MOVING AROUND IN
SPACE: COORDINATE
TRANSFORMATIONS

by Richard S. Wright, Jr

What you’ll learn in this chapter:

How to... Functions You'll Use

Establish your position in the scene gluLookAt/glTranslate/glRotate
Position objects within the scene glTranslate/glRotate

Scale objects glScale

Establish a perspective transformation gluPerspective

Perform your own matrix transformations glLoadMatrix/glMultMatrix

In Chapter 4, “Drawing in Space: Lines, Points, and Polygons,” you learned how to
draw points, lines, and various primitives in 3D. To turn a collection of shapes into a
coherent scene, you must arrange them in relation to one another and to the viewer.
In this chapter, you'll start moving shapes and objects around in your coordinate
system. (Actually, you don’t move the objects, but rather shift the coordinate system to
create the view you want.) The ability to place and orient your objects in a scene is a
crucial tool for any 3D graphics programumer. As you will see, it is actually convenient
{0 describe your objects’ dimensions around the origin and then translate and rotate
the objects into the desired position.

135

CHAPTER 5

Is This the Dreaded Math Chapter?

In most books on 3D graphics programming, yes, this would be the dreaded math
chapter. However, you can relax; we take a more moderate approach to these princi-
ples than some texts.

The keys to object and coordinate transformations are two modeling matrices main-
tained by OpenGL. To familiarize you with these matrices, this chapter strikes a com-
promise between two extremes in computer graphics philosophy. On one hand, we
could warn you, “Please review a textbook on linear algebra before reading this
chapter.” On the other hand, we could perpetuate the deceptive reassurance that you
can “learn to do 3D graphics without all those complex mathematical formulas.”

But we don’t agree with either camp.

In reality, you can get along just fine without understanding the finer mathematics of
3D graphics, just as you can drive your car every day without having to know any-
thing at all about automotive mechanics and the internal combustion engine.

But you'd better know enough about your car to realize that you need an oil change
every so often, that you have to fill the tank with gas regularly, and that you must
change the tires when they get bald. This knowledge makes you a responsible (and
safe!) automobile owner. If you want to be a responsible and capable OpenGL pro-
grammer, the same standards apply. You want to understand at least the basics so you
know what can be done and what tools best suit the job.

Even if you don't have the ability to multiply two matrices in your head, you need to
know what matrices are and that they are the means Lo OpenGls 3D magic. But before
you go dusting off that old linear algebra textbook (doesn't everyone have one?), have
1o fear: OpenGL does all the math for you. Think of it as using a calculator to do long
division when you don't know how to do it on paper. Although you don't have to do it
yourself, you still know what it is and how to apply it. See—you can have your cake
and eat it too!

That said, a basic understanding of 3D math and transformations can be a powerful
and essential tool for real-time programming, 1f you think we are going to treat this
subject superficially, fear not! In Chapter 19, “Real-Time Programming with OpenGL,”
we go a little deeper into understanding the mechanics of geometry transformation.
This understanding is a requirement for high-performance 3D graphics, but not neces-
sarily a requirement to start doing useful work. Tn most of this book, we cover walk-
ing; in Chapter 19, we take all this knowledge and show you how to run with it.

Understanding Transformations

136

Transformations make possible the projection of 3D coordinates onto a 2D screen.
Transformations also allow you to rotate objects around, move them about, and even
stretch, shrink, and warp them. Rather than modify your object directly, a transforma-
tion modifies the coordinate system. Once a transformation rotates the coordinate
system, the object appears rotated when it is drawn. Three types of transformations

MOVING ARQUND IN SPACE: COORDINATE TRANSFORMATIONS

occur between the time you specify your vertices and the time they appear on the
screen: viewing, modeling, and projection. In this section, we examine the principles
of each type of transformation, which you will find summarized in Table 5.1.

1 Summary of the OpenGL Transformations

asformation Use
Specifies the location of the viewer or camera

Moves objects around the scene

Describes the duality of viewing and modeling transformations
Clips and sizes the viewing volume

Scales the final output to the window

Coordinates
An important concept throughout this chapter is that of eye coordinates. Eye coordi-
nates are from the viewpoint of the observer, regardless of any transformations that
may occur; think of them as “absolute” screen coordinates. Thus, eye coordinates are
not real coordinates, but rather represent a virtual fixed coordinate system that is used
as a common frame of reference. All of the transformations discussed in this chapter
are described in terms of their effects relative to the eye coordinate system.

Figure 5.1 shows the eye coordinate system from two viewpoints. On the left (a), the

eye coordinates are represented as seen by the observer of the scene (that is, perpen-

dicular to the monitor). On the right (b), the eye coordinate system is rotated slightly
so you can better see the relation of the z-axis. Positive x and y are pointed right and

up, respectively, from the viewers perspective. Positive z travels away from the origin
toward the user, and negative z values travel farther away from the viewpoint into the
screer.

