8UCC888ors [uJ and traverse the list, in average
time O(a/n), to find all tbe successors. If a is comparable to n, then we find all the
successors of u in 0(1) time. But with adjacency matrices, we must examine tbe
entire row for nade u, taking O(n) time no matter what a is. Tbus, for grapbs with
a small number of edges per nade, adjacency lists are much rastel tban adjacency
matrices when we need to examine all the successors of a given nade.

However, suppose we want to find all the predecessors of a given node v. With
an adjacency matrix, we can examine tbe column for v; a 1 in the row for u means
that u is a predecessor of v. This examination takes O(n) time. The adjacency-
list representation gives us no help finding predecessors. We must examine the
adjacency list for every nade u, to see if that list includes v. Thus, we may examine



462 THE GRAPH DATA MODEL

A Matter oí Degree

The number of arca out of a node v is called the out-degree of v. Thus, the out-
degree of a node equals the length of its adjacency list; it also equals the number
of 1 's in the row for v in the adjacency matrix. The number of arca into node v is
the in-degree of v. The in-degree measures the number of times v appears on the
adjacency list of some node, and it is the number of 1 's found in the column for v
in the adjacency matrix.

In an undirected graph, we do not distinguish between edges coming in or
going out of a node. For an undirected graph, the degree of node v is the number
of neighbors of v, that is, the number of edges {u, v} containing v for some node
u. Remember that in a set, order of members is unimportant, so {u, v} and {v, u}
are the same edge, and are counted only once. The degree 01 an undirected graph is
the maximum degree of any node in the graph. For example, if we regard a binary
tree as an undirected graph, its degree is 3, since a node can only have edges to its
parent, its left child, and its right child. For a directed graph, we can say that the
in-degree 01 a groph is the maximum of the in-degrees of its nodes, and li kewise , the
out-degree 01 a groph is the maximum of the out-degrees of its nodes.

all the cells of all the adjacency lists, and we shall probably examine most of them.
Since the number of cells in the entire adjacency list structure is equaJ to a, the
number of arca of the graph, the time to find predecessors using adjacency lists is
thus O(a) on a graph of a arca. Here, the advantage goes to the adjacency matrix;
and the denser the graph, the greater the advantage.

In- and Out-
degree

Degree of a
graph

Implementing Undirected Grapbs
If a graph is undirected, we can pretend that each edge is replaced by arcs in both
directions, and represent the resulting directed grapb by either adjacency lists or
an adjacency matrix. If we use an adjacency matrix, the matrix is symmetric.
That is, if we call the matrix edges, then edges[u][v] = edges[v][u]. If we use an
adjacency-list representation, then the edge {u, v} is represented twice. We find v
on the adjacency list for u and we find u on the list for v. That arrangement is
often useful, since we cannot tell in advance whether we are more likely to follow
the edge {u, v} from u to v or from v to u.

Symmetric
adjacency
matrix

Kaneohe
Honolulu

PearlCity
Maili

Wahiawa

Fig. 9.~.

o
1
O
O
O

1
O

1 o
1
O
1
1

o
o
1
O
1

o
o
1

1

O

o
o
o

1
o
o1

Adjacency-matrix representation of an undirected graph from Fig. 9.4.



;$
SEC. 9.3 IMPLEMENTATION OF GRAPHS 463

.. Example 9.10. Consider how to represent the largest component of the undi-
rected graph of Fig. 9.4 (which represents six cities on the island of Oahu). For the
moment, we shall ignore the labels on the edges. The adjacency matrix representa-
tion is shown in Fig. 9.8. Notice that the matrix is symmetric.

Figure 9.9 shows the representation by adjacency lista. In both cases, we are

using an enumeration type

enua CITYTYPE {Late, Kaneohe, Honolulu,
PearlCity, Maili, Vahiawa};

to index arrays. That arrangement is somewhat rigid, sÍDce it does not allow any
changes in the set of nodes of the graph. We shall give a similar example shortly
where we name nodes explicitly by integers, and use city names as node labels, for
more flexibility in changing the set of nodes. ..

8Ucc...or.

Laie

Kaneohe

Honolulu

PearlCity

MaiIi

Wahiawa

Fig. 9.9. Adjacency-list repre8entation of an undirected grapb from ras. 9...

Representing Labeled Graphs

Suppose a graph has labels on its arca (or edges if it is undirected). Using an
adjacency matrix, we can replace the 1 that represents the presence of arc u -t v in
the graph by the label of tbis arco It is necessary that we have some vaJue that is
permissible as a matrix entry but cannot be mistaken for a label; we use this value
to represent the absence of an arco

If we represent the grapb by adjacency lists, we add to the cells forming the
lista an additional field nodeLabel. If there is an arc u -t v with label L, then on
the adjacency list for node u we shall find a ceIl witb v in its nodelame field and L
in its nodeLabel field. That value representa the label of the arco

We represent labels on nodes in a different way. For an adjacency matrix, we
simply create another array, say llodeLabela, and let llodeLabela [u] be the label oí
node U. When we use adjacency lista, we already bave an array of headers indexed
by nodes. We cbange tbis array so that it has elements that are structures, ORe field
for tbe node label and one field pointing to the beginning of tbe adjacency listo

¡

'C(
~-- _ooó""".



464 THE GRAPH DATA MODEL

Fig. 9.10.

Fig. 9.11.

Example 9.11. Let us again represent the large component oí the graph oí
Fig. 9.4, but this time, we shall incorporate the edge labels, which are distances.
Furthermore, we shall give the nades integer names, starting with O íor Laie, and
proceeding clockwise. The city names themselves are indicated by nade labels..
We shall take the type of nade labels to be character arrays oí length 32. This
representation is more flexible than that oí Example 9.10, since ií we allocate extra
places in the array, we can add cities should we w1sh. The resulting graph is redrawn

...

Maili

Pearl
City

Map of Oahu with nades named by iotegers aod labeled by cities.

citie.

O Laie
1 Kaneohe
2 Honolulu

3 PearlCity
4 Maili

5 Wahiawa

-. ,., di.tanc..

O 1 2 3 4 5

O -1 24 -1 -1 -1 28

'~ ;':1 U~-l -1 ---11

2

3

4

Ó

-1

-1

11
,

-1

~~
1

-.1 -1

20 12
-1 15

15 -1
,71 .,.,.1

28 -1

of a directed graph.

~



SEC. 9.3 IMPLEMENTATION OF GRAPHS 465

in Fig. 9.10, and the adjacency matrix representation is in Fig. 9.11.
Notice that there are really two parta to this representation: the arfar cities,

indicating the city that each of the integers O through 5 stands for, and the matrix
distancea, indicating the presence or absence of edges and the labels of present
edges. We use -1 as a value that cannot be mistaken for a label, since in this
example, labels, representing distances, must be positive.

We could declare this structure as follows:

typedef char CITYTYPE[32];
typedet CITYTYPE cities[KiX];
int distancea [Mil] [KiX] ;

Here, M AX is some number at least 6; it limits the number of nades tbat can ever
appear in our graph. CITYTYPE is defined to be 32-character arrays, and the arfar
cities gives tbe labels of the various nades. For example, we expect cities[O] to be
"Laie".

An alternative representation of the graph of Fig. 9.10 is by adjacency lists.
Suppose the constant M AX and the type CITYTYPE are as above. We define the
types CELL and LIST by

typedef struct CELL *LIST;
struct CELL {

NODE nodeNaae;
int distance;
LIST next;

};

Next, we declare the arfar cities by

struct {
CITYTYPE city;
LIST adjacent;

} cities[Mil];

Figure 9.12 sbows the grapb of Fig. 9.10 represented in this manner. .

citie.

o Laie

1 Kaneohe

2 Honolulu

.3 PearlCity

4 Maili

5 Wahiawa

Fig. 9.12. Adjacen<:y-Jist repreaentatiOD oí graph witb Bode and edge labels.



466 THE GRAPH DATA MODEL

EXERCISES

9.3.1: Represent tbe graph oí Fig. 9.5 (see the exercises oí Section 9.2) by

a) Adjacency lists

b) An adjacency matrix

Give the appropriate type definitions in each case.

9.3.2: Suppose the arcs of Fig. 9.5 were instead edges (i.e., the graph were undi-
rected). Repeat Exercise 9.3.1 for the undirected graph.

9.3.3: Let us label each ofthe arcs ofthe directed graph ofFig. 9.5 by the character
string of length 2 consisting of the tail followed by the head. For example, the arc
a -+ b is labeled by the character string ab. Also, suppose each nade is labeled
by the capitalletter corresponding to its name. For instance, the nade named a is
labeled A. Repeat Exercise 9.3.1 for this labeled, directed graph.

9.3.4*: What is the relationship between the adjacency-matrix representation of
an unlabeled graph and the characteristic-vector representation of a set of arcs?

9.3.5*: Prove by induction on n that in an undirected graph of n nades, the sum
of the degrees of the nades is twice the number of edges. Note. A proof without
using induction is also possible, but here an inductive proof is required.

9.3.6: Design algorithms to insert and delete arca from an (a) adjacency-matrix (b)
adjacency-list representation of a directed graph.

9.3.1: Repeat Exercise 9.3.6 Cor an undirected graph.

9.3.8: We can add a "predecessor list" to the adjacency-list representation of a di-
rected or undirected graph. When is this representation preferred Cor the operations
oC

a) Looking up an arc?

b) Finding all 8Uccessors?

c) Finding all predecessors?

Consider both dense and sp&rse graphs in your analysis.

.+.. 9.4 Connected Components

We can divide any undirected graph into one or more connected components. Each
connected component is a set of nodes with paths from any member of the compo-
nent to any other. Moreover, tbe connected components are maximal, that is, for
no node in the component is there a path to any node outside the component. If a
g~aph consista of a single connected component, then we say the graph is connected.

Connected

graph

of an Undirected Graph



..

..

r
.
l..

SECo 9.4 CONNECTED COMPONENTS OF AN UNDIRECTED GRAPH 467

Physical Interpretation of Connected Components

Ir we are given a drawing of an undirected graph, it is easy to see the connected
components. Imagine that the edges are strings. Ir we pick up any nade, the
connected component of which it is a member wiii come up with it, and members
of all other connected components will stay where they are. Of course, what is easy
to do by "eyebali" is not necessarily easy to do by computer. An algorithm to find
the connected components of a graph is the principal subject of this section.

Example 9.12. Consider again the graph of the Hawaiian Islands in Fig. 9.4.
There are three connected components, corresponding to three islands. The largest
component consists of Laie, Kaneohe, Honoluiu, Pearl City, Maili, aod Wahiawa.
These are cities on the island of Oahu, and they are cieariy mutually connected
by roads, that is, by paths of edges. Also, clearly, there are no roads leading from
Oahu to any other island. In graph-theoretic terms, there are no paths from any of
the six cities mentioned above to any of the other cities in Fig. 9.4.

A second component consists of the cities of Lahaina, Kahului, Hana, and
Keokea; these are cities on the isiand of Maui. The third component is the cities oí
Hilo, Kona, and Kamuela, on the "big island" of Hawaii. ..

Connected Components as Equivalence Classes

Another useful way to look at connected components is that they are the equivalenc~

classes of the equivalence relation P defined on the nodes of the undirected graph

by: uPv if and only if there is a path from u to v. It is easy to check that P is an

equivalence relation.

1. P is reflexive, that is, uPu Cor any node u, since there is a path of length O

from any node to itself.

2. P is symmetric. If uPv, then there is a path from u to v. Since the graph is
undirected, the reverse sequence of nodes is also a path. Thus vPu.

3. P is transitive. Suppose uPw and wPv are true. Then there is a path, say

(%1, %2,. ..,%¡)
from u to w. Dere, u = %1 and w = %¡. Also, there is a path (Yl,Y2,...,Yk)
from w to v where w = Yl and ti = y". If we put these paths together, we get

a path from u to ti, namely
(u = %1,%2,'" ,%¡ = W = Yl,Y2,.'. ,Yk = v)

Example 9.13. Consider the path

(Honolulu, PearlCity, Wahiawa, Maili)

Crom Honolulu to Maili in Fig. 9.10. Also consider the path

(Maili, PearlCity, Wahiawa, Laie)



468 THE GRAPH DATA MODEL

from Maili to Laie in the same graph. Ir we put these paths together, we get a path
from Honolulu to Laie:

(Honolulu, PearlCity, Wahiawa, Maili, PearlCity, Wahiawa, Laie)

It happens that this path is cyclic. As mentioned in Section 9.2, we can always
remove cycles to get an acyclic path. In this case, one way to do 80 is to replace
the two occurrences of Wahiawa and the nades in between by one occurrence of
Wahiawa to get

(Honolulu, PearlCity, Wahiawa, Laie)

which is an acyclic path from Honolulu to Laie. +

Since P is an equivalence relation, it partitions the set ofnodes ofthe undirected
graph in question into equivalence cl~. The class containing node v is the set
of nodes u such that vPu, that is, the set oí nodes connected to v by a path.
Moreover, another property oí equivalence classes is that ií nodes u and v are in
different classes, then it is not possible that uPv; that is, there is never a path
írom a node in one equivalence class to a node in another. Thus, the equivalence
cl~ defined by the "path" relation P are exactly the connected components oí
the graph.

An Algorithm for Co

Suppose we want to construct the connected components oí a graph G. One ap-
proach is to begin with a graph Go consisting oí the nades oí G with Done oí the
edges. We then consider the edges oí G, one at a time, to construct a sequence oí
graphs Go, GI,..., where Gi consists oí the nades oí G and the first i edges oí G.

BASIS. Go consists oí only the nades oí G with Done oí the edges. Every nade is
in a component by itselí.

INDUCTION. Suppose we have the connected components Cor the graph Gi after
considering the first i edges, and we now consider the (i + l)st edge, {u, v}.

1. If u and v are in the same component oC Gi, then Gi+l has the same set of
connected components as Gi, because the new edge does not connect any nodes
that were not already connected.

2. If u and v are in different components, we merge the components containing
u and v to get the connected components Cor Gi+l. Figure 9.13 suggests why
there is a path from any node z in the component of u, to any node y in the
component of v. We follow the path in the first component Crom z to u, then
the edge {u, v}, and finally the path from v to y that we know exista in the
second component.

When we have considered al) edges in this manner, we have the connected compo-
nents oí the full graph.

the Connected Components



th

t.ya
.ce
of

ed
;et
,b.
ID
.tb

+

Ice
ol

~p-
he
oí
...z.

18

ter

of
les

ng
by
be
en
be

JOo-

SEC. 9.4 CO~TED COMPONENTS OF AN UNDIRECTED GRAPH 469

"~

""C!)

Adding edge {u, v} connects the components containing u and v.
Fig.9.13.

Example 9.14. Let us consider the graph of Fig. 9.4. We can consider edges
in any order, but for reasons having to do with an algorithm in the next section,
let us list the edges in order of the edge 1 abeIs , smallest first. This Iist of edges is

shown in Fig. 9.14.
lnitially, alI thirteen nodes are in components of their own. When we consider

edge 1, {Kaneohe, HonoIuIu}, we merge these two nodes into a single component.
The second edge, {Wahiawa, PearICity}, merges those two cities. The third edge
is {PearICity, HonoIuIu}. That edge merges the components containing these two
cities. PresentIy, each of these components contains two cities, so we now have one

component with four cities, namely

{Wahiawa, PearlCity, Honolulu, Kaneohe}

AII other cities are still in components by themselves.

EOOE CITY 1 CITY 2 DISTANCE

1 Kaneobe Honolulu 11
2 Wahiawa PearlCity 12

",3 PearlCity Honolulu I 13

4 Wahiawa Maili 15
5 Kabului Keokea 16
6 Maili PearlCity 20

" 7 Labaina Kabului 22
8 Laie Kaneobe 24
9 Laie Wabiawa 28

10 Kona Kamuela 31
41 K amuela Hilo 45
12 Kahului Hana 60
13 Kona Hilo - 114

Fig. 9.14. Edges of Fig. 9.4 in order of labels.



470 THE GRAPH DATA MODEL

Edge 4 is {Maili, Wahiawa} and adds Maili to the large component. The fifth
edge is {Kahului, Keokea}, which merges these two cities joto a component. When
we consider edge 6, {Maili, PearICity}, we see a new phenomenon: both ends ofthe
edge are already in the same component. We therefore do no merging with edge 6.

Edge 7 is {Lahaina, Kahului}, and it adds the nade Lahaina to the component
{Kahului, Keokea}, forming the component {Lahaina, Kahului, Keokea}. Edge 8
adds Laie to the largest component, which is now

{Laie, Kaneohe, Honolulu, PearlCity, Wahiawa, Maili}

The ninth edge, {Laie, Wahiawa} , connects two cities in this component and is thus
ignored.

Edge 10 groups Kamuela and Kona into a component, and edge 11 adds Hilo
to this component. Edge 12 adds Hana to the component oí

{Lahaina, Kahului, Keokea}

Finally, edge 13, {Hilo, Kona}, connects two cities already in the same component.
Thus,

{Laie, Kaneohe, Honolulu, PearlCity, Wahiawa, Maili}
{Lahaina, Kahului, Keokea, Hana}
{Kamuela, Hilo, Kona}

is the final set oí connected components. .

A Data Structure for Forming Components

Ir we consider the algorithm described informally above, we need to be able to do
two things quickly:

1. Given a nade, find its current component.

2. Merge two components into one.

There are a number oí data structures that can support these operations. We shall
study one simple idea that gives surprisingly good performance. The key is to put
the nades oí each component into a tree.2 The component is represented by the
root oí the tree. The two operations above can now be implemented as follows:

1. To find the component oí a nade in the graph, we go to the representative
oí that nade in the tree and íollow the path in that tree to the root, which
represents the component.