Y +y

| -
et

= X

+*

+1 1
Observer A]
= = }

(o) (b)

Figure 5.1 Two perspectives of eye coordinates. |
137

CHAPTER 5

When you draw in 3D with OpenGL, you use the Cartesian coordinate system. In the
absence of any transformations, the system in use is identical to the eye coordinate
system. All of the various transformations change the current coordinate system with
respect to the eye coordinates. This, in essence, is how you move and rotate objects in
your scene—by moving and rotating the coordinate system with respect to eye coordi-
nates. Figure 5.2 gives a two-dimensional example of the coordinate system rotated
45° clockwise by eye coordinates. A square plotted on this rotated coordinate system
would also appear rotated.

Eye
coordinates 1 Tt
¥ 2
5 5 coordinate system
5 \/
A - s
> 1/ ~ L
N L
% _— Tronsformed square
~ X
B | s
& ~
.
/// \\
. R
> <
X

Figure 5.2 A coordinate system rotated with respect to eye coordinates.

In this chapter, you'll study the methods by which you modify the current coordinate
system before drawing your objects. You can even save the state of the current system,
do some transformations and drawing, and then restore the state and start over again.
By chaining these events together, you will be able to place objects all about the scene
and in various orientations.

Viewing Transformations

138

The viewing transformation is the first to be applied to your scene. It is used to deter-
mine the vantage point of the scene. By default, the point of observation is at the
origin (0,0,0) looking down the negative z-axis (“into” the monitor screen). This point
of observation is moved relative to the eye coordinate system to provide a specific van-
tage point. When the point of observation is located at the origin, objects drawn with
positive z values are behind the observer.

The viewing transformation allows you to place the point of observation anywhere you
want and looking in any direction. Determining the viewing transformation is like
placing and pointing a camera at the scene.

In the scheme of things, you must specify the viewing transformation before any other
transformations. This is because it moves the currently working coordinate system in
respect to the eye coordinate system. All subsequent transformations then occur based

MOVING AROUND IN SPACE: COORDINATE TRANSFORMATIONS

on the newly modified coordinate system. Later, you'll see more easily how this works,
when we actually start looking at how to make these transformations.

eling Transformations

Modeling transformations are used to manipulate your model and the particular
objects within it. These transformations move objects into place, rotate them, and
scale them. Figure 5.3 illustrates three modeling transformations that you will apply to
vour objects. Figure 5.3a shows translation, where an object is moved along a given
axis. Figure 5.3b shows a rotation, where an object is rotated about one of the axes.
Finally, Figure 5.3¢ shows the effects of scaling, where the dimensions of the object are
increased or decreased by a specified amount. Scaling can occur nonuniformly (the
various dimensions can be scaled by different amounts), so you can use scaling to
stretch and shrink objects.

Sem A
SE] o
st
23 1 1
7y sl g
o i i 1
s i it
7 e
- i ie 7~ ~,
. Bl oo 3¢ s ~
7 7 1.
P / 5 I~
= ~ =3
z ,l Vs =
- 7
, L £
73
e N L' /
N 7
=
Tronslation Rotation

() {b)

Figure 5.3 The modeling transformations.

139

MOVING AROUND IN SPACE: COORDINATE TRANSFORMATIONS

The mathematics behind these transformations are greatly simplified by the mathe-
matical notation of the matrix. You can achieve each of the transformations we have
discussed by multiplying a matrix that contains the vertices by a matrix that describes
the transformation. Thus, all the transformations achievable with OpenGL can be
described as a multiplication of two or more matrices.

Is a Matrix?

A matrix is nothing more than a set of numbers arranged in uniform rows and
columns—in programming terms, a two-dimensional array. A matrix doesn't have to
be square, but each row or column must have the same number of elements as every
other row or column in the matrix. Figure 5.7 presents some examples of matrices.
(These don't represent anything in particular but only serve to demonstrate matrix
structure.) Note that it is valid for a matrix to have a single column.

1
li- 4 Baene 1) 2
Ztrugovenil 1.5 0877 3
< FEA 4

Figure 5.7 Three examples of matrices.

Matrix transformations are actually not difficult to understand but can be intimidating.
Because an understanding of matrix transformations is fundamental to many 3D tasks,
you should still make an attempt to become familiar with them later. However,
because you don't need to understand this topic to use OpenGL, we won't devote

the space required here. Appendix B, “Further Reading,” lists some good texts on this
subject.

The Transformation Pipeline

To effect the types of transformations described in this chapter, you will modify two
matrices in particular: the modelview matrix and the projection matrix. Don't worry.
OpenGL gives you some high-level functions that you can call for these transforma-
tions. After you've mastered the basics of the OpenGL APL, you will undoubtedly start
trying some of the more advanced 3D rendering techniques. Only then will you need
to call the lower-level functions that actually set the values contained in the matrices.

The road from raw vertex data to screen coordinates is a long one. Figure 5.8 is a flow-
chart of this process. First, your vertex is converted to a 1-by-4 matrix in which the
first three values are the x, v, and z coordinates. The fourth number is a scaling factor
that you can apply manually by using the vertex functions that take four values. This
is the w coordinate, usually 1.0 by default. You will seldom modify this value directly.

143

?——l

CHAPTER 5

Xo Xe X X/ W

y Modelview Y. Projection Y. Perspective ‘;w‘

7 || matrix el s division |~Y 1
2 C. 1(/w‘

Wo We W,

Original Transformed (lip Normalized
vertex dafa eye coordinates coordinates device coordinates

[Elmse =]
Viewport

.. —» | transformation | — @E 5

(also a matrix)

Window coordinates

Figure 5.8 The vertex transformation pipeline.

The vertex is then multiplied by the modelview matrix, which yields the transformed
eye coordinates. The eye coordinates are then multiplied by the projection matrix to
yield clip coordinates. This effectively eliminates all data outside the viewing volume.
The clip coordinates are then divided by the w coordinate to yield normalized device
coordinates. The w value may have been modified by the projection matrix or the
modelview matrix, depending on the transformations that may have occurred. Again,
OpenGL and the high-level matrix functions hide all this from you.

Finally, your coordinate triplet is mapped to a 2D plane by the viewport transforma-
tion. This is also represented by a matrix, but not one that you will specify or modify
directly. OpenGL sets it up internally depending on the values you specified to

glviewport.

The Modelview Matrix

The modelview matrix is a 4x4 matrix that represents the transformed coordinate
orient your objects. The vertices you provide for
e-column matrix and multiplied by the modelview
on to the eye coordinate system.

In Figure 5.9, a matrix containing data for a single vertex is multiplied by the mod-
elview matrix to yield new eye coordinates. The vertex data is actually four elements
with an extra value w that represents a scaling factor. This value is set by default to

1.0, and rarely will you change this yourself.

system you are using to place and
your primitives are used s a singl
matrix to yield new transformed coordinates in relati

MOVING AROUND IN SPACE: COORDINATE TRANSFORMATIONS

= N < X
=
1]
—~
w

Figure 5.9 Matrix equation that applies the modelview transformation to a single vertex.

Translation
Lets take an example that modifies the modelview matrix. Say you want to draw a
cube using the GLUT librarys glutWireCube function. You simply call

 slutWireCube(10.0f);

and you have a cube centered at the origin that measures 10 units on a side. To move
the cube up the y-axis by 10 units before drawing it, you multiply the modelview
matrix by a matrix that describes a translation of 10 units up the y-axis and then do
your drawing. In skeleton form, the code looks like this:

// Construct a translation matrix for positive 1@ Y

J/ Multiply it by the modelview matrix

// Draw the cube
glutWireCube(10.07);

Actually, such a matrix is fairly easy to construct, but it requires quite a few lines of
code. Fortunately, a high-level function is provided that does this for you:
void glTranslatef(GLfloat x, GLTloat v, GLfloat z);

This function takes as parameters the amount to translate along the x, y, and z direc-
tions. It then constructs an appropriate matrix and does the multiplication. Now, the
pseudo code looks like the following, and the effect is illustrated in Figure 5.10.

/| Translate up the y-axis 10 units
~ glTranslatef(0.0f, 10.0f, 0.0T);

/] Draw the cube
glutWireCube(10.0f);

45

CHAPTER 5

Figure 5.10 A cube \ranslated 10 units in the positive y direction.

Rotation

To rotate an object about one of the three axes, you have to devise 2 rotation matrix
10 be multiplied by the modelview matrix, Again, a high-level function comes to the
Tescue:

glRotatef((GLfloat angle, GLfloat X, GLfloat y, GLfloat z);

Here, we perform a rotation around the vector specified by the %, , and z arguments.
The angle of rotation is in the counterclockwise direction measured in degrees and

specified by the argument angle. In the simplest of cases, the rotation is around one of
the axes, so you need t0 specify only that value.

You can also perform a rotation around an arbitrary axis by specifying x, v, and

» values for that vector. To see the axis of rotation, you can just draw a line from the
origin to the point represented by (x3,2). The following code Totates the cube by 45°
around an arbitrary axis specified by (1,1,1), a5 illustrated in Figure 5.11:

/] perform the transformation
glRotatef(S@.@f, 1.0f, 1.0f, 1.0f);

/| Draw the cube
glutWireGube(m.@f) 5

Scaling

A scaling transformation increases the size of your object by expanding all the vertices
along the three axes by the factors specified. The function

ngcalef(GLﬂoat x, GLfloat V, GLfloat z);

multiplies the x, y, and z values by the scaling factors specified.

146

CHAPTER 5

The final appearance of your scene or object can depend greatly on the order in which
the modeling transformations are applied. This is particularly true of translation and
rotation. Figure 5.4a shows the progression of a square rotated first about the z-axis
and then translated down the newly transformed x-axis. In Figure 5.4b, the same
square is first translated down the x-axis and then rotated around the z-axis. The dif-
ference in the final dispositions of the square occurs because each transformation is
performed with respect to the last transformation performed. In Figure 5.4a, the
square is rotated with respect to the origin first. In 5.4b, after the square is translated,
the rotation is performed around the newly translated origin.

¥
L X e e
Initial square Rotated around z-oxis fo Now translaficn along
yield new x! axis xis along x!
()
y YR

Initial square Translate origin along x-axis Translated coordinate
system is now rofated

(b)

Figure 5.4 Modeling transformations: rotation/translation and translation/rotation.