2. To merge two different components, we make the root oí one component a child
oí the root of the other.

2 It ia important to undentand th&t., in what follows, the "t~" and the "graph" are distinct
structures. There ia a one-to-one correspondence between the nodes of the graph and the
nodes of the t~; that ia, eadt t~ node representa a graph Bode. However, the parent-child
edges of the t~ are not necesaarily edses in the graph.

-~. e"~
~ c~-~~, .

¡

!
!



+

U
t

e
h

ct
le
Id

SEC. 9.4 CONNECTED COMPONENTS OF AN UNDIRECTED GRAPH 471

Example 9.15. Let us follow the steps of Example 9.14, showing the trees
created at certain. steps. Initially, every Bode is in a one-node tree by itself. The
first edge, {Kaneohe, Honolulu}, causes us to merge two one-node trees, {Kaneohe}
and {Honolulu}, into one two-node tree, {Kaneohe, Honolulu}. Either Bode could
be made a child oí the other. Let us suppoee that Honolulu is made tbe cbild of
the root Kaneohe.

Similarly, the second edge, {Wahiawa, PearlCity}, merges Lwo trees, and we
mar suppose tbat PearlCiLy is made Lhe child oí the root Wahiawa. At Lhis point,
the current collection oí components is represented by the two trees in Fig. 9.15 and
nine one-node trees.

KaneoheWahiawa

HoDoluluPearlCity

The fust two nontriyjal t.rees as we m~ component.s.Fig.9.1$.

The tbird edge, {PearICity, Honolulu} , merges these two components. Let
us suppose that Wabiawa is made a child of the other root, Kaneohe. Then the
resulting component is repreaented by the tree of Fig. 9.16.

Ttoee repreeenting component of fOUT nodes.Fig. 9.16.

When we consider the fourth edge, {Wahiawa, Maili}, we merge Maili into tbe
component represented by the tree oí Fig. 9.16. We could either make Maili a cbild
oí Kaoeohe, or make Kaoeohe a child oí Maili. We preíer tbe former, since tbat
keepe tbe beigbt oí tbe tree amall, while making the root oí tbe large compooent
a child oí the root oí tbe small componeot tends to make patbs in tbe tree larger.
Large paths, in turn, cause us to take more time íollowing a path to the root, wbich
we need to do to determine tbe compooent oí a node. By íollowing that policy
and making arbitrary decisions when components bave the same height, we migbt
wind up witb the three trees in Fig. 9.17 that represent the three'final connected
components. +



THE GRAPH DATA MODEL472

Kahului Kamuela

Lah~~ ~an. KOO./ ~IO

Fig.9.17.

BASIS. The basis is h = O.
the siaternent 5(0) is true.

We now know that ií a tree has n nodes and height h, it must be that n ~ 2h
Taking logarithms oí both sides, we have log2 n ~ h; that is, the heigbt of tbe tre4

Moili ::-¿" ..,~::- Laie
PearlCity

Such a tree must be a single node, and since ~ =



~
I
}
.

I

)

SEC. 9.4 CONNECTED COMPONENTS OF AN UNDIRECTED GRAPH 473
,

~

PiS. 9.18. Forming a toree of heigbt h + l.

cannot be greater than the logarithm of the number of nodes. Consequently, when
we follow any path from a node to its root, we take O(logn) time.

We shall now describe in more detail the data structure that implements these
ideas. First, suppoee that there is a type NODE representing nodes. As before, we
auume the type IODE is int and !Al is at least the number of nodes in the graph.
For our example of Fig. 9.4, we shalllet IIAI be 13.

We shall algo assume that there is a list edg.. consisting of cells of type EDGE.
These cells are defined by

typedet .truct EDGE .EDGELIST;
.truct EDGE {

NODE nod.1. nod.2;
EDGELIST next;

};

Finally, for each node of the graph, we need a corresponding tree node. Tree
nodes will be structurea of type TREENODE, consisting of

l. A parent pointer, so that we can build a tree on the graph 's nodes, and follow
the tree to its root. A root node will be identified by having NULL as its parent.

2. The beight of the tree of wbicb a given node is the root. The beigbt will only
be used if the node is presentIr a root.

We may thus define type TREENODE by

typedet .truct TRE~ODE .TRBB;

.truct TREEIODE {
int height;
TREE parent;

}:

We sball define an array

TREE Bode. [!Al] ;

to aaociate with each graph node a node in some tree. It is important to realize
that each entry in tbe array Bode. is a pointer to a node in tbe tree, yet this entry
is the BOle representative of the node in tbe grapb.

Two important auxiliary functions are shown in Fig. 9.19. The first, tind,
takes a node a, gets a pointer to the correaponding tree node, Z, ~d follom tbe
parent pointers in Z and its ancestors, until it comes to the root. This searcb for
tbe root is performed by liDes (2) and (3). If the root is found, a pointer to the root
is returned at line (4). Note that at line (1), the type IODE must be int ~ it may



474 THE GRAPH DATA MODEL

/. return the root ot the tree containing th. tree node x
corre.ponding to graph node a ./

TREE tind(NODE a. TREE node. O);
{

(1)
(2)
(3)
(4)

}

/. merge the tree. vith roots x and y into one tree,

by aaking the root 01 the lo.er a child 01

the root ot the higher./

void .erge(TREE x, TREE y)

{
TREE higher, lo.er;

it (x->height > y->h.igbt) {
bigber = x;

lo.er = y;

}
el.. {

bigher = y;
lo..r = x;

(5)
(6)
(7)

(8)
(~)

(10)
(11)
(12)

}

be used to index tbe array Bode8.
Tbe eecond fundían, _rge,3 takes pointers to two tree nod5, z and &', wbich

must be the roots of distinct trees for the merger to work properly. The test o( line
(5) determines wbich ofthe roots bas the greater beigbt; ti5 are broken in favor o(
y. Tbe bigber is assigned to tbe local variable higher and the lower to the local
variable lover at liDes (6-7) or liDes (8-9), whichever is appropriate. Tben at line
(10) tbe lower is made a child of tbe higber and at. lin~ (11) and (12) tbe beigbt
of the higher, whiclt is now the root of the combined tree, is incremented by one if
the beigbts of TI and T2 are equal. The height o( tbe lower remains as it was, but
it is now meaningle88, becauae the lower is no longer a root.

Tbe heart of tbe algorithm to find connected components is sbown in Fig. 9.20.

3 Do not conf- thia function with a function of the 8ame name u8ed for merae 8OI"tins in
Chaptcn 2 and 3.

TREE x;

x = Bode. [a] ;

.hile (x->parent 1=
x = x->parent;

retnrn x;

NULL)

}
lo.er->parent = higher;

it (lover->height == higher->height)

++(higher->height);

Fig. 9.19. Auxiliary functions find and ..rse.



SECo 9.4 CONNECTED COMPONENTS OF AN UNDIRECTED GRAPH 475

#include

#define MAl 13

typedef int NaDE;
typedef struct EDGE .EDGELIST;

struct EDGE {
NaDE nodel, node2;

EDGELIST next;

};

typedef struct TREENODE *TREE

struct TREENODE {
int height;

TREE parent;

};

TREE find(RODE a. TREE nodeaO);
void aerge(TREE x. TREE y);
EDGELIST aakeEdges();

aain()
{

NODE u;
TREE a, b;
EDGELIST e;
TREE nodes (MAl] ;

~

/* initialize nodes so each node is in a tree by itself */

for (u = O; u < KAX; u++) {

nodes [u] = (TREE) malloc(sizeof (struct TREENODE»;
(1)
(2)
(3)
(4)

nodes [u] ->parent = NULL;
nod.. [u] ->height = O;

}

/* initializ8 e as the liat of edg8s of the graph */

e = aak8Edge8();(5)

/. examine each edge. and if its ends are in different
coaponents. then aerge them ./

vhile (e != RULL) {
a = find(e->node1. nodes);
b = find(e->node2. node.);
if (& != b)

aerge(a. b);
e = e->next;

}

(6)
(7)
(8)
(9)
10)
11)

(
(

}

Fig. 9.20. C program to find connected components.



476 THE GRAPH DATA

.

Better Algoritbms lor Connected Components

We shall 8ee, when we leam about deptb-first 8earch in Section 9.6, that there is
actuaJly a better way to compute connected components, ORe that takes only O(m)
time, instead of O(mlogn) time. However, the data structure given in Section 9.4
is useful in its own right, and we shall gee in Section 9.5 another program that U8e8
this data structure.

We aMume tbat tbe (unction aü.Edg.. () turna tbe grapb at band into a list o(
edges. Tbe cacle (or this (unction is not shown.

Lines (1) through (4) o( Fig. 9.20 go down tbe array node., and for each nade,
a tree nade is created at line (2). Its parent field is set to NULL at line (3), making
it tbe root of its own tree, and its h.ight field is set to O at line (4), reftecting the
fact that the node is alone in its tree.

Line (5) then initializes e to point to the first edge on tbe list of edges, and
the loop of lin~ (6) tbrougb (11) examines each edge in turno At liDes (7) and (8)
we find tbe roots of tbe two ends of tbe current edge. Then at line (9) we test to
see if these roots are different tree nades. If so, the ends of the current edge are
in different components, and we merge these components at line (10). I( tbe two
ends o(the edge are in the same component, we skip line (10),80 no change to tbe
collection of trees is made. Finally, line (11) advances U8 along tbe list of edges.

Running Time of the Connected Components Aigorithm

Let us determine bow long the algoritbm of Fig. 9.20 takes to pr0ce8 a grapb.
Sup~ tbe grapb has n nades, and let m be tbe larger of the number of nades and
the number of edges.4 First, let us examine the auxiliary functions. We argued that
the policy of merging lower trees into higber ones guarantees tbat the patb from
any tree nade to its root cannot be longer than logn. Thus, find takes O(logn)
time.

Next, let us examine the function aerge from Fig. 9.19. Each ofits statements
takes O( 1) time. Since there are no loops or function cal1s, the entire function takes
0(1) time.

FinaUy,let us examine the main program of Fig. 9.20. Tbe body of the for-loop
oflines (1) to (4) takes 0(1) time, and tbe loop is iterated n tim~. Thus, tbe time
for liDes (1) tbrough (4) is O(n)- Let us aaume line (5) takes O(m) time. Finally,
consider tbe while-loop of liDes (6) to (11). In the body, lin~ (7) and (8) eacb
take O(logn) time, since tbey are calla to a fundion, fiAd, that wejust. determined
takes O(logn) time. Lines (9) and (11) clearly take 0(1) time. Line (10) likewiae
takes 0(1) time, because we just determined that function aerge takes 0(1) time.
Thus, the entire body takes O(log n) time. The wbile-loop iteratee m tim~, wbere
mis the number ofedges. Tbus, tbe time for this loop Í8 O(mlogn), tbat is, tbe
number of iterations times tbe bound on tbe time for tbe body.

In general, tben, tbe running time of the entire program can be expre88ed as
O(n + m + mlogn). However, m is at least n, and 80 the mlogn term dominates
the other terms. Tbus, the running time of t,be program in Fig. 9.20 is O(miogn)-.

4 It i. nonnal to think o( m .. the number o( ed¡es, but in some Irapha, there are MOR noda
tban edsee.

MODEL

Time oí the Connected Components Algorithm



SEC. 9.4 CONNECTED COMPONENTS OF AN UNDIRECTED GRAPH 477

Some distances wjthin the state of Michigan.Fig. 9.21.

EXERCISES

9.4.1: Figure 9.21 lists some cities in the state of Michigan and the road mileage
between them. For the purposes of this exercise, ignore the mileage. Construct the
connected components of the graph by examining each edge in the manner described

in this section.

9.4.2*: Prove, by induction on k, that a connected component of k nodes has at
least k - 1 edg~.

9.4.3*: There is a simpler way to implement "merge" and "find," in which we keep
an array indexed by nodes, giving the component oí each node. Initially, eacb node
is in a component by itself, and we name tbe component by the node. To find
tbe component of a nade, we simply look up the corresponding array entry. To
merge components, we run down tbe array, changing each occurrence of the first

component to the secando

a) Write a C program to implement this algorithm.

b) As a function of n, the number of nodes, and m, the larger of the number of
nodes and edges, what is the running time of this program?

c) For certain numbers of edges and nodes, this implementation is actually better
than the one described in the section. When?

9.4.4*: Suppoee that instead of merging lower trees into higher trees in the con-
nected components algorithm of this section, we merge trees with fewer nodes
into trees with a larger number of nodes. Is the running time of th~ connected-
components algorithm still O(mlogn)?



47g

..".... 9.5 Minimal Spanning 'li-ees

There is an important generalization ofthe connected componente problem, in which
we are given an undirected graph with edges labeled by numbers (integers or reals).
We must not onIy find the connected components, but for each component we must
find a tree connecting the nades of that component. Moreover, this tree must be
minimal, meaning that the sum of the edge labels is as small as possible.

The trees talked about here are not quite the same as the trees of Chapter 5.
Here, no nade is designated the root, and there is no notion of children or of arder
among the children. Rather, when we speak of "trees" in this section, we mean
unrooted, unordered trees, which are just undirected graphs that have no simple
cycles.

A spanning free for an undirected graph G is the nades of G together with a
subset of the edges of G that

1. Connect the nades; that is, there is a path between any two nades using onIy
edges in the spanning tree.

2. Form an unrooted, unordered tree; that is, there are no (simple) cycles.

If G is a single connected component, then there is always a spanning tree. A
minimal spanning free is a spanning tree the sum of whose edge labels is as small
as that of any spanning tree for the given graph.

..~.

Unrooted,
unordered trees

"
(1 Spanning tree

11

+ Example 9.16. Let graph G be the connected component for the island of
Oahu, as in Fig. 9.4 or Fig. 9.10. One possible spanning tree is shown in Fig. 9.22.
It is formed by deleting the edges {Maili, Wahiawa} and {Kaneohe, Laie} , and
retaining the other five edges. The weight, or sum of edge labels, for this tree is 84.
As we shall see, that is not a mínimum. ..

Weight of a tree

~!
~,

;J

THE GRAPH DATA MODEL

20

13

Fig. 9.22. A spanning tree for fue ialand oí Oahu.



Kruskal's

algorithm

. Example 9.17. Tbe Acme Surfboard Wax Company has ofli~ in tbe thirteen
cities sbown in Fig. 9.4. It wisbes to rent dedicated data transmission liDes from the
phone company, and we shallsuppoee that the phone lines ron along the roads that
are indicated byedges in Fig. 9.4. Between islands, the company must use satellite
transmission, and tbe cost will be proportional to the number of components. How-
ever, for tbe ground transmission liDes, the phone company charges by the mile.5
Thus, we wish to find a minimalspanning tree for each connected component of the
graph of Fig. 9.4.

If we divide the edges by component, tben we can ron Kruskal's algoritbm on

SEC. 9.5 MINIMAL SPANNING TREES 479

Rooted and U nrooted Trees
The notion of an unrooted tree sbould not seem too straoge. In fact, we can chooee
any nade of an unrooted tree to be the root. That gives a direction to all edges,
away from tbe root, or from parent to child. Physically, it is as if we picked up tbe
unrooted tree by a node, letting the rest of the tree daogle from the selected node.
For example, we could make Pearl City the root of the spanning tree in Fig. 9.22,
and it would look like this:

PearlCity

~I~Maih Wahiawa HonoluluWahil

Laje Kaneohe

We can order the children of each nade if we wish, but the order will be arbitrary,
bearing no relation to the original unrooted tree.

Finding a Minimal Spanning Tree

There are a number of algorithms to find minimal spanning trees. We shall exhibit
one, called A' rtlskal 's algorithm, that is a simple extension to the algorithm discussed
in the lut section for finding connected components. The changes needed are

1. We are required to consider edg5 in increuing order of their labels. (We
happened to cho<.e that order in Example 9.14, but it wu not required for
connected components.)

2. As we consider edges, if an edge has its ends in dift'erent components, then
we select that edge for the spanning tree and merge components, as in the
algorithm of the previous section. Otherwise, we do not select the edge for the
spanning tree, and, of course, we do not merge components.

s This is one pouible way to charle for leued telephone lines. One finds a minimal spanning
t.- connecting the desi~ sites, and the ch&r8e is bued on the wei«ht of that t~, rep¡odlea
of how the phone connections are provided physically.



480 THE GRAPH DATA MODEL

each component separately. However, if we do not already know the components,
then we must consider all the edges together, smallest label first, in the order of
Fig. 9.14. As in Section 9.4, we begin with each Bode in a component by itself.

We first consider the edge {Kaneohe, Honolulu}, the edge with the smallest
label. This edge merges these two cities into one component, and because we
perform a merge operation, we select that edge for the minimal spanning tree.
Edge 2 is {Wahiawa, PearICity}, and since that edge also merges two components'
it is selected for the spanning tree. Likewise, edges 3 and 4, {PearlCity, Honolulu}
and {Wahiawa, Maili}, merge components, and are therefore put in the spanning
tree.

Edge 5, {Kahului, Keokea}, merges these two cities, and is also accepted for
the spanning tree, although this edge will tUfO out to be part of the spanning tree
for the Maui component, rather than the Oahu component as was the case for the
four previous edges.

Edge 6, {Maili, PearICity}, connects two cities that are already in the same
component. Thus, this edge is rejected for the spanning tree. Even though we
shall have to pick some edges with larger labels, we cannot pick {Maili, PearICity},
because to do so would form a cycle ofthe cities Maili, Wahiawa, and Pearl City. We
cannot have a cycle in the spanning tree, so one of the three edges must be excluded.
As we consider edges in order of label, the last edge oc the cycle considered must
have the largest label, and is the best choice to exclude.