The Modelview Duality

120

The viewing and the modeling transformations are, in fact, the same in terms of their
internal effects as well as their effects on the final appearance of the scene. The distine-
tion between the two is made purely as a convenience for the programmer. There is no
real difference between moving an object backward and moving the reference system
forward: as shown in Figure 5.5, the net offect is the same. (You experience this first-
hand when you're sitting in your car at an intersection and you see the car next to you
roll forward; it might seem to you that your own car is rolling backwards.) The term

MOVING AROUND IN SPACE: COORDINATE TRANSFORMATIONS

modelview indicates that you can think of this transformation either as the modeling
transformation or the viewing transformation, but in fact there is no distinction; thus,
it is the modelview transformation.

vl
R
RO R
1 A
H
Moving the observer Moving the coordinate system

(a) (b)
Figure 5.5 Two ways of looking at the viewing transformation.

The viewing transformation, therefore, is essentially nothing but a modeling transfor-
mation that you apply to a virtual object (the viewer) before drawing objects. As you
will soon see, new transformations are repeatedly specified as you place more objects
in the scene. By convention, the initial transformation provides a reference from
which all other transformations are based.

Projection Transformations

The projection transformation is applied to your final modelview orientation. This
projection actually defines the viewing volume and establishes clipping planes (see the
review in Chapter 1, “3D Graphics Fundamentals™). More specifically, the projection
transformation specifies how a finished scene (after all the modeling is done) is trans-
lated to the final image on the screen. You will learn about two types of projections in
this chapter: orthographic and perspective.

In an orthographic projection, all the polygons are drawn onscreen with exactly the rel-
ative dimensions specified. This is typically used for CAD or rendering two-dimen-
sional images such as blueprints or two-dimensional graphs.

A perspective projection shows objects and scenes more as they appear in real life than
in a blueprint. The trademark of perspective projections is foreshortening, which
makes distant objects appear smaller than nearby objects of the same size. Lines in 3D
space that might be parallel do not always appear parallel to the viewer. In a railroad
track, for instance, the rails are parallel, but with perspective projection, they appear
to converge at some distant point. We call this point the vanishing point.

i

CHAPTER 5

The benefit of perspective projection is that you don't have to figure out where lines
converge or how much smaller distant objects are. All you need to do is specify the
scene using the modelview transformations and then apply the perspective projection.
OpenGL works all the magic for you. Figure 5.6 compares orthographic and perspec-

tive projections on two different scenes.

120 2 T T 1

Orihographic Perspeciive Orthographic Perspactive

Figure 5.6 Two examples of orthographic versus perspective Pprojections.

Orthographic projections are used most often for 2D drawing purposes where you
want an exact correspondence between pixels and drawing units. This might be fora
schematic layout, or perhaps a 2D graphing application. You also can use an ortho-
graphic projection for 3D renderings when the depth of the rendering has a very small
depth in comparison to the distance from the viewpoint. Perspective projections are
used for rendering scenes that contain wide open spaces, or objects that need to have
the foreshortening effect applied. For the most part, perspective projections are

typical.

Viewport Transformations
When all is said and done, you end up with a two-dimensional projection of your
scene that will be mapped to a window somewhere on your screen. This mapping to
physical window coordinates is the last transformation that is done, and it is called the
viewport transformation. The viewport was discussed briefly in Chapter 3, “Using
OpenGL,” where you used it to stretch an image or keep a scene squarely placed ina

rectangular window.

Matrix Munching
Now that you're armed with some basic vocabulary and definitions of transformations,
you're ready for some simple marrix mathematics. Let’s examine how OpenGL per-
forms these transformations and get to know the functions you call to achieve your

desired effects.

142

MOVING AROUND IN SPACE: COORDINATE TRANSFORMATIONS

i

Figure 5.11 A cube rotated about an arbitrary axis.

to be uniform. You can use it to stretch or squeeze objects as
de produces a cube that is twice as large along the
ous examples, but still the same along

Scaling does not have
well. For example, the following co
x- and z-axes as the cubes discussed in the previ
the y-axis. The result is shown in Figure 5.12.
form the scaling transformation
ef(2.0f, 1.0F, 2.07);

' Draw the cube
utWireCube(10.0T);

b4

Figure 5.12 A nonuniform scaling of a cube.

The Identity Matrix
You might be wondering about now why we had to bother with all this matrix stuff in
the first place. Can't we just call these transformation functions to move our objects
around and be done with it? Do we really need to know that it is the modelview

matrix that is modified?

a7

CHAPTER 5 3

The answer is yes and no, (but its no only if you are drawing a single object in your
scene). This is because the effects of these functions are cumulative. Each time you call
one, the appropriate matrix is constructed and multiplied by the current modelview
matrix. The new matrix then becomes the current modelview matrix, which 1s then
multiplied by the next transformation, and so on.

Suppose you want to draw two spheres—one 10 units up the positive y-axis and one
10 units out the positive x-axis, as shown in Figure 5.13. You might be tempted to
write code that looks something like this:

// Go 10 units up the y-axis
glTranslatef(0.0f, 10.0f, 0.0T);

// Draw the first sphere
glutSolidSphere(1.0f,15,15);

// Go 10 units out the x-axis
glTranslatef(16.0f, 0.0f, 0.0f);

// Draw the second sphere
glutSolidSphere(1.0f);

Figure 5.13 Two spheres drawn on the y- and x- axes.

Consider, however, that each call to glTranslate is cumulative on the modelview
matrix, so the second call translates 10 units in the positive x direction from the
previous translation in the y direction. This yields the results shown in Figure 5. 14

You can make an extra call to glTranslate to back down the y-axis 10 units in the
negative direction, but this makes some complex scenes difficult to code and debug
not to mention you throw extra transformation math at the CPU. A simpler method is
{0 reset the modelview matrix to a known state—in this case, centered at the origin of
our eye coordinate system.

748

MOVING AROUND IN SPACE: COORDINATE TRANSFORMATIONS

z

Figure 5.14 The result of two consecutive translations.

You reset the origin by loading the modelview matrix with the identity matrix.

The identity matrix specifies that no transformation is to occur, in effect saying that all
the coordinates you specify when drawing are in eye coordinates. An identity matrix
contains all Os with the exception of a diagonal row of 1s. When this matrix is multi-
plied by any vertex matrix, the result is that the vertex matrix is unchanged.

Figure 5.15 shows this equation.

80] [10 0 0 0 8.0
e T B
2010 010 0 20
TEEEE 1.0

Figure 5.15 Multiplying a vertex by the identity matrix yields the same vertex
matrix.

As we've already stated, the details of performing matrix multiplication are outside the
scope of this book. For now, just remember this: Loading the identity matrix means
that no transformations are performed on the vertices. In essence, you are resetting
the modelview matrix back to the origin.

The following two lines load the identity matrix into the modelview matrix:

glMatrixMode (GL_MODELVIEW) ;
glloadIdentity();

The first line specifies that the current operating matrix is the modelview matrix.
Once you set the current operating matrix (the matrix that your matrix functions are
affecting), it remains the active matrix until you change it. The second line loads the
current matrix (in this case, the modelview matrix) with the identity matrix.

49

CHAPTER 5

Now; the following code produces results as shown earlier in Figare 5.13:
// Set current matrix to modelview and reset
glMatrixMode (GL_MODELVIEW);
glloadIdentity();

// Go 1@ units up the y-axis
glTranslatef(0.0f, 10.0f, 0.0f);

// Draw the first sphere
glutSolidSphere(1.0f, 15, 15);

// Reset modelview matrix again
gllLoadIdentity();

// Go 1@ units out the x-axis
glTranslatef(10.0f, 8.@f, 0.0f);

// Draw the second sphere
glutSolidSphere(1.@f, 15, 15);

The Matrix Stacks

It is not always desirable to reset the modelview matrix to identity before placing every
object. Often, you want to save the current transformation state and then restore it
after some ohjects have been placed. This approach is most convenient when you haye
initially transformed the modelview matrix as your viewing transformation (and thus
are no longer located at the origin).

To facilitate this, OpenGL maintains a matrix stack for both the modelview and projec-
tion matrices. A matrix stack works just like an ordinary program stack. You can push
the current matrix onto the stack to save it and then make your changes to the current
matrix. Popping the matrix off the stack restores it. Figure 5.16 shows the stack prin-
ciple in action.

Figure 5.16 The matrix stack in action.

MOVING AROUND IN SPACE: COORDINATE TRANSFORMATIONS

TEXTURE MATRIX STACK

The texture stack is another matrix stack available to the programmer. it is used for the
transformation of texture coordinates. Chapter 8, “Texture Mapping,” examines tex-
ture mapping and texture coordinates and contains a discussion of the texture matrix
stack.

The stack depth can reach a maximum value that can be retrieved with a call to either

ot (GL_MAX_MODELVIEW_STACK DEPTH);

or

et (GL_MAX_PROJECTION_STACK DEPTH);

If you exceed the stack depth, you get a GL_STACK_OVERFLOW error; if you try to pop a
matrix value off the stack when there is none, you generate 2 GL_STACK_UNDERFLOW
error. The stack depth is implementation dependent. For the Microsoft software
implementation, the values are 32 for the modelview and 2 for the projection stack.

Nuclear Example
Lets put to use what we have learned. In the next example, we build a crude, ani-
mated model of an atom. This atom has a single sphere at the center to Tepresent the
nucleus and three electrons in orbit about the atom. We use an orthographic projec-
tion, as we have previously in this book. (Some other interesting proj ections are cov-
ered in the upcoming section, “Using Projections.”)