Edge 7, {Lahaina, Kahului}, and edge 8, {Laie, Kaneohe}, are both accepted
for the spanning tree, because they merge components. Edge 9, {Laie, Wahiawa},
is rejected because its ends are in the same component. We accept edges 10 and 11;
they form the spanning tree Cor the "big island" component, and we accept edge 12
to complete the Maui component. Edge 13 is rejected, because it connects Kona
and Hilo, which were merged into the same component byedges 10 and 11. The
resulting spanning trees of the components are shown in Fig. 9.23. +

~

Why Kruskal's AIgorithm Works

We can prove that Kruskal's algorithm produces a spanning tree whose weight is
as srnall as that of any spanning tree for the given graph. Let G be an undirected,
connected graph. For convenience, let us add infinitesirnal amounts to sorne labels, if
necessary, so that alllabels are distinct, and yet the sum of the added infinitesimals
is not as great as the difference between two edges of G that have different labels.
As a result, G with the new labels wiU have a unique minimal spanning tree, which
wiU be one of the rninirnal spanning trees of G with the original weights.

Then, let el, e2, . . . , em be all the edges of G, in arder of their labels, smallest
first. Note that this arder is also the arder in which Kruskal's algorithrn considera
the edges. Let K be the spanning tree for G with the adjusted labels produced by
Kruskal's algorithm, and let T be the unique minimal spanning tree for G.

We shall prove that K and T are really the same. If they are different, then
there rnust be at least one edge that is in one but not the other. Let eó be the firat
such edge in the ordering of edges; that is, each of el,. . ., eó-l is either in both K
and T, or in neither of K and T. There are two cases, depending on whether ei is
in K or is in T. We shall show a contradiction in each case, and thus conclude that
eó does not exist; thus K = T, and K is the rninimal spanning tree for G.

l'
,!



.
SEC. 9.5 MINIMAL SPANNING TREES 481

i: ¡te,
I oí

est
we
ee.

ts,
u}
ng

,
ror
'ee
he

ne
we

I 2~ 13

~- i

1St

ed

\},
tI. ,
12 Fig. 9.23. Spanning trees for the graph of Fig. 9.4.

oa
be

Greed Sometimes Pays

Greedy Kruskal's algorithm is a good example oí a greedy algorithm, in which we make a
algorithm series of decisions, each doing what seems best at the time. The local decisions

Ís are which edge to add to the spanning tree being formed. In each case, we pick
~, the edge with the least label that does not violate the definition of "spanning tree"
if by completing a cycle. Often, the overaIl efl'ect of locally optimal decisions is not

i.Js globaIlyoptimum. However, in the case of Kruskal's algorithm, it can be shown that
Iso the result is globaIly optimalj that is, a spanning tree of minimaI weight results.

ch

:8t Case 1. Edge ei is in T but not in K. If Kruskal's aIgorithm rejects ei, then ei must
! 'rs form a cycle with some path P of edges previously selected for K, as suggested in
I by Fig.9.24. Thus,theedgesofPareallfoundamongel,...,ei-l' However,Tand

I K agree about these edgesj that is, if the edges of P are in K, then they are aIso
~n in T. But since T has ei as well, P plus ei form a cycle in T, contradicting our
.st assumption that T was a spanning tree. Thus, it is not possible that ei is in T but

K not in K.

lB Case IJ. Edge ei is in K but not in T. Let ei connect the nodes u and v. Since T
at is connected, there must be some acyclic path in T between u and Vi call it path

Q. Since Q does not use edge ei, Q plus ei forros a simple cycle in the graph G.

..' ,

- ;.:;;;~.~.'._~



482 THE GRAPH DATA MODEL

There are two subcases, depending on whether or not ei has a higher label than all
the edges on path Q.

a) Edge ei has the highest label. Then all the edges on Q are among {el, . . ., ei-l}.
Remember tbat T and K agree on all edges before ei, and so all the edges of
Q are also edges of K. But ei is also in K, which implica K has a cycle. We
thus rule out the possibility that ei has a higher label than any of tbe edges of
path Q.

b) There is some edge f 00 path Q that has a higher label than ei. Suppose
f connects nodes w and z. Figure 9.25 shows the situation in tree T. Ir we
remove edge f from T, and add edge ei, we do not form a cycIe, because path
Q was broken by tbe removal of f. The resulting collection of edges has a lower
weight than T, because f has a higher label than ei. We claim the resulting
edges still connect all the nades. To see why, notice that w and z are still
connectedj there is a path that follows Q from w to ", tben follows tbe edge
ei, tben tbe patb Q from ti to z. Since {w, z} was tbe onIy edge removed, if its
endpoints are still connected, surely all nodes are connected. Thus, the new
set of edges is a spanning tree, and its existence contradicts the assumption
that T W8S minimal.

We bave now sbown that it is impossible for ei to be in K but not in T. That roles
out the second case. Since it is impossible that ei is in one of T and K, but not tbe
otber, we conclude that K realIy is tbe minimalspanning tree T. Tbat is, Kruskal 's
algorithm always finds a minimal spanning tree.

Running Time of Kruskal's AIgorithm

Suppose we ron Kruska!'s algorithm on a graph of n nades. Aa in the previous
section, Jet m be the larger of the number of nades and the number of edges, but
remember that typically the number of edges is the larger. Let us suppose that the
graph is represented by adjacency lists, so we can find all the edges in O(m) time.

To begin, we must sOrt the edges by label, which takes O(mlogm) time, if
we use an eflicient sorting algorithm such 88 merge sort. Next, we consider the
edges, taking O(mlogn) time to do all the merges and linda, as discussed in the

.0.., """'.'

...' "0

O ",,/ ;:' ", ~.
",~~:, ,

Fig. 9.24. Path P (solid lines) is in T and K; edge e¡ is in T onIy.



SEC. 9.5 MINIMAL SPANNING TREES 483

Fig. 9.25. Path Q (salid) is in T.
We can add edge eó to T and remove the edge f.

previous section. It appears that tbe total time for Kruskal's algorithm is thus
O (m(log n + logm)).

However, notice that m :$: n2, because tbere are only n(n -1)/2 pairs of nodes.
Thus, logm :$: 2logn, aod m(logn + logm) :$: 3mlogn. Since constant factors can
be neglected within a big-oh expression, we conclude that Kruskal's algorithm takes
O( m log n) time.

EXERCISES

9.5.1: Draw the tree oí Fig. 9.22 ií Wahiawa is selected as the root.

9.5.2: Use Kruskal's algorithm to find minimal spanning trees íor each oí the
components oí the graph whose edges and labels are listed in Fig. 9.21 (see the
exercises íor Section 9.4).

9.5.3**: Prove that if G is a connected, undirected graph oí n oodes, and T is a
spanning tree íor G, theo T has n - 1 edges. Hint: We need to do an ioduction 00
n. Tbe hard part is to sbow tbat T must bave 8Ome node v with degree 1; tbat is,
T has exactly one edge containing v. Consider what would happen iííor every node
u, tbere were at least two edges oí T containing u. By íollowing edges into and out
oí a sequence oí nodes, we would eventually find a cycle. Since T is supposedly a
spanning tree, it could not have a cycle, wbich gives us a contradiction.

9.5.4*: Once we have selected n -1 edges, it is not necessary to consider any more
edges íor possible inclusion in the spanning tree. Describe a variation oí Kruskal's
algorithm that does not 8Ort all tbe edges, but puts them in a priority queue, witb
the negative oí tbe edge's label as its priority (i.e., shortest edge is selected first by
deleteMar). Show that ií a spanning tree can be íound among the first m/logm
edges, then tbis version oí Kruskal's algoritbm takes only O(m) time.

9.5.5*: Suppose we find a minimal spanning tree T for a graph G. Let us then add
to G the edge {u, v} with weigbt w. Under wbat circumstances will T be a minimal
spanning tree oí the new grapb?



484 THE GR.APH DATA MODEL

9.5.6..: An Euler circuit for an undirected graph G is a path that starts Uld ends
at the same nade and contain8 each edge of G exactly once.

a) Show that a connected, undirected graph has an Euler circuit if Uld only ir
each nade is of even degree.

b) Let G be an undirected graph with m edges in which every nade is oí even
degree. Give an O(m) algorithm to construct Ul Euler circuit for G.

Euler circuit

.:. 9.6 Depth-First Search

We shall now describe a graph-exploration method that is useful for directed graphs.
In Section 5.4 we discussed the preorder and postorder traversals of trees, where we
stan at the root and recursively explore the children of each nade we visito We can
apply almost the same idea to any directed graph.8 From any nade, we recursively
explore its successors.

However, we must be careful if the graph has cycles. If there is a cycle, we can
wind up calling the exploration function recursively around the cycle forever. For
instance, consider the graph of Fig. 9.26. Starting at nade a, we might decide to
explore nade 6 next. From 6 we might explore c first, and from c we could explore
6 first. That gets us into an infinite recursion, where we alternate exploring from 6
and C. In fact, it doesn't matter in what arder we choose to explore SUCCeMOrs of
b and C. Either we shall get caught in BOme other cycle, or we eventually explore c
from b and explore 6 from c, infinitely.

!!;

There is a simple 8O1ution to our problem: We muk nodes as we visit them,
and never revisit marked nodes. Tben, any node we can reach from our starting
node will be reached, but no previously visited node will be revisited. We sban lee

6 Notice that a tree can be thought of as a 8peciaJ case of a directed graph, if we l'egard the
ara of the tree as directed from parent to mildo In cact, a tree ia aI'waY8 an acyclic graph ..
_Do

An example djrected grapb.Fig.9.26.



if

i.
'e
D

y

e
6
,r
c

,
~
~

.

.

SEC. 9.6 DEPTH-FIRST SEARCH 485

tbat tbe time taken by tbis exploration takes time proportional to tbe number of
arcs explored.

Tbe search algorithm is called depth-first sea~h because we find ourselves going
as far from tbe initial nade (as "deep") as fast as we can. It can be implemented
with a simple data structure. Again, let us assume that the type NaDE is used
to name nades and tbat this type is int. We represent arcs by adjal:-ency lists.
Since we need a "mark" for each nade, which can take on the values VISITED and
UNVISITED, we sball create an array of structures to represent the graph. These
structures will contain both the mark and the header for the adjacency listo

enua KARKTYPE {VISITED. UNVISITED};
typede.t struct {

enua KARXTYPE aark;
LIST 8ucceS80ra;

} GRAPH (MAX] ;

where LIST is an adjacency list, defined in tbe customary manner:

typede.t struct CELL *LIST;
struct CELL {

NaDE nodeNaae
LIST next;

};

We begin by marking all the nodes UNVISITED. Recursive function dfs(u, G)
of Fig. 9.27 works on a node u of sorne externaUy defined graph G of type GRAPH.

At line (1) we mark u VISITED, so we don't call dfs on it again. Line (2)
initializes p to point to the first ceU on the adjacency list for Bode u. The loop of
liDes (3) through (7) takes p clown the adjacency list, considering each successor, v,
of u, in turno

void dfs(NODE u, GRAPH G)
{

LIST p; /* runa dovn the adjacency liat of u */
NaDE v; /* the node in the cell pointed to by p */

G [uJ . aark = VISITED;
P = G[U].sucCeSSOr8;
while (p ! = RULL) {

(1)
(2)
(3)
(4)
(5)
(6)
(7)

v = p->nodeName;
if (G[v] .m.ark. = UNVISlTED)

dfs(v. G);
p = p->next;

}

Tbe recursive deptb-fu'St seardt function.Fig. 9.27.

Line (4) sets v to be the "current" successor of u. At line (5) we test whether
v has ever been visited before. If so, we skip tbe recursive call at line (6) and we
move p to the next cell of the adjacency list at line (7). However, ir v has never been



486 THE GRAPH DATA MODEL

visited, we start a depth-first search from nade V, at line (6). Eventually, we finish
the call to dfs(v. G). Then, we execute line (7) to move p clown u's adjacency list
and go around the loop.

Example 9.18. Suppose Gis the graph of Fig. 9.26, and, for specificity, &$Sume
the nades on each adjacency list are ordered alpbabetically. lnitially, all nades are
marked UNVISITEn. Let us call dfs(a).7 Nade a is marked VISITEn at line (1), and
at line (2) we initialize p to point to the first cell on a's adjacency listo At line (4)
v is set to b, since b is tbe nade in the first cell. Since b is currently unvisited, the
test ofline (5) succeeds, and at line (6) we call dfa(b).

Now, we start a new call to dfa, with ti = b, while tbe old call with ti = a is
dormant but still alive. We begin at line (1), marking b VISITEn. Since c is tbe first
nade on b's adjacency list, c becomes the value of v at line (4). Node c is unvisited,
so that we succeed at line (5) and at line (6) we call df.(c).

A third call to dfa is now alive, and to begin df.(c), we mark c VISITEn
and set v to b at line (4), since b is the first, and only, nade on c's adjacency listo
However, b was already marked VISITEn at line (1) of the call to dfs(b), so that
we skip line (6) and move p clown c's adjacency list at line (7). Since c has no more
successors, p becomes 1iULL, so that the test of line (3) fails, and dfs (c) is finished.

We now retum to the call dfa(b). Pointer p is advanced at line (7), and it
now points to the second cell oí b's adjacency list, which holds nade d. We set v to
d at line (4), and since d is unvisited. we call dfs(d) at line (6).

For the execution oídfa(d), we mark d VISITEn. Then vis first set to c. But
c is visited, and so next time around the loop, v = e. That leads to the call dfa(e).
Node e has only c as a successor, and so alter marking e VISITBD, dfs(e) returns
to dfa(d). We next set v = f at line (4) ofdfs(d), and call dfa(f). After marking
f VISITED, we find that f also has only c as a successor, and c is visited.

We are now finished witb dfa(f). Since f is the last successor oí d, we are
also finished with df s (d), and since d is the last successor oí b, we are done with
dfs(b) as well. Tbat takes us back to dfs(a). Nade a has another successor, d.
but that nade is visited, and so we are done with dfa(a) as well.

Figure 9.28summarizes the action oídfa on thegraph ofFig. 9.26. We show the
stack of calls to dfa, with the currently active call at the right. We also indicate the
action taken at each step, and we show the value oí the local variable v associated
with each currently live call, or show that p = 1iULL, indicating that there is no
active value for v. +

...

Constructing a Depth-First Search Tree

Because we rnark nodes to avoid visiting thern twice, the graph behaves like a tree
as we explore it. In fact, we can draw a tree whose parent-child edges are sorne of
the arcs of the graph G being searched. If we are in dfa(u), and a call to dfa(v)
results, then we rnake v a child of u in the tree. The children of u appear, frorn
left to right, in the order in which dfs was called on these children. The nade upon
which the initial c3.l1 to dfs was made is the root. No node can have dfs c3.lled on
it twice, since it is markedYISlTED at the first c3.l1. Thus, the structure defined is
truly a tree. We call the tree a depth-first sean::h free for the given graph.

- .hall omit the eecond 8I'gUment of dla, which ia always the graph G.7 In what

.

rollows,



SEC. 9.6 DEPTH-FIRST SEARCH 487

can df8(b)

CalI df8(C)

Skip; b already visited

Return

Call dfa(d)

Skip; c already visited

Call df8(e)

Skip; c already visited

Return

Call df8(f)

Skip; c already visited

Return

Return

Return

Skip; d already visited

Return

418(&)
v=b

418(&)
v=b

~

dfa{b)
v=c

dfa{b)
v=c

d:fs(c)
v=6

MaCa)
v=6

MaCa)
v=6

d.fa(b) d.fa(c)
v=c p=1ULL

<I1.(a)
v=b

<I18(a)
v=6

df8(a)
v=b

df8(b)
v=d

dfa(b)
v=d

dfs(d)
v=c

df8(b)
v=d

df8(b)
v=d

df8(b)
v=d

dfa(d)
v=e

dfaCa)
v=6

dfaCa)
11=6

dfa(d) dfa(e)
v=e v=c

dfa(d) dfs(e)
v=e p=WULL

df8(d)
tJ=/

df8(d) dfa(f)
tJ=/ tJ=c

dfa(d) df8(f)
v=/ p=RULL

M.(e)

df8{a) df8{b)
v=b v=d

dfa(a)
v=6

dfa(a)
v=6

dfa(b)
v=d

dfa(b)
v=d

cifa(a) cifa(b) cifs(d)
,,=6 ,,=d p=WULL

df8(b)

p=1ULL

df8(a)
tI=6

dfs(a)
v=d

df.(a)
p=NULL

Fig. 9.28. 1race of caIJs made during depth-first 8eard1.



488 THE ORAPH DATA MODEL

Example 9.19. The tree íor the exploration oí the graph in Fig. 9.26 that was
summarized in Fig. 9.28 is seen in Fig. 9.29. We show the free a~s, representing the
parent-child relationship, as solid liDes. Other arcs oí the graph are shown as dotted
arrows. For the moment, we should ignore the numbers labeling the nades. +

.

Fig.9.29.

When we build a depth-first search tree for a graph G, we can classify the arca of G
into four groups. It sbould be understood tbat tbis classification is with respect to
a particular depth-first search tree, or equivalently, witb respect to the particular
arder for the nades in each adjacency list that led to a particular exploration of G.
The four kinds of arca are

1. Tree ares, which are the arca u -+ v sucb tbat dfs(v) is called by dfs(u).

2. Fonoard ares, which are arca u -+ v such that v is a proper descendant of u, but
not a child of u. For instance, in Fig. 9.29, tbe arc a -+ d is tbe only forward
arco No tree arc is a forward arco

3. Backward ares, which are arca u -+ v such that v is an ancestor of u in the tree
(u = v is perntitted). Arc c -+ b is the only example of a backward arc in Fig.
9.29. Any loop, an arc from a Bode to itself, is cl888ified as backward.

4. Oross ares, wbicb are arca u -+ v such tbat v is neitber an ancestor nor de-
scendant of U. There are three cross arca in Fig. 9.29: d -+ c, e -+ c, and
f -+C.

In Fig. 9.29, each of the cross arca go from rigbt to left. It is no coincidence
tbat they do so. Supp~ we had in some depth-first search tree a cr<* arc u -+ v
such that u was to tbe left of V. Consider what bappens during the call to dfs(u).
By the time we finish dfs(u), we sball bave considered tbe arc from u to V. If v
has not yet been placed in the tree, then it becomes a child oí u in the tree. Since

Cross arcs go
from right to
left

6

3

One possible depth-first search tree for the graph of Fig. 9.26.

Search Treen of Arcs for a Depth-

.



9

489DEPTH-FIRST SEARCHSEC. 9.6

nodes
with
active
calla
to
dta

Part of tbe tree tbat ia built when arc u -+ v ia considered.Fig.9.30.

that evidently did not happen (ror then v would not be to the right of u), it must
be tbat v is already in the tree when tbe arc u -+ v is considered.

However, Fig. 9.30 shows the parts of the tree that exist while dfs(u) is active.
Since children are added in left-to-right order, no proper ancestor of node u as Jet
has a child to the right of u. Tbus, v can only be B.O ancestor of u, a descendant of
u, or somewhere to tbe left of u. Tbus, if u -+ v is a cross edge, v must be to the
left of u, not the right of u 88 we initially suppoeed.

Tbe Deptb-First Searcb Forest

We were quite íortunate in Example 9.19 that when we started at nade a, we were
able to reach all the nades oí the grapb oí Fig. 9.26. Had we started at any other
nade, we would not bave reached a, and a would not appear in the tree. Tbus, the
general method oí exploring a graph is to construct a sequence oí trees. We start
at some nade u and call dfa(u). If there are nades not Jet visited, we pick one,
8&Y v, and call dfa(w). We repeat this proceM as long as there are nades not Jet
a!Rñgned to any tree.

When aIl nades have been assigned a tree, we list the trees, írom len to right,
in the arder of their construction. This list of trees is called the depth-first sean.-h
forest. In terma oí the data types RODE and GRAPH defined earlier, we can explore an
entire externally defined graph G, starting the search on as many roots as necessary
by the íunction oí Fig. 9.31. There, we assume that the type IODE is int, and MAX
is the number oí nades in G.

In lines (1) and (2) we initialize all nades to be UfiISITBD. Then, in the loop
oí liDes (3) to (5), we consider each nade u in turno When we consider u, ií that
nade has not yet been added to any tree, it will still be marked unvisited when we
make the test oí line (4). In that case, we cal1 df8(U, G) at line (5) and explore
the deptb-first search tree with root u. In parfoicular, the first nade always becomes
the root of a tree. However, if u has already been added to a tree when we perform



490 THE GRAPH DATA MODEL

void dfsForest(GRAPH G)i
{

NODE u;

(1)
(2)
(3)
(4)
(5)

for

for

}

Fig.9.31.

the test oí line (4), then u will be marked
with root u.

Example 9.20. Suppose we apply the above algorithm to the graph oí Fig.
9.26, but let d be the nade whose name is O; that is, d is the first root oí a tree
for the depth-first spanning forest. We call d1.s(d), which constructs the first tree
of Fig. 9.32. Now, all nades but a are visited. As u becomes each oí the various
nades in the loop of liDes (3) to (5) oí Fig. 9.31, the test oí line (4) fails except
when u = a. Then, we create the one-node second tree of Fig. 9.32. Note that both
successors oí a are marked VISITEn when we call d1.s(a) , and 80 we do not make
any recursive calls from dta(a). +

.

When we present the nades of a graph as a depth-first search forest, the notions
of forward, backward, and tree arcs apply as before. However, the notion of a cross
arc must be extended to include arcs that ron from one tree to a tree to its left.
Examples of such crOM arcs are a -t b and a -t d in Fig. 9.32.

The rule that crOM arcs' always go from right to left continues to boldo The
reason is also the same. H there were a CfOM arc u -t v that went from one tree
to a tree to the right, then consider what happens when we call dfs(u). Since v

(u = o; u < MAl; u++)

G[u] .mark = UNVISITED;

(u = O; u < MAl; u++)

it (G [uJ . mark == UNVISITED)

dta(u. G);

Exploring a graph by exploring as many t~ as Decessary.

, and so we do not create a treeVISlTED

Fig. 9.32. A depth-first sean:b forest.



~

Je

~

SEC. 9.6 DEPTR-FIRST SEARCH 491

The Perfection of Depth-First Search

Regardless of the relationsbip between the numbers of nades and arca, the running
time of the depth-first exploration of a graph takes time proportional to the "size"
of the graph, that is, the sum of tbe numbers of nades and arca. Thus, depth-first
search is, to within a constant factor, as fast as any algorithm that "Iooks at" the
graph.

was not added to the tree being formed at tbe moment, it must already bave been
in some tree. But the trees to the right of u have not yet been created, and so v
cannot be part of one of them.

Running Time of the Depth-First Search Algorithm
Let G be a graph with n nades and let m be the larger of tbe number of nades and
the number of arcs. Then dfsForest of Fig. 9.31 takes O(m) time. Tbe proof of
this fact requires a trick. Wben calculating the time taken by a call dfs(u), we
shall not count the time taken by any recursive calla to dfs at line (6) in Fig. 9.27,
as Section 3.9 suggested we should. Rather, observe tbat we call dfa(u) once for
each value of u. Tbus, if we sum the cost of each call, exclusive of its recursive calla,
we get the total time spent in all tbe calla as a group.

Notice that the wbile-loop of lines (3) to (7) in Fig. 9.27 can take a variable
amount of time, even excluding the time spent in recursive calla to dfs, because
the number of successors oí nade u could be any number fram O to n. Suppose we
let mu be the out-degree of nade u, tbat is, the number of successors of u. Then
the number of times around the while-loop during the execution of dfa(u) is surely
mu. We do not count the execution ofdfa(v, G) at line (6) when assessing the
running time oí dfs (u), and the body of tbe loop, exclusive of this ca.ll, takes 0(1)
time. Thus, tbe total time spent in the loop of liDes (3) to (7), exclusive of time
spent in recursive calls is 0(1 + mu); the additionall is needed because mu migbt
be O, in which case we still take 0(1) time for the test of (3). Since liDes (1) and (2)
of dfs take 0(1) time, we conclude that, neglecting recursive calla, dfa(u) takes
time 0(1 + mu) to complete.

Now we observe that during the running ofdfaForeat, we call dfa(u) exactly
once for eacb value of u. Thus, tbe total time spent in all tbese calls is big-oh of
the sum of the times spent in eacb, tbat is, O(2:u(1 + mu)). But L.. mu is just
the number of arca in the graph, that is, at most m,8 since each arc emanates írom
some one nade. Tbe number oí nades is n, so tbat Lu 1 is just n. As n s: m, the
time taken by all the calls to dfa is tbus O(m).

Finally, we must consider tbe time taken by dfaForeat. Tbis program, in Fig.
9.31, consists oí two loops, eacb iterated n times. Tbe bodies of tbe loops are easily
seen to take 0(1) time, exclusive of the calla to dfa, and so tbe cost of tbe loops is
O(n). Tbis time is dominated by the O(m) time oftbe calla to dfs. Since the time
íor tbe dfs calla is already accounted lar, we conclude that dfaForest, togetber
with all its calls to dfs, takes O(m) time.

of the numben of nodes and arca.



492 THE GRAPH DATA MODEL

Postorder Traversals oí Directed Graphs

Once we bave a dept,b-first, search t,ree, we could number its nodes in poet.order.
However, t,here is an easy way to do t,he numbering during t,be eearch itself. We
simply attach t,be number to a node u as tbe last tbing we do before dta(u) com-
pletes. Tben, a node is numbered rigbt after all its children are numbered, just as
in a postorder numbering.

int k; /. counta viaited nodea ./

yoid dla(IODE u, GRAPH G)
{

LIST p; /. points to c811. 01 adjacency liat 01 u ./
NODE v; /* tbe node in tbe cell pointed to by p */

(1)
(2)
(3)
(4)
(5)
(6)
(7)

G[u] ..art = VISITED;
P = G(U].8UCC.SSors;

.hile (p != NULL) {
y = p->nod ;
if (G(v] .8ark == UNVISITED)

dfs(v. G);
P = p->next;

}
++k;
G (u] . poatorder = t;

(8)
(9)

}

void df8For..t(GRAPH G)
{

NDDE u;

k = O;

for (u = O; u < MAX; u++)
G[u] .aark = UNVISITED;

for (u = O; u < MAX; u++)
11 (G[u] .aark = UlVISITED)

df.(u. G);

(10)
(11)
(12)
(13)
(14)
(15)

Fig. 9.33.

+ Example 9.21. The tree oí Fig. 9.29, which we constructed by depth-first
search of the gra.ph in Fig. 9.26, has the postorder numbers la.beling the nodes. If
we examine the trace of Fig. 9.28, we see tha.t the first ca.ll f.o return is df8(C), a.nd
nade c is given the number l. Then, we visit d, theo e, and retum from the call
to e. Therefore, e's number is 2. Similarly, we visit a.nd retum from 1, which is
numbered 3. At tha.t point, we ha.ve completed the ca.ll 00 d, which gets number 4.
Tba.t completes tbe call f.o dfa(b), a.nd tbe oumber oí 6 is 5. FioallYI tbe original

-

Procedure to number tbe nades of a directed grapb in poetorder.



}

SEC. 9.6 DEPTH.FIRST SEARCH 493

We can assign tbe postorder numbers to tbe nades witb a few simple modifica-
tions to tbe depth-first searcb algoritbm we bave written so lar; these changes are
summarized in Fig. 9.33.

1. In tbe GRAPH type, we need an additional field for eacb nade, called poatorder.
For tbe grapb G, we place the postorder number of nade " in G [u] . poatorder.
This assignment is accomplished at line (9) of Fig. 9.33.

2. We use a global variable k to count nades in postorder. This variable is defined
externally to dia and dfaForeat. As seen in Fig. 9.33, we initialize k to O
in line (10) of diaForeat, and just before assigning a postorder number, we
increment k by 1 at line (8) in dia.

Notice that as a result, when there is more than one tree in the depth-first search
forest, the first tree gets the lowest numbers, the next tree gets the next numbers
in order, and so oo. For example, in Fig. 9.32, a would get the postorder number 6.

Special Properties of Postorder N umbers

The impossibility of cross arcs that go left to right tel1s us something interesting
and useful about the postorder numbers and the loor types of arcs in a depth-first
presentation of a graph. In Fig. 9.34(a) we see three nades, ", v, and w, in a depth-
first presentation of a graph. Nodes v and w are descendants of ", and w is to the
right of v. Figure 9.34(b) shows the duration of activity for the calla to dia for each
of these nades.

,

~.
/ ""

(a) Three nodes in a depth-first tree.
c

t .L__~ -1L":i;;;; ~ I
Time of u

(b) Active intervals fOT their caUs to dfs.

Fig.9.34. Relationslúp between position in tree and duration of calls.



494 THE GRAPH DATA MODEL

We can make leveral obeervations. First, the call to dfs on a descendant like v
is active for only a 8ubinterval of the time during wbich the call on an ancestor, like
u, is active. In particular, the call to dfs(v) terminates before the call to dfs(u)
doea. Thus, tbe postorder number of v must be lesa than the postorder number of
u whenever v is a proper deacendant of u.

Second, if w is to the right of v, then the call to dfs(w) cannot begin until after
the call to dfs(v) terminates. Thus, whenever vis to the left of w, the postorder
number of v is leM than tbat of w. Although not shown in Fig. 9.34, the sarne is
true even if v and w are in dift'erent trees of the depth-first learch forest, with v's
tree to the left of w's tree.

We can now consider the relationship between the postorder numbers of u and
v for each arc u -+ v.

l. Ir u -+ v is a tree arc or forward arc, then v is a descendant of u, and 80 v
precedes u in postorder.

2. Ir u -+ v is a cross arc, then we know v is to the left of u, and again v precedes
u in postorder.

3. lf u -+ v is a backward arc and v * u, then v is a proper ancestor of u, and so
v follows u in pO8torder. However, v = u is possible for a backward arc, lince
a loop is a backward arco Tbus, in general, for backw&l'd arc u -+ v, we know
that the pO8torder number of v is at least as bigh as the postorder number of
U.

In surnrnary, we see that in postorder, the head of an arc precedes the tail, unleM
the arc is a backward arc; in whidl ~ the tail precedes or equals the head. Thus,
we can identify the backward arca simply by finding th~ arca whose tails are equal
to or less than their heads in ~torder. We shall see a number of applications of
this idea in the next section.

EXERCISES

9.6.1: For the tree of Fig. 9.5 (see the exercises for Section 9.2), give two depth-first
search trees starting with nade a. Give a depth-first search tree starting with node
d.

9.6.2*: No matter which nade we start with in Fig. 9.5, we wind up with only one
tree in the depth-first search forest. Explain briefty why that must be the case for
this particular graph.

9.6.3: For each of YoUl' trees of Exercise 9.6.1, indicate which of the arcs are tree,
forward, backward, and cr<8 arca.

9.6.4: For each of your trees of Exercise 9.6.1, give the postorder numbers ror the
nades.

9.6.5*: Consider the graph with three nodes, a, 6, and C, and the two arcs a -t 6
and 6 -t c. Give all the possible depth-first search forests for this graph, considering
all possible starting nades for each tree. What is the postorder numbering of the
nades for each forest? Are the postorder numbers always the same for this graph?



+++ 9.7 Some Uses of Depth-First Search
+

SEC.9.7 SOME USES OF DEPTH-FIRST SEARCH 495

9.6.6*: Consider the generalization of the graph of Exerci8e 9.6.5 to a graph with n
nodes, al, a2,..., an, and arce al -+ a2, a2 -+ a3,"', an-l -+ an. Prove by complete
induction on n that this graph has 2n-l dilferent depth-first search foresta. Hint:
It helpe to remember that 1 + 1 + 2 + 4 + 8 + . . . + ~ = ~+l, Cor i ~ O.

9.6.7*: Suppose we start with a graph G and add a new node z that is a predecessor
of all other nodes in G. Ir we run dfaFor8st of Fig. 9.31 on the new graph, starting
at node z, then a single tree resulta. Ir we then delete z from this tree, several trees
may resulto How do these trees relate to the depth-first search forest of the origina]
graph G?

9.6.8**: Suppoee we have a directed graph G, from wh~ representation we have
just constructed a depth-first spanning forest F by the algorithm of Fig. 9.31. Let
U8 now add the arc u -+ v to G to Corm a new graph H, whose representation is
exactly that of G I except that node v now appears somewhere on the adjacency
list for node u. Ir we now ruo Fig. 9.31 00 this representation of H, under what
circumstances will the same depth-first forest F be constructed? That is, when will
the tree arca for H are exactly the sarne as the tree arce for G?

In tbis section, we see bow deptb-first search can be used to solve some problems
quickly. As previously, we shall bere use n to represent the number of nodes of a
graph, and we shall use m for the larger of the number of nodes and the number of
atCS; in particular, we asume tbat n ~ m is always true. Each of the algoritbms
presented takes O(m) time, on a graph rep~nted by adjacency lista. The first
algorithm determines whether a directed graph is acyclic. Then for tbose graphs
tbat are acyclic, we see how to find a topologicalsort ofthe nodes (topologicalsort-
ing was discussed in Section 7.10; we sball review tbe definitions at tbe appropriate
time). We also show bow to oompute tbe transitive cl~ure of a grapb (see Section
7.10 again), and how to find connected components of an undirected graph rastel
tban the algorithm given in Section 9.4.

in a Directed GrapbFinding Cycles
During a depth-first eearch oí a d~ graph G, we can a88igD a postorder number
to all the nodes in O( m) time. Recall from the last section that we discovered the
only arca whose tails are equal to or less than their heads in postorder are tbe
backward arca. Whenever there is a backward arc, u -+ v, in which the postorder
number of v is at least as large as the postorder number of u, there must be a cycle
in the graph, as suggested by Fig. 9.35. The cycle consista of the arc from u to v,
and tbe path in the tree from v to its descendant u.

The converse is also true; that is, ir there is a cycle, then there must be a
backward arco To ~ why, 8UPpoee there is a cycle, say VI -+ f12 -+ ... -+ v,. -+ VI,

and Jet tbe postorder number of node Vi be Pi, for i = 1,2,..., k. If k = 1, that is,
the cycle is a single arc, then surely VI -+ VI is a backward arc in any depth-first
presentation of G.

If k > 1, suppoee that Done of the arca VI -+ V2, V2 -+ V3, and 80 on, up to
V.-1 -+ v. are backward. Then each head precedes each tail in postorder, and
M) the ~rder numbers P1, P2, . . . ,P. forro a decreasing sequence. In particular,



496 THE GRAPH DATA MODEL

Fig. 9.35.

P/c < Pl. Then consider the arc Vk -+ Vl that completes the cycle. The postorder
number of its tail, which is Pk, is less than the postorder number of its head, Pl,
and 80 this arc is a backward arco Tbat provea there must be some backward arc

in any cycle.
As a result, after computing tbe postorder numbers of all nodes, we simply

examine all the arcs, to see if any has a tail less than or equal to its head, in
postorder. If so, we bave found a backward arc, and the graph is cyclic. If tbere is
no such arc, the graph is acyclic. Figure 9.36 shows a function that tests whether an
externally defined graph G is acyclic, using the data structure for graphs described
in the previous section. It al8O makes use of tbe function dfaForea't defined in Fig.
9.33 to compute the postorder numbers of the nodes of G.