Our ATOM program uses the GLUT timer callback mechanism (discussed in

Chapter 3) to redraw the scene about 10 times per second. Each time the Render
function is called, the angle of revolution about the nucleus is incremented. Also, each
clectron lies in a different plane. Listing 5.1 shows the Render function for this exam-
ple, and the output from the ATOM program is shown in Figure 517,

Listing 5.1 Render Function from ATOM Sample Program

/| Called to draw scene
void RenderScene(void)

{

/| Angle of revolution around the nucleus
static float fElecti = @.0f;

/1 Clear the window with current clearing color
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

continued on next page

5

CHAPTER 5

continued from previous page

/! Reset the modelview matrix
gIMatrixMode (GL_MODELVIEW);
gllLoadIdentity();

// Translate the whole scene out and into view
// This is the initial viewing transformation
glTranslatef(@.0f, 0.0f, -100.0T);

// Red Nucleus

glColor3ub(255, @, 0);
glutSolidSphere(1@.0f, 15, 15);

// Yellow Electrons
glColor3ub(255,255,0);

// First Electron Orbit
// Save viewing transformation
glPushMatrix();

/| Rotate by angle of revolution
glRotatef(fElecti, 0.0f, 1.0f, 0.0f);

// Translate out from origin to orbit distance
glTranslatef (90.0Ff, 0.0f, 0.0T);

// Draw the electron
glutSolidSphere(6.0f, 15, 15);

// Restore the viewing transformation
glPopMatrix();

// Second Electron Orbit
glPushMatrix();

glRotatef(45.0f, 0.0f, 0.0, 1.0f);
glRotatef(fElectl, 0.0f, 1.0f, 0.0f);
glTranslatef(-70.0f, 0.0f, 0.0f);
glutSolidSphere(6.0f, 15, 15);
glPopMatrix();

// Third Electron Orbit

152

E MOVING AROUND IN SPACE: COORDINATE TRANSFORMATIONS

glPushMatrix();

- glRotatef(360.0f, -45.0f, 0.0f, 0.0f, 1.0f);
glRotatef (fElectl, 0.0f, 1.0f, 0.0f);

~ glTranslatef(0.0f, 0.0f, 60.0T);
glutSolidSphere(6.0f, 15, 15);
glPopMatrix();

// Inerement the angle of revolution
fElecti += 10.0T;
if(fElect1 > 360.0f)

fElectl = 0.0f;

// Show the image
glutSwapBuffers();
}

Lets examine the code for placing one of the electrons, a couple of lines at a time.
The first line saves the current modelview matrix by pushing the current transforma-
tion on the stack:

J/ First Electron Orbit
/ Save viewing transformation
‘giPushMatrix();

Now, the coordinate system is rotated around the y-axis by an angle fElect1:

" 7/ Rotate by angle of revolution
giRotatef(fElecti, @.0f, 1.0, 0.0T);

The electron is drawn by translating down the newly rotated coordinate system:

7/ Translate out from origin to orbit distance
glTranslatef(90.0f, 0.0, 0.0f);

Then, the electron is drawn (as a solid sphere), and we restore the modelview matrix
by popping it off the matrix stack:

// Draw the electron
glutSolidSphere(6.0f, 15, 15);

// Restore the viewing transformation
glPopMatrix();

The other electrons are placed similarly.

153

CHAPTER 5

: Opeakl Alom

Figure 5.17 Cutput from the ATOM sample program.

Using Projections

In our examples so far, we have used the modelview matrix to position our vantage
point of the viewing volume and to place our objects therein. The projection matrix
actually specifies the size and shape of our viewing volume.

Thus far in this book, we have created a simple parallel viewing volume using the
function g10rtho, setting the near and far, left and right, and top and bottom clipping
coordinates. When the projection matrix is loaded with the identity matrix, the diago-
nal line of 1s specifies that the clipping planes extend from the origin to positive or
negative 1 in all directions. The projection matrix does no scaling or perspective
adjustments. To see these effects, you must use a perspective projection. The next two
sample programs, ORTHO and PERSPECT, are not covered in detail from the stand-
point of their source code. These examples use lighting and shading that you haven'
covered yet to help highlight the differences between an orthographic and a perspec-
tive projection. These interactive samples make it much easier for you to see firsthand
how the projection can distort the appearance of an object. If possible, you should run
these examples while reading the next two sections.

Orthographic Projections

154

An orthographic projection, used for most of this book so far, is square on all sides.
The logical width is equal at the front, back, top, bottom, left, and right sides. This
produces a parallel projection, which is useful for drawings of specific objects that do
not have any foreshortening when viewed from a distance. This is good for CAD, 2D
graphs, or architectural drawings, for which you want to represent the exact dimen-
sions and measurements ONscreern.

Figure 5.18 shows the output from the sample program ORTHO on the CD in this
chapter’s subdirectory. To produce this hollow, tube-like box, we used an orthographic
projection just as we did for all our previous examples. Figure 5.19 shows the same
box rotated more to the side so you can see how long it actually is.

MOVING AROUND IN SPACE: COORDINATE TRANSFORMATIONS

Figure 5.19 A side view showing the length of the square tbe.

In Figure 5.20, you're looking directly down the barrel of the tube. Because the tube
does not converge in the distance, this is not an entirely accurate view of how such a
tube appears in real life. To add some perspective, we must use a perspective projec-
tion.

Perspective Projections
A perspective projection performs perspective division to shorten and shrink objects
that are farther away from the viewer. The width of the back of the viewing volume
does not have the same measurements as the front of the viewing volume. Thus, an
object of the same logical dimensions appears larger at the front of the viewing volume
than if it were drawn at the back of the viewing volume.