BOOLEAN

{
NaDE u, v; /. u runa ~hrough all ~he nodea ./
LIST p; /. p poin~a ~o each cell on ~he adjacency lia~

for u; v ia a Bode on ~he adjacency li.~ ./

dfsForest(G);
for (u = o; u < Kilo u++) {

p = G[u].sucCeSSOr8;
vhile (p ! = RULL) {

(1)
(2)
(3)
(4.)
(5)
(6)
(7)
(8)

}

(9) return TRUE;

Fig.

.

" ,

Every backward arc COnDS a cycle with tree arcs.

teatAcyclic(GRAPH G)

v = p->nodeRaae;
if (G[u].postorder <= G[v].postorder)

return FALSE;
p = p->next;

}

f\mction to determine whether a graph G is acyclic.9.36.



Topological
order

SEC. 9.7 SOME USES OF DEPTH-FIRST SEARCH 497

After calling dfaFor..t to compute postorder numbers at line (1), we examine
each node u in the loop of liDes (2) through (8). Pointer p goes clown the adjacency
list for u, and at line (5), v in tum becomes each successor of u. If at line (6) we
find that u equals or precedes v in postorder, then we have found a backward arc
u ~ v, and we retum FALSE at line (7). If we find no such backward arc, we retum
TROE at line (9).

Running Time of the Acyclicity Test

As before, let n be the number oí nades of graph G and let m be the larger of
the number of nades and the number of arca. We already know that the call to
dfsForest at line (1) oí Fig. 9.36 takes O(m) time. Lines (5) to (8), the body of
the while-loop, evidently take 0(1) time. To get a good bound on the time for the
while-loop itself, we must use the trick that was used in the previous section to
bound the time of depth-first search. Let Tnu be the out-degree of nade u. Then
we go around the loop of liDes (4) to (8) Tnu times. Thus, the time spent in liDes
(4) to (8) is 0(1 + Tnu).

Line (3) only takes 0(1) time, and so the time spent in the for-loop of fines
(2) to (8) is O(Eu(1 + Tnu). As observed in the previous section, the sum of 1 is
O(n), and the SUJD oí Tnu is m. Since n $ m, the time for the loop of liDes (2) to
(8) is O(m). That is the same as the time for line (1), and line (9) takes 0(1) time.
Thus, the entire acyclicity test takes O(m) time. As for depth-first search itself, the
time to detect cycles is, to within a constant factor, just the time it takes to look
at the entire graph.

Topological Sorting

Suppose we know that a directed graph G is acyclic. As for any graph, we may find
a depth-first search forest for G and thereby determine a postorder for the nades of
G. Suppose (VI, V2,"', VA) is a list of the nades of G in the reverse of postorder;
that is, VI is the nade numbered n in postorder, V2 is numbered n-l, and in general,
Vi is the nade numbered n - i + l in postorder.

The arder of the nades on this list has the property that all arcs of G go forward
in the arder. To see why, suppose Vi -+ Vj is an arc of G. Since Gis acyclic, there
are no backward arcs. Thus, for every arc, the head precedes the tail. That is, Vj
precedes Vi in postorder. But the list is the reverse of postorder, and 80 Vi precedes
Vj on the listo That is, every tail precedes the corresponding head in the list order.

An arder for the nades of a graph G with the property that for every arc of G
the tail precedes the head is called a topoiogical order, and the process of finding
such an arder for the nades is called topological sorting. Only acyclic graphs have a
topological arder, and as we have just seen, we can produce a topological arder for
an acyclic graph O(m) time, where m is the larger ofthe number ofnodes and arce,
by performing a depth-first search. As we are about to give a nade its postorder
number, that is, as we complete the call to dfs on that nade, we push the nade
anta a stack. When we are done, the stack is a list in which the nades appear in
postorder, with the highest at the top (front). That is the reverse postorder we
desire. Since the depth-first search takes O(m) time, and pushing the nades onto a
stack takes only O(n) time, the whole process takes O(m) time.



498 THE GRAPH DATA MODEL

Applications oí Topological Order and Cycle Finding

There are a number of situations in which the algorithms discussed in this eection
will prove useful. Topological ordering comes in handy when there are constraints
on the arder in which we do certain tasks, which we represent by nades. If we draw
an arc from u to v whenever we must do task u before v, then a topological order is
an arder in which we can perform all tbe tasks. An example in Section 7.10 about
putting on shoes and socks illustrated this type of problem.

A similar example is the calling grapb of a nonrecursive collection of functions,
in which we wish to analyze each function alter we bave analyzed the functions it
calls. As the arca go Crom caller to called function, the reverse of a topological order,
that is, the postorder itselC, is an order in which we can analyze tbe Cunction, making
BUfe that we only work on a Cunction after we bave worked on all the Cunctions it
calls.

In other situations, it is sufficient to run the cycle test. For example, a cycle
in the grapb oC task priorities tells us there is no order in whidl all the tasks can
be done, and a cycle in a calling graph tells us there is recursion.

Example 9.22. In Fig. 9.37(a) is an acyclic graph, and in Fig. 9.37(b) is the
depth-first search forest we get by considering the nades in alpbabetic order. We
alBO show in Fig. 9.37(b) the postorder numbers that we get Crom this depth-first
search. IC we list tbe nades highest. postorder number first, we get the topological
order (d,e,c,J,b,a). The reader should check that each oCtbe eighl. arcs in Fig.
9.37(a) has a tail that precedes its head according to thislist. There are, incidentally,
three other topological orders Cor this graph, such as (d, c, e, b, J, a). +

The Reachability Problem

A natural question to ask about a directed graph is, given a nade u, which nades
can we reach Crom u by Collowing arcs? We call this set of nades the reachable set
Cor nade u. In fact, iC we ask this ~bility question Cor each nade u, then we
know for which pairs of nodefi (u, v) there is a path fram u to v.

The algorithm Cor solving reachability is simple. If we are interested in nade
u, we mark all nades URVISITED and call d.fs(u). We then examine aIl the nades
again. Th~ marked VISITED are reachable from u, and the others are noto If we
then wish to find the nades reachable from another nade v, we set all t.he nades to
UNVISITED again and call dfa(v). This process may be repeated for as many nodes
as we like.

..

Reachable set

Example 9.23. Consider the graph of Fig. 9.37(a). Ir we start our depth-first
search from node a, we can go nowhere, since there are no arca out of a. Thus,
df8(a) tenninates immediately. Since only a is visited, we conclude that a is the
only node reachable from a.

If we start with 6, we can reach a, but that is all; the reachable set for b is
{a,6}. Similarly, from c we r~ach {a,6,c,/}, from d we reach all the nodes, from e
we reach {a,6,e,/}, and from / we can reach only {a,/}.

For another example, consider the graph of Fig. 9.26. From a we can reach all
the nodes. From any node but a, we can reach all tbe nodes except a. +

.

..



SEC. 9.7 SOME USES OF DEPTH-FlRST SEARCH 499

(a) A directed acyclic graph.

1~ .~:~~
~ ~ 3o.!..50

. .
. .

".c.:.T ~ :
F .,.,.'"

~4~ ;

(b) A depth-first search forest.

TopologicaUy sorting an acyclic graph.Fig. 9.37.

Running Time of the Reachability Test

Let us assume we have a directed graph G with n nodes and m arca. We shall
also assume G is represente<! by the data type GRAPH oc the previous section. First,
suppose we want to find the reachable set Cor a nade u. Initializing the nodes
to be URVISITED takes O(n) time. The call to dfs(u, G) takes O(m) time, and
examining the nades again to see which are visited takes O(n) time. While we
examine the nodes, we could also create a list of those nodes that are reachable
from u, still taking only O(n) time. Thus, finding the reachable set ror one node
takes O(m) time.

Now suppose we want the reachable sets ror all n nodes. We mar repeat the
algorithm n times, once ror each node. Thus, the total time is O(nm).

Finding Connected Components by Depth-First Search

In Section 9.4, we gave an algorithm for finding the connected components of an
undirected graph with n nades, and with m equal to the larger of the number of
nades and edges, in O( m lag n) time. The tree structure we used to merge com-
ponents is of interest in its own rightj for example, we used it to help implement
Kruskal's minimalspanning tree algorithm. However, we can find connected com-
ponents more efficiently if we use depth-first search.
suffices. ,

The idea is to treat the undirected graph as if it were a directed graph with each
edge replaced by arcs in both directions. If we represent the graph by adjacency
lista, then we do not even have to make any change to the representation. Now



500 THE GRAPH DATA MODEL

Transitive Closure and Reftexive-Transitive Clo8ure

Let R be a binary relation on a eet S. The reachability problem can be viewed as
computing the reJlexive-trnnsitive closure of R, which is usually denoted n.. The
relation R* is defined to be the set of pairs (u, v) 8uch that there is a path of length
zero or more from nade u to nade v in the graph represented by R.

Another relation that is very similar is n+ , the trnnsitive closure of R, which is
defined to be the set of pairs (u, v) such that there is a path of length ORe or more
from u to v in the graph represented by R. The distinction between n. and n+ is
that (u, u) is always in R* for every u in S, whereas (u, u) is in n+ if and only if
t.here is a cycle of length ORe or more from u to u. To compute n+ Crom R., we
just have to check whether or not each nade u has .,me entering arc from ORe of it.s
reachable nades, including itself; if it does not, we remove u from its own reachable
seto

construct tbe depth-first search forest for tbe directed graph. Each tree in the
forest is one connected component of the undirected graph.

To see why, first note that tbe presence of an arc u -+ v in the directed grapb
indicates that there is an edge {u, v}. Tbus, aIl tbe nades of a tree are connected.

Now we must sbow the converse, tbat if two nades are connected, then they are
in the same tree. Suppose tbere were a path in tbe undirected grapb between two
nades u and v that are in different trees. Say the tree of u was constructed first.
Then there is a path in the directed graph from u to v, which tells us that v, and
all the nades on this path, should have been added to tbe tree with u. Thus, nades
are connected in tbe undirected graph ir and only ir tbey are in the same tree; that
is, the trees are the connected components.

Example 9.24. Coosider tbe undirected grapb oí Fig. 9.4 &gain. One poesible
depth-first search forest we rnight construct for tbis graph is shown in Fig. 9.38.
Notice bow the three depth-first search trees corre&pond to tbe three connected
cornponents. +

EXERCISES

9.7.1: Find all the topological orders for the grapb of Fig. 9.31.

9.7.2*: Suppose R is a partial arder 00 dornain D. We can represent R by its
grapb, where the nades are tbe elerneots of D and there is an arc u -+ v whenever
uRv and u ~ v. Let (VI, V2, . . ., vn) be a topological ordering oí the graph oí R.
Let T be the relation defined by viTvj wbenever i .$: j. Show that

...

a) T is a total order, and

b) The paira in R are a subeet oí the paira in T; that ia, T ia a total order containing
the partial order R.

9.7.3: Apply depth-firat 8earch to tbe graph oí Fig. 9.21 (after converting it to a
symmetric directed graph), to find the connected components.

..



SEC.9.7 SOME USES OF DEPTH-FlRST SEARCH 501

Lahaina

I

Kahului

/""
Keokea Hana

Kona

I

Kamuela

I
Hilo

Honolulu

I

PearlCity

I

Wahiawa

/""Laie M

I
aili

Kaneohe

The depth-fust searclt forest divides an undirected graph
joto connected componeots.

Fig. 9.38.

9.7.4: Consider the graph with arcs a -+ c, b -+ a, b -+ c, d -+ a, and e -+ c.

a) Test the graph for cycles.
b) Find all the topologicalorders for the graph.
c) Find the reachable set of each nade.

9.7.5*: In the next section we shall consider the general problem of finding shortest
paths from a source nade s. That is, we want for each nade u the length of the
shortest path from s to u if one exists. When we have a directed, acyclic graph, the
problem is easier. Give an algorithm that will compute the length of the shortest
path from nade s to each nade u (infinity if no such path exists) in a directed,
acyclic graph G. Your algorithm should take O(m) time, where m is the larger of
the number of nades and arcs of G. Prove that your algorithm has this running
time. Hint: Start with a topological sort of G, and visit each nade in turno On
visiting a nade u, calculate the shortest distance from s to u in terms of the already
calculated shortest distances to the predecessors of u.

9.7.6*: Give algorithms to compute the following for a directed, acyclic graph G.
Your algorithms should ron in time O(m), where m is the larger of the number of
nades and arcs of G, and you should prove that this running time is all that your
algorithm requires. Hint: Adapt the idea of Exercise 9.7.5.

a) For each nade u, find the length of the longest path from u to anywhere.

b) For each nade u, find the length of the longest path to u from anywhere.

c) For a given source nade s and for all nades u of G, find the length of the longest
path from s to u.

d) For agiven source nade 8 and for all nades u ofG, find the length ofthe longest
path from u to s.

e) For each nade u, find the length of the longest path through u.



..

502 THE GRAPH DATA MODEL

... 9.8 Dijkstra's Algorithm for Finding Shortest Paths.
Supp~ we have a graph, which could be either directed or undirected, with labels
on the ara (or edges) to rep~nt tbe "length" of tbat arco Ao example is Fig.
9.4, which showed the distance along certain roads of the Hawaiian Islands. It
is quite common to want to know the minimum distance between two nodes; for
example, maps often include tables of driving distance 88 a guide to how lar one can
travel in a dar, or to belp determine which of two routes (tbat go througb dift'erent
intermediate cities) ia shorter. A similar kind of problem would 888OCiate with each
arc the time it takes to travel &long that arc, or perhaps tbe C(»t of traveling that
arco Then the minimum "distance" between two nodes would correspond to the
traveling time or tbe fare, fe8pectively.

In general, tbe distance along a patb is the sum of the labels of that path. The
Minimum mínimum distance from nade u to nade v is tbe mioimum of tbe disl.ance of any
distance path from u to v.

. Example 9.25. Consider tbe map of Oahu in Fig. 9.10. Suppose we want to
find the minimum distance from Maili to Kaneobe. Tbere are several paths we
could chooee. One useful observatioo is tbat, 88 long as the labels of the arca are
nonnegative, the minimum-distance path oeed never bave a cycle. For we could
skip that cycle and find a path between the same two nodes, but witb a distance
no greater than that of the path witb the cycle. Thus, we need only consider

l. The path through Pearl City and Honolulu.

2. The patb through Wabiawa, Pearl City, and Honolulu.

3. The path through Wabiawa and Laie.

4. The path through Pearl City, Wabiawa, and Laie.

The distances oftb~ paths are 44, 51, 67, and 84, respectively. Thus, tbe minimum
distance from Maili to Kaneohe is 44. .

If we wish to find the minimum distance from one given nade, called tbe source
Source nade node, to all the nades of the graph, one of tbe m~t efficient techniques to use is

a method called Dijk6trn's algorithm, the subject of this sectioo. It turna out that
if all we want is the distance from one nade u to another nade v, the best way is
to run Dijkstra's algorithm with u 88 tbe source nade and stop wben we deduce
the distance to v. Ir we want to fiod the minimum distance between every pair of
nodes, tbere ia an algorithm that we sh&ll cover in the next section, called Floyd's
algorithm, tbat sometimes is preferable to running Dijkstra's algorithm with every
nade 88 a source.

Tbe essence of Dijkstra's algorithm is that we discover tbe minimum distance
from the sou~ to other nodes in tbe order of tb~ minimum distances, that is,
closest nades first. As Dijkstra's algoritbm proceeds, we have a situation like that

Settled nade suggested in Fig. 9.39. In the graph G tbere are certain nades that are ..ettled, that
is, their minimum dist&Qce is known; tbis set always includes 8, the source node.

Special path For the unsettled nod~ v, we record the length of the shortest ..pecial path, which
is a path that starts at the source node, travels only through settled nades, then at
the last step jumps out of the settled region to v.

- -- --~--~~-~~..."..,._.~ ~,-"-~
,,



"
" .,

'.
." SEC. 9.8 DUKSTRA'S~ALGORITHM FOR FINDING SHORTEST PATHS 503

settled
nod~

0 Fig. 9.39. Intennediate 8tage during tbe execution of Dijkstra '8 algorithm.

We maintain a value dist(u) for every node u. Ir u is a settled node, then
dist(u) is the length of the shortest path from the source to u. Ir u is not settled,
then dist(u) is the length ofthe shortest special path from the source to u. Initially,
only the source node s is settJed, and dist(s) = O, sÍDce the path consisting of s

alone surely has distance O. Irthere is an arc from s to u, then dist(u) is the labeJ
of that arco Notice that when onJy s is settled, the only special paths are the arcs
out of s, so that dist(u) should be the label of the arc s -+ u if there is one. We
shall use a defined constant IJfFTY, that is intended to be Jarger than the distance
along any path in the grapb G. IJfFTY serves as an "infinite" value and indicates
that no special paths have Jet been discovered. That is, initially, if there is no arc
s -+ u, then dist(u) = IHm.

Now suppose we have some settled and some unsettled nades, as suggested by
Fig. 9.39. We find the nade v that is unsettJed, but has the smallest dist value of
any unsettled node. We "settle" v by

1. Accepting dist(v) as the minimumdistance from sto v.

2. Adjusting tbe value of dist(u), for all nodes u that remain unsettled, to account
for the fact that v is now settled.

The adjustment required by step (2) is the following. We compare the old value
of dist(u) with the sum oí dist(v) and label oí the arc v -+ u, and ir the latter sum
is smaller, we replace dist(u) by that sumo Ir there is no arc v -+ u, tben we do not

adjust dist(u).

+ Example 9.26. Consider the map oí Oahu in Fig. 9.10. That graph is undi-
rected, but we shall assume edges are arcs in both directions. Let the source be
Honolulu. Then initially, only Honolulu is settled and its distance is O. We can set
dist(PearlCity.) to 13 and dist(Kaneohe) to 11, but other cities, having no arC from
Honolulu, are given distance INFTY. The situation is shown in tbe first column of
Fig. 9.40. The star on distances indicates that the node is settled.

Among the unsettled nades, the one with the smallest distance is now Kaneohe,

c~ ,,-c,'" , ,"
-.."'C" .'- ._~) ,,- -,"~



504 THE GRAPH DATA

and 80 this node is settled. There are arcs from Kaneohe to Honolulu and Laie.
The arc to Honolulu does not help, but the value of dist(Kaneohe), which is 11,
plus the label of the arc frorn Kaneohe to Laie, which is 24, totals 35, which is less
than "infinity," the current value of dist(Laie). Thus, in the second colurnn, we
have reduced the distance to Laie to 35. Kaneohe is now settled.

In the next round, tbe unsettled node witb the smallest distance is Pearl City,
with a distance of 13. When we rnake Pearl City settled, we rnust consider the
neighbors of Pearl City, which are Maili and Wahiawa. We reduce the distance to
Maili to 33 (the sum of 13 and 20), and we reduce the distance to Wahiawa to 25
(the surn of 13 and 12). The situation is now as in column (3).

Next to be settled is Wahiawa, with a distance of 25, least among the currently
unsettled nodes. However, that node does not allow us to reduce the distance to
any other Bode, and 80 colurnn (4) has t,be same distances as column (3). Sirnilarly,
we next settle Maili, wit,h a distance of 33, but t,hat does not reduce any distances,
leaving column (5) the same as colurnn (4). Technically, we have to settle the last
node, Laie, but the last Bode cannot affect any ot,her dist,ances, aod 80 colurnn (5)
gives the shortest distances from Honolulu to all six cities. +

Wby Dijkstra'8 Algoritbm Works

In order to show that, Dijkstra's algorithrn works, we rnust 888ume that the labels
of arcs are Donnegative.9 We shall prove by induction on k that when there are k
settled nodes,

a) For eacl1 settled Bode u, dist(u) is the rninimurn distance from s to u, and the
shortest path to u consista only of settled nodes.

b) For eacl1 unsettled node u, dist(u) is the rninirnurn distaoce of any Speclal path
frorn s to u (IIFTT if no such path exists).

BASIS. For k = 1, s is the only settled Bode. We initialize dist(s) to O, which
satisfies (a). For every other node u, we initialize dist(u) to be the label of the arc
s -+ u ir it exists, and INFTT if noto Thus, (b) is satisfied.

v ~hen. labels are allowed to be nesative. - can find s:raphs far whidl Dijkstra's alsorithm

.,
MODEL

V ALUES OF di8t

Fig. 9.40. Stages in the execution of' Dijbtra's aIgorithm.



.,

DUKSTRA 'S ALGORffHM FOR FINDING SHORTEST PATHSSEC. 9.8 505

Fig. 9.41. shorter path to v, through w and u.

INDUCTION. Now assume (a) and (b) hold after k nades have been settled, and
let v be the (k + 1)st nade settled. We claim that (a) still holds, because dist(v)
is the least distance oc any path Crom s to v. Suppose noto By part (b) oC the
inductive hypothesis, when k nades are settled, dist(v) is the minimum distance
oC any special path to v, and so there must be some shorter nonspecial path to v.
As suggested in Fig. 9.41, this path must leave the settled nades at Borne nade w
(which could be s), and go to some unsettled nade u. From there, the path could
meander in and out oC the settled nades, until it finally arrives at v.

However, v was chosen to be the (k + 1)st nade settled, which means that at
this time, dist(u) could not be less than dist(v), or else we would have selected u
as the (k + 1)st nade. By (b) oC the inductive hypothesis, dist(u) is the minimum
length oC any special path to u. But the path Crom s to w to u in Fig. 9.41 is a
special path, so that its distance is at least dist(u). Thus, the supposed shorter
path Crom 8 to v through wand u has a distance that is at least dist(v), because
the initial part Crom 8 to u already has distance dist(u), and dist(u) ~ dist(v).10
Thus, (a) holds Cor k + 1 nodes, that is, (a) continues to hold when we include v
among the settled nodes.

Now we must show that (b) halda when we add v to the settled nades. Consider
some node u that remains unsettled when we add v to the settled nades. On the
shortest special path to u, there must be some penultimate (next-to-last) nade; this
node could either be v or some other nade w. The two possibilities are suggested
by Fig. 9.42.

First, suppose the penultimate nade is v. Then the length oC the path Crom s
to v to u suggested in Fig. 9.42 is dist( v) plus the label oC the arc v -t u.

Alternatively, suppose the penultimate nade is some other nade w. By induc-
tive hypothesis (a), the shortest path Crom s to w consists only oC nades that were
settled prior to v, and thereCore, v does not appear on the path. Thus, the length oC
the shortest special path to u does not change when we add v to the settled nades.

Now recall that when we settle v, we adjust each dist(u) to be'the smaller oC

10 Note that the fact that the l&bel. are nonnegatiw is vital; if not, the portion of the path

from u to v could have a negative di.tance. resulting in a shorter path to v.



506 THE GRAPH DATA MODEL

Fig.9.42.

the old v&lue ofdist(u) and dist(v) plus the label ofarc v -+ u. The Corroer covers
the case that some w other than v is the penultimate nade, ud the latter covers
the case that v is the penultimate nade. Thus, part (b) &Iso holds, and we have
completed the inductive step.

Data Structures for Dijkstra's Algorithm

We shall now present an efficient implementation of Dijkstra's algorithm making
use of the balanced partially ordered toree structure of Section 5.9.11 We use two
arrays, one called graph to represento tobe grapb, and tbe otober called potBod..
to represent the partially ordered tree. The intent is that to each graph node u
there corresponds a partially ordered tree node a that has priority equal to dist(u).
However, unlike Section 5.9, we shall organize the partially ordered tree by least
priority rather than greatest. (Altematoively, we could take the priority of a to be
-dist(u).) Figure 9.43 illustrates the data structure.

We use BODE for the type of graph nodes. As usual, we shall name nodes with
integers starting at O. We shall use the type POTIODE for the type of nodes in the
partially ordered tree. As in Section 5.9, we shall assume that the nodes of the
partially ordered tree are numbered starting at 1 for conveniente. Tbus, botb NaDE
and POTNODE are synonyms for int.

The data type GRAPH is defined to be

typedef .truct {
float dist;
LIST successors;
POTIODE toPOT;

} GRAPH(MAX];

Actually, this implementation i. ooly beat wheo the number oí an:a ia lOIDewhat leas than
the Iquare o( the number of nodes, which i. the maximum oumber o( ara there can be. A
simple implementation (or the dense case is discussed in the exen:ises.

..

.,

What is the penuitimate nade on tbe shortest speciaI path to u?

.



We can now define the principal data structures:

GRAPH graph;
POT potNodes;
POTNODE last;

The array oí structures graph contains the nodes oí the graph, the array potNodes
contains the nades oí the partiaUy ordered tree, and the variable last indicates the
current end oí the partialIy ordered tree, which resides in potNodes [1. .last].

IntuitiveIy, the structure oí the partially ordered tree is represented by the
positions in the array potNodes, as usual íor a partially ordered tree. The elements
oí this array let-os tell the priority oí a node by referring back to the graph itself.
In particular, we place in potNodes (a] the index u oí the graph nade represented.
The dist field, graph [u] . dist, gives the priority oí node a in the partialIy ordered
tree.

1

DIJKSTRA 'S ALGORlTHM FOR FINDING SHORTEST PATHS 507SEC. 9.8

graph

o

u

Fig.9.43. Data structure to represent a graph for Dijkstra's aIgorithm.

Rere, HAI is the number of nodes in the graph, and LIST is the type of adjacency
lists consisting of cells of type CELL. Since we need to include labels, which we take
to be floating-point numbers, we shall declare as the type CELL

typedef struct CELL *LIST;
struct CELL {

NODE nodeName;
float nodeLabel;
LIST Den;

};

We declare the data type POT to be an array of graph nodes

typedef NODE POT(KAX+1];



508 THE GRAPH DATA MODEL

Functions for
ra. UAaa&ca& J' ... uaa aUUD ava &I..,...~va - - ~ --o-a avaaa.a
We need a number oí auxiliary íunctions to make our implementation work. The
most fundamental is the function .wap that swaps two nades oí the partially ordered
tree. The matter is not quite as simple as it was in Section 5.9. Here, the field t.oPOT
of graph must continue to track the value in the array pot.Rod.., as was suggested
by Fig. 9.43. That is, if the value graph (u] . toPOT is a, tben it must al80 be the

case that potRod.. [aJ has value u.
The code for .vap is shown in Fig. 9.44. It takes as arguments a graph G and

a partially ordered tree P, as well 88 two nades a and b oí that partially ordered
tree. We leave it to tbe reader to check that the íunction exchanges the values in
entries a and 6 oí the partially ordered tree and al80 exchanges the toPOT fields of
the corresponding graph nades.

void avap(POTNODE a. POTNODE b. GRAPH G. POT P)
{

NODE teap; /. uaed to svap POT nodes ./

teap E P(b];
P(b] = P(aJ;
P(a] = teap;
G(P(aJ] .toPOT = a;
G(P(b]] .toPOT = b;

}.,

Fig.9.44.

We shall need to bubble nades up and down the partially ordered tree, as we
did in Section 5.9. The majar difl'erence is that here, the value in an element of
the array potNodes is not the priority. Rather, that value takes us to a nade of
graph, and in the structure for that nade we find the field dist, which gives us
the priority. We therefore need an auxiliary function priority t,hat returns di8t
for the appropriate graph nade. We shall &Iso assume for this section that smaller
priorities rise to the top of the partially ordered tree, rather than larger priorities
as in Section 5.9.

Figure 9.45 ShOW8 the fundían priority and functions bubbleUp and bubble-
Don that are simple modifications of the functions of the salDe name in Section 5.9.
Each takes a graph G and a partially ordered tree P as arguments. Function bub-
bleDon also needs an integer last that indicates the end of the current partially
ordered tree in the array P.

Initialization

We shall assume t,hat t,he adjacency list, for each graph nade has already been
created and that, a pointer to the adjacency list for graph nade u appears in
graph [u] . succe.sor.. ~e shall a1ao ~ume t,hat. nade O is t,he source nade. If we
take the graph nade i to correspond to nade i + 1 of the partially ordered tree, then
the array potlod.s is appropriately iniiialized as a pariiaUy ordered tree. That is,
the roat, of the partially ordered t,ree represents the source nade of the graph, to

.'8 Algorithm

F\mction to 8wap two nodes of the partially ordetoed tree.



,
DUKSTRA 'S ALGORITHM FOR FINDING SHORrEST PATHSSEC. 9.8 509

tloat priority(POTNODE a. GRAPH G. por P)
{

return G [P [aJ]. di.t;
}

void bubbleUp(PDTNDDE a, GRAPH G, PDT P)
{

if «a> 1) (priority(a, G, P) < priority(a/2, G, P») {

8wap(a, &12, G, P);
bubbleUp(&l2, G, P);

}

void bubbleDovn(POTNODE a, GRAPH G, por P. int laat)
{

POTNODE child;

child = 2.a;

if (child < last ti;

priority(child+l, G, P) < priority(child, G, P»
++child;

if (child <= lut ti;

priority(a, G, p) > priority(child, G, P» {

8Vap(a, child, G, P);

bubbleDovn(child, G, P, last);

}

Bubbling nodes up and down the partíaUy ordered tree.Fig.9.45.

which we give priority o, and to all other nades we give priority IIIFTY, our "infinite"
defined constant.

As we shall see, on the first round of Dijkstra's algorithrn, we select the source
nade to "settle," which will create the condition we regard as our starting point in
the informal introduction, where the source nade js settled and dist [u] is noninfi-
nite only when there js an arc from the source to u. The initialization function is
shown in Fig. 9.46. As with previous functions in this section, initialize takes as
arguments the graph and the partially ordered tree. It also takes a pointer pLast to
the integer la.t, so it can initialize it to M AX, the number of nades in the graph.
Recall that last will indicate the last position in the array for the partially ordered
tree that is currently in use.

Note that the indexes of the partially ordered tree are 1 through M AX, while
for the graph, they are O through M AX - l. Thus, in liDes (3) and (4) of Fig. 9.46,
we have to make nade i of the graph correspond initially to nade i+ 1 of the partially
ordered tree.

Implementation of Dijkstra's Algorithm

Figure 9.47 shows the cacle for Dijkstra's algorithm, using all the functions we



510 THE GRAPH DATA MODEL

void initialize(GRAPH G, POT P, int .pLaat);

{
int i; /. ve u.. i as both a graph and a

for (i = O; i < MAl; i++) {
G[i].diat = INFTY;
G[i].toPOT = i+1;
P[i+1] = i;

}
C[O].dist = O;
(.pLast) = nI;

(1)
(2)
(3)
(4)

(5)
(6)

l'

Fag. 9.46. lnitiaüzation f« Dijbtra'. aigorithm.

Initializing with an Exception

Notice LhaL at line (2) of Fig 9.46, we set diat (1] to 18m. along with all the otber
distances. Then at line (5), we correct Lhis distance to O. That is more efficient tban
testing each value of i to see if it is Lhe exceptional case. True, we could eliminate
line (5) if we repiaced line (2) by

1! (1 = O)

G(i].diat = O;

.1..
G(i].diat = INFTY;

but that would not only add to the code, it would increase the running time, since
we would have to do n tests and n ~ignments, instead of n + 1 ~ignments and
no tests, as we did in liDes (2) and (5) of Fig. 9.46.

have previously writteo. To execute Dijkstra's algorithm 00 the graph graph with
partially ordered tree potNodes and with integer la.t to iodicate the end of the
partially ordered tree, we initialize theae variabl~ and tbeo call

Dijk.~ra(graph, potRode.. Alast)

The function Dijkatra worka as follows. At line (1) we call initialize. The
remainder oí the code, lin~ (2) through (13), is a loop, eadt iteration of which
corresponds to one round oí Dijkstra's algorithm, where we pia one Bode v and
settle it. The Bode tJ picked at line (3) is always the one whose corr~ponding tree
node Í8 at the root oí the partially ordered tree. At line (4), we take tJ out oí the
partially ordered tree, by awapping it with the current last Bode of that. tree. Line
(5) actually remov~ tJ by decrementing la.t. Then line (6) restor~ the partially
ordered tree property by calling bubbleDoVD on the Bode we just placed at the root.
In efl'ect., unsettled nod~ appear below last and settled nod~ are at. last and above.

At line (7) we begin updating distances to reftect the fact that tJ is now settled.
Pointer p Í8 initialized to the beginning of the adjaceocy list for Bode tJ. Then in the
loop of lio~ (8) to (13), we consider each 8UCce80r fA of tJ. Arter setting variable

)

toree node ./

.



As in previous sections, we shall assume that our graph has n nodes and that m
is the larger of the number of arca and the number of nodes. We sball analyze the
running time of each of tbe functions, in the order they were d~ribed. First, 8Wap
clearly takes 0(1) time, since it consista only of assignment statements. Likewise,
priori ty takes O( 1) time.

1'\mction bubbleUp is recursive, but its running time is O( 1) plus the time oc a
recursive call on a node that is half tbe distance to the root. As we argued in Section
5.9, tbere are at most log n calla, each taking 0(1) time, for a total of O(Jog n) time
Cor bubbleUp. Similarly, bubbleDown takes O(log n) time.

F\1nction initialize takes O(n) time. Tbat is, tbe loop oC lines (1) to (4) is
iterated n times,..and its body takes O( 1) time per iteration. That giv~ O( n) time
Cor the loop. Lines (5) and (6) each contribute 0(1), which we may neglect.

Now Jet us turn our attention to function Dijt8tra in Fig. 9.47. Let m" be
tbe out-degree oí node v, or equivalently, the length oí v's adjacency listo Begin by

1
SECo 9.8 DUKSTRA'S ALGORn'HM FOR FINDING SHORTEST PATHS 511

yoid Dijk.tra(GRAPH G, POT P, int .pLaat)
{

NDDE u, Vj /. v i. the node ve .elect to .ettle ./
LIST p.j /. p. runa dovn the li.t of successor. of Vj

u ia the aucce.aor pointed to by pa ./

initialize(G. p. p~t);
.hile «.pLut) > 1) {

v=P[1];
a.ap(1. .pLut. G. P);
--(.pLut);
bubbleDovn(1. G. P. .pLa8t);
pa = G[v].aucceaaora;

.hile (pa != IUU) {
u = pa->nod"..e;

it (G[u].diat > G[v].diat + p8->nodeLabel)
G[u].di8t = G[v].diat + pa->nodeLabel;

bubbleUp(G[u].toPOT. G. P);

(1)
(2)
(3)
(~)
(5)
(6)
(7)
(8)

" (9)
(10)
(11)
(12)

(13)

11 {

}
pa->next;p8 =

}
}

}

Fig. 9.47. The romo function for Dijkstra '1 algoritbm.

u to one of the succeaors of v at line (9), we test at line (10) whetber the shortest
special path to u goes through v. That is the case whenever the old valueofdist(u),
represented in thia data structure by G[u] .dist, is greater tban the sum of dist(v)
plus the label of the arc v -+ u. Ifso, tben at line (11), we ~t dist(u) to its new,
smaller value, and at line (12) we call bubbleUp, so, if neceaary, u can ri~ in the
partiallyordered tree to reftect its new priority. The loop completes when at line
(13) we move p down the adjacency list of v.