The picture in our next example is of a geometric shape called 2 frustum. A frustum is
a section of a pyramid viewed from the narrow end to the broad end. Figure 5.21
shows the frustum, with the observer in place.

CHAPTER 5

Figure 5.20 Looking down the barrel of the tube.

Perspediive viewing volume

Observer

Figure 5.21 A perspective projection defined by a frustum.

You can define a frustum with the function glFrustum. lts parameters are the coordi-
nates and distances between the front and back clipping planes. However, glFrustum
is not intuitive about setting up your projection to get the desired effects. The utility
function gluPerspective is easier to use and somewhat more intuitive for most pur-
poses:

void gluPerspective(GLdouble fovy, GLdouble aspect,

156

GLdouble zNear, GLdouble zFar);

Parameters for the gluPerspective function are a field-of-view angle in the vertical
direction; the aspect ratio of the height to width; and the distances to the near and far
clipping planes. (See Figure 5.22.) You find the aspect ratio by dividing the width (w)
by the height (h) of the front clipping plane.

Listing 5.2 shows how we change our orthographic projection from the previous
examples to use a perspective projection. Foreshortening adds realism to our earlier
orthographic projections of the square tube (Figures 5.23, 5.24, and 5.25). The only
substantial change we made for our typical projection code in Listing 5.2 is the added
call to gluPerspective.

MOVING AROUND IN SPACE: COORDINATE TRANSFORMATIONS

Observer

Figure 5.24 Side view with foreshortening.

CHAPTER 5

Figure 5.25 Looking down the barrel of the tube with perspective added.

Listing 5.2 - Setting Up the Perspective Projection for the PERSPECT Sample Program

// Change viewing volume and viewport. Called when window is resized
void ChangeSize(GLsizei w, GlLsizei h)

{
GLfloat fAspect;

/1 Prevent a divide by zero
if(h == @)
h =1;

// Set viewport to window dimensions
glviewport(@, @, w, h);

fAspect = (GLfloat)w/(GLFloat)h;

// Reset coordinate system
glMatrixMode(GL_PROJECTION);
glloadIdentity();

[/ Produce the perspective projection
gluPerspective(60.0f, fAspect, 1.0, 400.0);

glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();
}

We made the same changes to the ATOM example in ATOM2 to add perspective.
Run the two side-by-side and you see how the electrons appear to be smaller as they
swing far away behind the nucleus.

158

MOVING AROUND IN SPACE: COORDINATE TRANSFORMATIONS

FOut Example

~ For a complete example showing modelview manipulation and perspective projec-
tions, we have modeled the Sun and the Earth/Moon system in revolution. Thisisa
classic example of nested transformations with objects being transformed relative to
one another using the matrix stack. We have enabled some lighting and shading for
drama so you can more easily see the effects of our operations. You'll be learning about
shading and lighting in the next two chapters.

In our model, we have the Earth moving around the Sun and the Moon revolving
around the Earth. A light source is placed behind the observer to illuminate the Sun
sphere (which also produces the illusion that the Sun is the light source). The light is
then moved to the center of the Sun in order to light the Earth and Moon from the
direction of the Sun, thus producing phases. This is a dramatic example of how easy
it is to produce realistic effects with OpenGL.

Listing 5.3 shows the code that sets up our projection and the rendering code that
keeps the system in motion. A timer elsewhere in the program invalidates the window
10 times a second to keep the Render function in action. Notice in Figures 5.26 and
5.27 that when the Earth appears larger, its on the near side of the Sun; on the far
side, it appears smaller.

#ing 5.3 Code That Produces the Sun/Earth/Moon System

Change viewing volume and viewport. Called when window is resized
id ChangeSize(GLsizei w, GLsizei h)

{
GLfloat fAspect;

// Prevent a divide by zero
if(h == 0)
h=1;

// Set viewport to window dimensions
glviewport(@, @, w, h);

// Calculate aspect ratio of the window
fAspect = (GLfloat)w/(GLfloat)h;

/] Set the perspective coordinate system
glMatrixMode (GL_PROJECTION) ;
glLoadIdentity();

/| Field of view of 45 degrees, near and far planes 1.0 and 425
gluPerspective(45.0f, fAspect, 1.0, 425.0);

continued on next page

i

i et

CHAPTER 5

continued from previous page

// Modelview matrix reset
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();

}

// Called to draw scene
void RenderScene(void)

60

{

// Earth and Moon angle of revolution
static float fMoonRot = 0.0f;

static float fEarthRot = 0.0f;

// Clear the window with current clearing color
glClear(GL COLOR_BUFFER_BIT | GL _DEPTH_BUFFER_BIT);

/] Save the matrix state and do the rotations
glMatrixMode (GL_MODELVIEW);
glPushMatrix();

// Set light position before viewing transformation
glLightfv(GL_LIGHT®,GL_POSITION,lightPos);

// Translate the whole scene out and into view
glTranslatef(0.0f, @.0f, -300.0f);