Running Time oí Dijkstra's Algoritbm



THE GRAPH DATA MODEL512

analyzing the inDer loop of liDes (8) to (13). Each of liDes (9) to (13) take 0(1)
time, except for liDe (12), the call to bubbleUp, wbich we argued takes O(logn)
time. Thus, tbe body of the loop takes O(log n) time. Tbe number of times around
the loop equals the length of the adjacencY list for v, which we referred to as
m". Thus the running time of the loop of liDes (8) through (13) may be taken
as 0(1 + m" lag n); the t.erm 1 covers the case wbere v has no 8UCCessors, tbat is,
m" = O, yet we still do the test of line (8).

Now consider the out.er loop of liDes (2) through (13). We already accounted
for liDes (8) to (13). Line (6) takes O(logn) for a call to bubbleDovn. The otber
liDes ofthe body take 0(1) each. The body tbU8 takes time 0((1 + mv)logn).

The outer loop is iterated exactly n - 1 times, as laat ranges from n down to
2. The t.erm 1 iD 1 + m" thus contributes n - 1, or O(n). However, the mv term
must be summed ayer each nade v, since all nades (but the last) are chosen once to
be v. Thus, the contribution of nlv summed ayer all iterations of the outer loop is
O(m), since Lv m" ~ m. We conclude that tbe outer loop takes time O(mlogn).
The additional time for line (1), the call to initialize, is oDly O(n), which we may
neglect. Our conclusion is tbat Dijkstra 's algorithm takes time O( m lag n), that is,
at most a factor of lag n more than the time taken just to look at the nades and
arcs of the graph.

EXERCISES

9.8.1: Find the shortest distance from Detroit to the other cities, according to the
graph of Fig. 9.21 (see the exercises for Section 9.4). If a city is unreachable from
Detroit, the minimum distance is "infinity."

9.8.2: Sometimes, we wish to count the number of arca traversed getting from one
node to another. For example, we might wish to minimize the number of transfers
needed in aplane or bus trip. Ir we label each a.rc 1, then a minimum-distance
calculation will count arcs. For the graph in Fig. 9.5 (~ the exercises for Section
9.2), find the minimum number of a.rcs oeeded to reach each oode from node a.

9.8.3: In Fig. 9.48(a) are ~ven species of hominids &ud tbeir convenient abbrevia-
tions. Certain of these species are koown to have preceded others because remains
have beeo found in the sarne place ~parated by layers indicating that time had
elapsed. The table in Fig. 9.48(b) gives triples (z,1',t) tbat mean species z has
been fouod in the sarne place as species 1', but z appeared t millions of years before
,.

a) Draw a directed graph representing the data of Fig. 9.48, with arcs from the
earlier species to the l&ter, labeled by the time difference.

b) Run Dijkstra's algoritbm on the graph from (a), with AF as the source, to find
the shortest time by which each of the other species could have followed AF.

9.8.4*: The implementation of Dijkstra's algorithm that we gave takes O(m lag n)
time, which is leM than O(n2) time, except in the case that the number of arcs is
close to n2, its maximum poesible number. If m is large, we can devise another
implementation, without a priority queue, where we take O(n) time to select the
winner at each round, but only O( mu) time, that is, time proportional to the
number of arcs out of the settled node u, to Update disto The result is an O(n2)
time algorithm. Develop the ideas suggested here, and write a C pragram for this
implement.ation of Dijkstra's algorithm.

1



+:+ 9.9 Floyd's AIgorithm

1

SEC. 9.9 PLOYD'S ALGORrrHM POR SHO~T PAmS 513

Aostralopith~ ACarensis AF
Australopithecus Africanos AA
Horno Habilis HH
Australopithecus Robustus AR
Horno Erectus HE
Australopithecus Boisei AB
Horno Sapiens HS

(a) Species and abbreviations.

SP~ 1 SPECIES 2 TIME

AF HH 1.0
AF AA 0.8
HH HE 1.2
HH AS 0.5
HH AR 0.3
AA AB 0.4
AA AR 0.6
AS HS 1.7
HE HS 0.8

(b) Speciell ~ species 2 by time.

Fig.9.48. between homjojd speOes.

9.8.5**: Dijkstra's algorithm does not always work ir there are negative labels
on some arca. Give an example oc a graph with some negative labels ror which
Dijkstra's algorithm gives the wrong answer Cor M>me mínimum distance.

9.8.6**: Let G be a graph Cor which we have run Dijkstra's algorithm and eettled
the nades in some order, Suppose we add to G an arc u -t ti with a weight oC O, to
Corm a new graph G', Under what conditions will Dijkstra '8 algorithm run on G'
eettle the nades in the sarne arder as Cor G?

9.8.1.: In this section we took the approach oC linking the arrays representing the
graph G and the partially ordered tree by storing integers that were indices into the
other array. Another approach is to use pointers to array elements. Reimplement
Dijkstra 's algorithm using pointers instead oC integer indices.

Pathsfor Shortest

If we want the mínimum distances between all pairs of nades ín a graph with n
nades, with nonnegative labels, we can ron Dijbtra's algorithm with each of the n
nades as .,urce. Since ORe run of Dijkstra 's algoritbm takes O( m lag n) time, where
m is tbe larger of tbe number of nodes and number of arca, finding tbe minimum
distances between all pairs of nades tbis way takes O(mnlogn) time. Moreover,
if m is cl~ to its maximum, n2, we can use an O(n2)-time implementation of



514 THE GRAPH DATA MODEL

Dijkstra's algorithm discussed in Exercise 9.8.4, which when ron n times gives os
an O( n3)-time algorithm to find the minimum distances between each pair of nades.

There is another algorithm for finding the minimum distances between all pairs
of nades, calIed FloUd's algorithm. This algorithm takes 0(n3) time, and thus is in
principIe no better than Dijkstra's algorithm, and worse than Dijkstra's algoritbm
when the number of arca is much less than n2. However, Floyd's algorithm works
on an adjacency matrix, rather than adjacency lista, and it is conceptually much
simpler than Dijkstra's algorithm.

Tbe essence of Floyd 's algoritbm is tbat we consider in turn each node u of
tbe grapb as a pivot. Wben u is tbe pivot, we try to take advantage of u as an
intermediate node between all pairs of nodes, as suggested in Fig. 9.49. For eacb
pair of nodes, say ti and w, if tbe sum of the labels of arca ti --+ u and u --+ w, which
is d + e in Fig. 9.49, is less tban the current label, f, of tbe arc from v to w, tben
we replace / by d+ e.

A fragment of code implementing Floyd's algoritbm is sbown in Fig. 9.50. As
before, we 888ume nodes are named by integers starting at O. We use moR as the
type of nodes, but we &88ume tbis type is integers or an equivalent enumerated type.
We &88ume tbere is an n x n array are, sud1 that are [v] [w] is the label of tbe arc
v --+ w in tbe given grapb. However, on tbe diagonal we bave are [y] [y] = O for
all nodes v, even if tbere is an arc v --t v. Tbe reason is tbat tbe shortest distance
from a node to itself is always O, and we do not wisb to follow any arcs at all. If
tbere is no arc froro v to w, tben we let are [y] [w) be IWFTY, a special value tbat. is
much greater tban any- otber label. Tbere is a similar array di.t tbat, at tbe end,
bolds tbe mínimum dietancesj di.t [ v] [w] wiIl become the minimum distance from
node v to node w.

Lines (1) to (3) initialize di.t to be arco Lines (4) to (8) forro a loop in wbich

Pivot

.
" ..

f:I .
.

..

.~ .. .
.

Fig. 9.49. Using nade u as a pivot to irnprove
the distances between BOrne pain of nades.

.



:1
SEC.9.9 FLOYD'S ALGORITHM FOR SHORTEST PATHS 515

NODE u, v. v;

(1) for (v = O; v < MAl; v++)
(2) for (v = o; v < KAX; v++)
(3) dist[v] [v] = arc[y] [v];
(4q for (u = O; u < MAl; u++)
(5) for (v = o; v < MAl; v++)
(6). for (w = o; v < MAl; v++)
(7) if (dist[v][u] + dist[u] [v] < dist[y] [v])
(8} dist [v] [v] = dist [y] [u] + diat [u] [v] ;

Fig. 9.50. Floyd's algorithm.

Warshall's Algorithm

Sometimes, we are only interested in telling wbether there exists a path between two
nodes, rather than what the mínimum distance is. Ir so, we can use an adjacency
matrix where the type of elements is BOOLEAN (int), with TRUE (1) indicating the
presence of an arc and FALSE (O) its absence. Similarly, the elemen~ of the dist
matrix are of type BOOLEA'B, with TRUE iodicatiog the existence of a path and FALSE
indicating that no path between the two oodes in question is known. The only
modification we need to make to Floyd's algorithm is to replace liDes (7) and (8) of
Fig. 9.50 by

(7) if (dist [v] [v] == FALSE)
(8) dist[v] [v] = dist[v] [u] t& dist[u] [v];

These liDes will set dist [v] [v] to TRUE, if it is not already TRUE, whenever both
dist[v] [u] and diat[u] [v] are TRUE.

The resultiog algorithm, called Warshall's algorithm, computes the reflexive
and transitive closure of a graph of n nodes in O(n3) time. That is never better
than the O(nm) time that the method ofSection 9.7 takes, where we used depth-first
search from each node. However, Warshall's algorithm uses an adjacency matrix
rather than lis~, and if m is near n2, it may actually be more efficient than multiple
depth-first searches because of the simplicity of Warshall's algorithm.

each node u is taken in turn to be the pivot. For each pivot u, in a double loop 00
v and w, we consider each pair of oodes. Line (7) tests whether it is shorter to go
from v to w through u than directly, and if so, line (8) lowers dist [v] [v] to the
sum of the distances from v to u and from u to w.

... Example 9.27. Let us work with the graph of Fig. 9.10 from Section 9.3, using
the numbers O through 5 for the nodes; O is Laie, 1 is Kaneohe, and so oo. Figure
9.51 shows th,e arc matrix, with label INFTY for any pair of nodes tbat do not have
a connecting edge. The arc matrix is alBO the initial value of the dist matrix.

Note tbat tbe graph of Fig. 9.10 is undirected, so the matrix is symmetric; that
is, arc[v] [w] = arc[v] [w]. Ir the grapb were directed, this symmetry might not

~. ~~~~- -'-: .""""0 '-



516 THE GRAPH DATA MODEL

be preaent, but Floyd's algorithm
ror directed or undirected graphs.

Fig. 9.61.I
The first pivot is u = O. Since the eum of 11m and anytbing is IRFTY, the only

pair of nodes v and w, neither of which is u, for which di8t [y] [u] + di8t [uJ [V] is

less than 11m is ti = 1 and w = 5, or vice versa.12 Since dist[1] [6] is 18m at
this time, we replace dist [1] [6] by the eum of dist [1] [O] + dist [O] [6] which
ie 52. Similarly, we replace dist [6] [1] by 52. No other distances can be improved
with pivot O, which leaves the di8t mairixof Fig. 9.52.

Now we make node 1 the pivot. In the current di.t, shown in Fig. 9.52, node 1
has noninfinite connections to O (distance 24), 2 (distance 11), and 5 (distance 52).
We can combine th~ edg5 to reduce the distance between nades O and 2 from
11m to 24+ 11 = 35. Also, the distance between 2 and 5 is reduced to 11 +52 = 63.
Note that 63 is the distance along the path from 80nolulu, to Kaneohe, to Laie, to
Wahiawa, not the shortest way to get to Wahiawa, but the shortest way that ooly
goes through nod5 that have been the pivot so faro Eventually, we shall find the
shorter route through Pearl City. The current dist matrix is shown in Fig. 9.53.

Now we make 2 be the pivot. Node 2 cunently has noninfinite connections to
O (distance 35), 1 (distance 11),3 (distance 13), and 5 (distance 63). Among th~
nodes, the distance bet~n O and 3 can be improved to 35 + 13 = 48, and the

12 If one of ti and VI ia the u, it is ~ to eee di8t[.] [w] can nner be improved by soing
throup V. 111..., - can IpOft pain of the form (v, u) or (",VI) when 8eard1ins for pain
wh~ distance ia improved by soins through the pivot u.

1

takes no advantage oí symmetry I and thU8 works

INFTY
INFTY
IBFTY

20
O

15

11
O

13
IRFTY
IRFTY

IRFTY

13

O

20

12

24
11m
1RFTT
1RFTT

28

o

11

11m

11m

11m

1'IFTY
11m

12
15
O

1
2
3
4
5

initial value of the dist matrix.The arc matrix, whidt is the

INFTY

INFTY

13

O

20

12

11m 52
IRFTT IIfFTY

20 12

O 15
15 O

24
11m
IIFTY
11m

28

o
11

I~
11m

52

11
O

13
IRFTT
I~

1
2
3
4
5

The matrix diat after using o as the pivot.Fig. 9.52.



,
SEC.9.9 FLOYD'S ALGORITHM FOR SHORTEST PATHS 517

i) o 1 2 3 4 5

O O 24 35 IRFTY IIFTT 28
1 24 O 11 IBFTY 11m 52

,2, 35 11 O 13 11m 63
3 INFTY INFTY 13 O 20 12
4 INFTY IRFTY IRFTY 20 O 15
J 28 52 63 12 15 O

Fig.9.53. The matlÍx dist alter using 1 as the pivot.

o .. 2 3 4 5
. Q O 24 35 48 IIFTY 28

.. :
~ t 24 O 11 24 ¡Km 52
, ,

2 35 11 O 13 IKFTY 63
3 48 24 13 O 20 12

" I8FT! I8FT! IWFTY 20 O 15
" "

5 28 52 63 12 15 O

The matrix dist after using 2 as the pivot.Fig.9.54.

distance between 1 and 3 can be improved to 11 + 13 = 24. Thus, the current dist
matrix is shown in Fig. 9.54.

Next, nade 3 becomes tbe pivot. Figure 9.55 shows the current best distance
between 3 and each ofthe other nades.13 By traveling tbrougb nade 3, we can make
the following improvements in distances.

l. Between 1 and 5, the distance is reduced to 36.

2. Between 2 and 5, the distance is reduced to 25.

3. Between O and 4, the distance is reduced to 68.

4. Between 1 and 4, tbe distance is reduced to 44.

5. Between 2 and 4, the distance is reduced to 33.
Tbe current dist matrix is sbown in Fig. 9.56. .

Tbe use of 4 as a pivot does not improve any distances. When 5 is tbe pivot,
we can improve the distance between O and 3, since in Fig. 9.56,

dist [oJ [6J + dist [6J [3J = 40

13 The reade! should compare Fig. 9.55 with Fig. 9.49. The latter shows how to use a pivot
node in the general case of a directed graph, where the arcs in and out of the pivot may have
different labels. Fig. 9.55 takes advantage of the symmetry in the example graph, letting us
use edges between node 3 and the other nodes to repl'aent both arcs into node 3, as on the
left of Fig. 9.49, and ara out of 3, aa on the ript of Fig. 9.49.



518 THE GRAPH DATA MODEL

which is less than diat (o] (3] , or 48. In terms of cities, that corresponds t.o diacov-
ering that it is shorter t.o go from Laie t.o Pearl City via Wahiawa than via Kaneohe
and Honolulu. Similarly, we can improve the distante bet~n O and 4 to 43, from
68. The final dist matrix is shown in Fig. 9.57. ...

Why Floyd's Algorithm Works
As we have leen, at any st.age during Floyd's algorithm the distance from Bode v
t.o Bode w will be the dÍstance of the shortest of th<* paths that go through only
nades that have been the pivot. Eventually, all nodes get t.o be the pivot, and
diat (y] (w] holds th"e minimum distante of all poesible paths.

Fig. 9.55. to node 4.CUlTeDt best

36
25
12
15
O

24
13

O
20
12

44
33
20
O

15

o
11
24

44

36

11

O

13

33

2S

24

35

48

68

28

1

2

3

4

5

Tbe matrix diat afte!" using 3 as the pivot.Fig. 9.56.

44
33
20
O

15

36
25
12
15
O

11

O

13

33

25

24
13
O

20
12

24

35

40

43

28

o
11
24
44

36

1
2
3
4

5

Fig. 9.57. Tbe final diat matnx.



k-path

+ Example 9.28. In Fig. 9.10, the path O, 1, 2, 3 is a 2-path. The intermediate
nodes, 1 and 2, are each 2 or less. This path is also a 3-path, a 4-path, and a
5-path. It is not a l-path, however, because the intermediate Bode 2 is greater than
1. Similarly, it is not a O-path or a (-l)-path. +

.,
SEC. 9.9 FLOYO'S ALGORITHM FOR SHO~T PATHS 519

We define a k-path from a node v to a nade w to be a path from v to w such that
no intermediate nade is numbered higher than k. Note that there is no constraint
that v or w be k or less.

An important special case is when k = -1. Since nades are assumed numbered
starting at O, a (-l)-path can have no intermediate nades at aIl. It can only be
either an arc or a single node that is both the beginning and end of a path of length
O.

Figure 9.58 suggests what a k-path looks like, aIthough the end points, v and
W, can be above or below k. In that figure, the height of the line represents the
numbers of the nades aIong the path from v to w.

nades numbered
higher than k

Fig. 9.58. A k-path cannot have nodes higher than k, except (possibly) at the ends.

As we assume nodes are numbered O to n - 1, a (-l)-path cannot have any
intermediate nodes at aIl, and thus must be an arc or a single node. An (n-1)-path
is any path at all, since there can be no intermediate node numbered higher than
n - 1 in any path of a graph with nodes numbered O through n-l. We shall prove
by induction on k the statement

STATEMENT S(k): If labels of arca are nonnegative, tben just before we set u to
k + 1 in tbe loop of liDes (4) to (8) of Fig. 9.50, dist [v] [v] is tbe length of
tbe shortest k-path from v to w, or IKm if tbere is no such path.



520 THE GRAPH DATA MODEL

BASIS. The basis is k = -l. We set u to O just
loop for tbe first time. We have juat initialized
Since the ara and the patbs consisting of a ood.
the basis holds.

INDUCTION. Assume S(k), and consider what
iteration oí the loop witb u = k + 1. Suppoee ]
to w. Tbere are two c~, depending on whetbE

l. If Pisa k-path, that is, P does not actual
the inductive hypothesis, dist (v) (.) airea.
kth iteration. We cannot change diat (uJ (
pivot, becauae tbere are no short.er (k + 1)-1

2. If P is a (k + l)-patb, we can assume tba~
once, becau8e cycles can never decreaae di!
to be nonnegative). Thus, P is compose<i o
followed by a k-path R from node k + 1 to t
inductive bypothesis, diat (v) (k+l) and d:
paths Q and R, respectively, after the kth

Fig.9.59.

Let us begin by obeerving that 4ist [y] [k
changed in the (k + l)st iteration. The reason is
and 80 aIl lengths oc paths are nonnegative; th
must Cail when u (i.e., nade k + 1) is one oí VOl

Thus, when we apply the test oí line (7) Cor
the values oí 4ist [y] [k+1] and 41st [k+1] [v]

the kth iteration. That is to say, the test oí 1
sbortest k-patb, witb tbe sum oí tbe lengths oí f
and íram k + 1 to w. In case (1), wbere patb
Corroer will be the sborter, and in case (2), wl
latter wiU be the sum oí tbe lengths oC the patl
the sborter.

We conclude tbat the (k + l)st iteration -
shortest (k + l)-path, Cor aIl nod5 v and w. 1
80 we conclude tbe induction.

To finisb our proof,. we Jet k = n-l. Tba
n iteratioDS, di-.t [y] [w] is tbe minimum dist
w. But since any paa.b is an (n - l)-patb, we
minimum dist.ance &long any patb from v to w

1



.:. 9.10 An Introduction to Graph Theory

"
SECo 9.10 AN INTRODUCTION TO GRAPH THEORY 521

EXERCISES

9.9.1: A~uming all arcs in Fig. 9.5 (see the exercises íor Section 9.2) have label 1,
use Floyd's algoritbm to find the length oí the shortest path between each pair oí
nades. Show the distance matrix after pivoting with each nade.

9.9.2: Apply Warshall's algorithm to the graph oí Fig. 9.5 to compute its reflexive
and transitive closure. Show the reachability matrix after pivoting with eacb nade.

9.9.3: Use Floyd's algorithm to find the shortest distances between each pair oí
cities in the graph of Micbigan in Fig. 9.21 (see the exercises for Section 9.4).

9.9.4: Use Floyd's algoritbm to find tbe shortest possible time between eacb of tbe
hominid species in Fig. 9.48 (see the exercises for Section 9.8).

9.9.5: Sometimes we want to consider only paths oí one or more arcs, and exclude
single nades as paths. How can we modify the initialization of tbe arc matrix so
that only paths of length 1 or more will be considered when finding the shortest
path from a nade to itself?

9.9.6.: Find all tbe acyclic 2-paths in Fig. 9.10.

9.9.7.: Why does Floyd's algorithm not work when there are both positive and
negative costs on the arcs?

9.9.8..: Give an algoritbm to find the longest acyclic patb between two given
nades.

9.9.8*.: Suppose we ron Floyd's algorithm on a graph G. Tben, we lower tbe label
oí the arc u -+ v to O, to construct the new grapb G'. For wbat pairs of nades s and
t will dist[s] [t] be the same at each round when Floyd's algorithm is applied to
G and G'?

Graph theory is the branch of mathematics concerned with properties of graphs.
In the previous sections, we have presented the basic definitions of graph theory,
along with some fundamental algorithms that computer scientists have developed to
calculate key properties of graphs efficiently. We have seen algorithms for computing
shortest paths, spanning trees, &ud depth-first-search trees. In tbis section, we shall
present a few more important concepts from graph theory. .
Complete Graphs
An undirected graph that has an edge between every pair oí distinct nades is called
a complete graph. The complete graph with n nades is called Kn. Figure 9.60'shows
the complete graphs K 1 through K4.

The number oí edges in Kn is n(n - 1)/2, or (~). To see why, consider an edge
{u, v} oí Kn. For u we can pick any oí the n nades; íor v we can pick any oí the
remaining n,- 1 nades. The total number oí choices is thereíore n( n - 1). However,
we count each edge twice that way, once as {u, v} and a second time as {v ,u}, so
that we must divide the total number oí choices by 2 to get the correct number oí
edges.



522 THE GRAPA DATA MODEL

There is alBo a notion of a complete directed graph. This graph has an arc
from every nade to every other nade, including itself. A complete directed graph
witb n nod5 bas n2 &rCS. Figure 9.61 SbOW8 tbe complete directed grapb with 3
nades and 9 &rCS.

Complete
directed graph

Planar Graphs

An undirected graph is said to be planar if it is possible to place its nod~ 00 a
plane and then draw its edg~ 88 continuous liDes M) that no two edges Cf(8.

Example 9.29. Tbe graph K4 was drawn in Fig. 9.60 in such a way that its
two diagonal edges crossed. However, K4 is a plaoar graph, as we can see by the
drawing in Fig. 9.62. There, by redrawing one oí the diagonals on the outside, we
avoid having aoy two edges crCB. We say that Fig. 9.62 is aplane pre6entation
oí the graph K4, while the drawing in Fig. 9.60 is a nonplaoe presentation oí K4.
Note that it is pennissible to have edges tbat are not straight liDes in aplane
presentation. +

+

Plane

preseotation

In Figure 9.63 we see what are in a eenee the two simplest nonplGnar graphs,
that is, graphs that do not have any plane presentation. One is K5, the complete
graph with five nades. Tbe other is ~metimes called K3,3; it is formed by taking
two groupe of three nades and connecting each nade of one group to each nade of
the other group, but not to nades of the same group. Tbe reader should try to

Nonplanar
graph

J;,

~
~

~
~ Ae

Ka K4K2K.

grapbs.Flg. 9.60. The fust four

Fig. 9.61. The complete directed graph with tbree nades.



Kuratowski's
theorem

.,
SEC.9.10 AN INTRODUCTION TO GRAPH THEORY 523

~

Fig. 9.62. presentation of K4.Aplane

K$ K".3

Fig. 9.63. The two simplest nonplanar graphs.

redraw each of these graphs so that no two edges cross, just to get a feel for why
they are not planar.

A famous theorern by Kuratowski states every nonplanar graph contains a
"copy" of at least one of these two graphs. We rnust be a little careful in interpreting
the notíon of a copy, however, since to see a copy of Ks or K3.3 in an arbitrary
nonplanar graph G, we rnay have to assocíate sorne edges in the graphs of Fig. 9.63
with paths in the graph G.

Applications of Planarity

Planarity has considerable importance in computer science. For example, many
graphs or similar diagrams need to be presented on a computer screen or on paper.
For clarity, it is desirable to make aplane presentation oí the graph, or ií the graph
is not planar, to make as íew crossings oí edges as possible.

The reader may observe that in Chapter 13 we draw some íairly complex dia-
grams oí circuits, which are really graphs whose nodes are gates and junction points
oí wires, and whose edges are the wires. Since these circuits are not planar in gen- .
eral, we had to adopt a convention in which wires were allowed to cross without
connecting, and a dot sigoals a connection oí wires.

A related application conceros the design of integrated circuits. Integrated
circuits, or "chips," embody logical circuits such as those discussed in Chapter 13.
They do not require that the logical circuit be inscribed in aplane presentation,
but there is a similar limitation that allows us to assigo edges to several "levels,"
often three or four levels. On one level, the graph of the circuit must have aplane
presentation; edges are not allowed to cross. However, edges on different levels may
cross.



524 THE GRAPH DATA MODEL

Grapb Coloring
The problem of groph coloring for a graph G is to 88ign a "color" to each nade
so that no two nades that are connected by an edge are a8igned the &ame color.
We mar then ask how many distinct colors are required to color a graph in this
sense. The minimum number of colors needed lor a graph G is called the chromatic
number of G, often denoted X(G). A graph that can be colored with no more than
k colora is called k-coloroble.

Chromatic
number

k-colorability

Example 9.30. If a graph is complete, then its chromatic number is equal to
the number of nodes; tbat is, X{Kn) = n. In proof, we cannot color two nodes u
and v with the same color, beca~ there i8 surely an edge between tbem. Thus,
each node requires its own color. Kn is k-colorable for each k ?: n, but Kn is not
k-colorable if k < n. Note that we say, for instance, tbat K. is 5-colorable, even
though it is impoesible to use all five colora on the four-node graph K.. However,
formally a graph is k-colorable if it can be colored with k or fewer colora, not only
if it is colorable with exactly k colora.

As another example, the graph K3.3 shown in Fig. 9.63 has chromatic number
2. For example, we can color the three nodes in the group 00 the left red and color
the tbree nodes on the rigbt blue. Tben all edges go between a red and a blue node.
K3.3 is an example of a bipartite groph, which is another name for a graph that can
be colored with two colora. AII sucb grapba can bave their nodes divided into two
groups such tbat no edge runs between membera of tbe same group.

As a final example, the chromatic number for the six-node graph of Fig. 9.64
is 4. To see wby, note that the node in the center cannot have the same color as
any other node, since it is connected to all. Thus, we ~rve a color for it, say, red.
We need at least two other colora for the ring of nodes, lince neighbora around the
ring cannot get the same color. However, if we try altemating colora - say, blue
and green - as we did in Fig. 9.64, then we ron into a problem that the fifth node

has both blue and green neighbora, and therefore needs a fourth color, yellow, in
our example. ...

+

Bipartite graph

Applications of Grapb Coloring

Finding a good graph coloring is another problem that has many uses in computer
science. For example, in, our introduction to tbe first chapter, we considered as-
signing courses to time slote 80 that no pair oí courses in tbe same time slot bad a
student taking both COUr8e8. Tbe motivation was to schedule final exama 80 tbat
DO student had to take two ex&ms at tbe same time. We drew a grapb wb~

,

Fig.9.64. A grapb with dlromatic number 4.



~.
,
:
.

J

C

.

~
,.

r
r

k-clique

t
Clique number.

r
.

~

I

Maximal clique

,
SEC.9.l0 AN INTRODUCTION TO GRAPH THEORY 525

nades were the courses, with an edge between two courses ií they had a student in
common.

The question oí how many time slots we need in which to schedule exams can
thus be poeed as the question oí what is the chromatic number oí this graph. AlI
nades oí the same color can be scheduled at the same time since they have no edges
between any two oí them. Conversely, ií we have a schedule that does not cause
conflicts for any student, then we can color all the courses scheduled at the same
time with the same color, and thus produce a graph coloring with as many colors
as there are exam periods.

In Chapter 1 we discussed a heuristic based on finding maximal independent
sets to schedule the exams. That is a reasonable heuristic for finding a good coloring
of a graph as well. One might expect that one could try all possible colorings íor a
graph as small as the five-node graph in Fig. 1.1, and indeed that is true. However,
the number of possible colorings of a graph grows exponentially with the number of
nodes, and it is not íeasible to consider all possible colorings for significantly larger
graphs, in our search íor the least possible number oí colors.

Cliques

A clique in an undirected graph G is a set oí nodes such tbat tbere is in G an edge
between every pair oí nades in the seto A clique of k nades is called a k-clique. Tbe
size oí tbe largest clique in a graph is called the clique number oí that graph.

Example 9.31. As a simple example, every complete graph Kn is a clique
consisting oí all n nades. In íact, Kn has a k-clique íor al! k .$ n, but no k-clique
ií k > n.

The graph oí Fig. 9.64 has cliques oí size three, but no greater. The 3-cliques
are each shown as triangles. There cannot be a 4-clique in this graph, because it
would have to include sorne oí the nodes in the ring. Each ring node is connected
to only three other nades, so the 4-clique would have to include some node v on the
ring, its neighbors on the ring, and the central node. However, the neighbors oí v
on the ring do not have an edge between them, so we do not have a 4-clique. +

...

As an example application of cliques, suppose we represented conflicts among
cour&es not as in Fig. 1.1, but rather by putting an edge between two nades ifthey
did not have a student enrolled in both coUr&es. Thus, two courses connected byan
edge could have their exams scheduled at the same time. We could then look for
manmal cliques, that is, cliques that were not subsets of larger cliques, and schedule
the exams for a maximal clique of cour&es at the same periodo .

EXERCISES

For the graph oí Fig. 9.4,9.10.1:

a) Whatjs the chromatic number?
b)' What is the clique number?
c) Give an example oí ORe largest clique.



526 THE GRAPH DATA MODEL

9.10.2: What are the chromatic numbers of the undirect.ed versions of the graphs
shown in (a) Fig. 9.5 and (b) Fig. 9.267 (Treat arcs 88 edges.)

9.10.3: Figure 905 Í8 not p~nted in aplane mannero Is the graph planar? That
is, can you redraw it 80 there are no crossing edges?

9.10.4.: Three quantities &88OCÍated with an undirected graph are its degree (max-
imum number of neighbors of any node), its chromatic number, and its clique num-
ber. Derive inequalities that must hold between these quantities. Explain why they
must boldo

9.10.5..: ~gn an aIgorithm that will take any graph of n nodes, with m the
larger of the number of nodes and edges, and in O(m) time will tell whether the
graph is bipartite (2-colorable).

9.10.6.: We can generalize the graph of Fig. 9.64 to bave a central node and .
nodes in a ring, each node connected only to its neighbors around the ring and to
tbe central node. As a function of k, whaL is the chromatic number of this graph?

9.10.7.: What can you say about the chromatic number of unordered, unrooted
trees (as discusaed in Section 9.5)7

9.10.S..; Let KiJ be the graph formed by taking a group of i nodes and a group
of j nod~ and placing an edge from every member of one group to every member
of the other group. We obeerved that if i = j = 3, then the resulting graph is not

planar. For what values of i and j is tbe graph KíJ planar7

iilt

.:. 9.11 Summary oí Chapter 9

The table of Fig. 9.65 summarizes the various problems we have addre88ed in this
chapter, tbe algoritbms for solving tbem, and the running time oí the algorithms.
In this table, n is the number of nodes in tbe graph and m is the larger of the
number of nodes and the number of arcsfeAiges. Un lea otherwiae noted, we 88Ume
graphs are represente<! by adjacency lists.

In addition, we have introduced tbe reader to m<»t of the key concepts of grapb
th«>ry. Th~ include

+ Patba and shortest patba

+ Spanning trees

+ Deptb-first search trees and forests

+ Grapb coloring and tbe chromatic number

+ Cliques and clique numbers

+ Planar gra,ba.

,

Is the graph planar? That



.:. 9.12 Bibliograpbic

:1
SEC.9.12 BIBLIOGRAPHIC NOTES FOR CHAPTER 9 527

Fig. 9.65. A summary oí graph algorithms.

Notes for Chapter 9

For additional material on graph algorithms, see Aho, Hopcroft, and Ullman [1974,
1983]. Depth-first search was first used to create efficient graph algorithms by
Hopcroft and Tarjan [1973]. Dijkstra's algorithm is from Dijkstra [1959], Floyd's
algorithm from Floyd [1962], Kruskal's algorithm from Kruskal [1956], and War-
shall's algorithm from Warsball [1962].

Berge [1962] covers the matbematical thMry of grapbs. Lawler [1976], Pa-
padimitriou and Steiglitz [1982], and Tarjan [1983] present advanced graph opti-
mization techniques.

Aho, A. V., J. E. Hopcroft, and J. D. Ullman [1974]. The Design and AnaJysis of
Computer Algorithms, Addison-Wesley, Reading, Mass.

Aho, A. V., J. E. Hopcroft, and J. D. Ullman [1983]. Data Structures and Algo-
rithms, Addison-Wesley, Reading, Mass.
Berge, C. [1962]. The Theory ofGraphs and its Applications, Wiley, New York. .

Dijkstra, E. W. [1959]. "A note on two problems in connexion with grapbs," Num-
berische Matbematik 1, pp. 269-271.

Floyd, R. W. [1962]. "AIgorithm 97: shortest path," Comm. ACM 5:6, pp. 345.

Hopcroft, J. E., and R. E. Tarjan [1973]. "Efficient algoritbms for graph manipula-
tion," Comm. ACM 16:6, pp. 372-378.

Kruskal, J. B., Jr. [1956]. "On tbe shortest spanning subtree of a graph and the
traveling salesman problem," Proc. AMS 1:1, pp. 48-50.



THE GRAPH DATA MODEL528

Lawler, E. [1976]. Combinatorial
Rineh~t and Winston, New York.

Papadimitriou, C. H., and K. Steiglitz [1982J. CombiDatoriaJ OptimúatioD: Algo-
rithms and Complexity, Preotice-Hall, Englewood Clift's, New Jersey.

Tarjan, R. E. [1983]. DataStructures andNetwork AlgorithmB, SIAM, Philadelphia.

Warshall, S. [1962]. "A theorem 00 Boolean matrices," J. ACM 9:1, pp. 11-12.

1

Optimization: Networks and Matroids, Holt,