// Set material color, Red

// Sun

glColor3ub(255, 255, 0);
glutSolidSphere(15.9f, 15, 15);

// Move the light after we draw the sun!
glLightfv(GL_LIGHT®,GL_POSITION,lightPos);

// Rotate coordinate system
glRotatef (fEarthRot, 0.0f, 1.ef, 0.ef);

// Draw the Earth
glColor3ub(0,0,255);
glTranslatef(105.0f,0.07,0.0f);
glutSolidSphere(15.0f, 15, 15);

/] Rotate from Earth-based coordinates and draw Moon
glRGB(200,200,200) ;
glRotatef(fMoonRot,0.0f, 1.0f, 0.0f);
glTranslatef(30.0Ff, 0.0f, 0.0f);
fMoonRot+= 15.0T;
if (fMoonRot > 360.0T)

fMoonRot = 0.0f;

nll

MOVING AROUND IN SPACE: COORDINATE TRANSFORMATIONS

glutSolidSphere(6.0f, 15, 15);

// Restore the matrix state
glPopMatrix(}; // Modelview matrix

// Step earth orbit 5 degrees

fEarthRot += 5.0T;

if (fEarthRot > 360.0T)
fEarthRot = 0.0T;

// Show the image glutSwapBuffers();
}

Figure 5.27 The Sun/Earth/Moon system with the Farth on the far side.

Advanced Matrix Manipulation

You don’t have to use the high-level functions to produce your transformations.

We recommend that you do, however, because those functions often are highly opti-
mized for their particular purpose, whereas the low-level functions are designed for
general use. For example, you can actually translate a vertex much faster than using a

161

CHAPTER 5

matrix multiply, and many drivers employ such optimizations. Two of these low-level
functions make it possible for you to load your own matrix and multiply it into either
the modelview or projection matrix stacks.

Loading a Matrix
You can load an arbitrary matrix into the projection, modelview, or texture matrix
stacks. First, declare an array to hold the 16 values of a 4x4 matrix. Make the desired
matrix stack the current one, and call glLoadMatrix.

The matrix is stored in column-major order, which simply means that each column is
traversed first from top to bottom. Figure 5.28 shows the matrix elements i num-
bered order. The following code shows an array being loaded with the identity matrix
and then being loaded into the modelview matrix stack. This is equivalent to calling
glLoadIdentity using the higher-level functions.
// Equivalent, but more flexible
glFloat m[] = { 1.0f, @.0f, 0.0f, 0.0F,
@.0f, 1.0, 0.0f, 0.0F,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0 };

glMatrixMode (GL_MODELVIEW) ;
glioadMatrixf(m);

Gy 04 Qg 012
4y 05 Qg O3
Qg Op Oio Oig
03 07 a4y Gy

Figure 5.28 Column-major matrix ordering.

Performing Your Own Transformations

You can load an array with an arbitrary marrix if you want and multiply it, too, into
one of the three matrix stacks. The following code shows a transformation matrix that
translates 10 units along the x-axis. This matrix is then multiplied into the modelview
matrix. You can also achieve this affect (and probably more efficiently) by calling
glTranslatef:

{/ Define the Translation matrix

glFloat m[] = { 1.0f, 0.0f, 0.0f, 10.0F,

9.0f, 1.0f, 0.0f, 0.0f,
9.0f, 0.0f, 1.0f, 0.0f,

162

MOVING AROUND IN SPACE: COORDINATE TRANSFORMATIONS

0.0f, 0.0f, 0.0F, 1.0f };

// Multiply the translation matrix by the current modelview
// matrix. The new matrix becomes the modelview matrix
glMatrixMode (GL_MODELVIEW);

glMultMatrixf(m);

er Transformations
There’s no particular advantage in duplicating the functionality of gLoadIdentity or
glTranslatef by specifying a matrix. The real reason for allowing manipulation of
arbitrary matrices is to allow for complex matrix transformations. One such use is for
drawing shadows, and you'll see that in action toward the end of the next chapter. You
can also use these matrix functions to do your own transformations. Why would you
want to do this after I told you to let OpenGL do it for you? You'll see in Chapter 19
how we can employ a new type of culling called frustum culling to eliminate geometry
before sending primitives to the OpenGL driver. As you'll learn then, this approach
can have a dramatic performance impact. You'll also learn about another real-time
technique for angular transformations using quaternions, and the problem they solve:
gimbal lock.

Summary
In this chapter, you've learned concepts crucial to using OpenGL for creation of 3D
scenes. Even if you can' juggle matrices in your head, you now know what matrices
are and how they are used to perform the various transformations. You've also learned
how to manipulate the modelview and projection matrix stacks to place your objects
in the scene and to determine how they are viewed onscreen.

Finally, we also showed you the functions needed to perform your own matrix magic
if you are so inclined. These functions allow you to create your own matrices and load
them into the matrix stack or multiply them by the current matrix first.

Reference Section

glFrustum

Purpose Multiplies the current matrix by a perspective matrix.
Include File <gl.h>
Syntax void glFrustum(GLdouble left, GLdouble right, GlLdouble

bottom, GLdouble top, GLdouble near, GLdouble far);

63

i

