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Iteration,
Induction,
and
Recursion

The power of computers comes from their ability to execute the same task, or
different versions of the same task, repeatedly. In computing, the theme of itemtion
is met in a number of guises. Many concepts in data models, such as lists, are forms
of repetition, as "A list either is empty or is one element followed by another, then
another, and so on." Programs and algorithms use iteration to pedorro repetitive
jo~ without requiring a large number of similar steps to be specified individually,
as "Do the next step 1000 times." Programming languages use looping constructs,
like the while- and for-statements of C, to implement iterative algorithms.

Closely related to repetition is recursion, a technique in which a concept is
defined, directly or indirectly, in terms ofitself. For example, we could have defined
a list by saying "A list either is empty or is an element followed by a list." Recursion
is supported by many programming languages. In C, a function F can call itself,
either directly from within the body of F itself, or indirectly by calling some other
function, which calls another, and another, and so on, until finally some function
in the sequence calls F. Another important idea, induction, is closely related '-o
"recursion" and is used in many mathematical proofs.

Iteration, induction, and recursion are fundamental concepts that appear in
many forms in data models, data structu res , and algorithms. The following list
gives some examples of uses of these concepts; each will be covered in some detail
in this book.

l. Itemtive techniques. The simplest way to perform a sequence of operations
repeatedly is to use an iterative construct such as the for-statement of C.

2. Recursive progmmming. C and many other languages permit recursive func-
tions, which call themselves either directly or indirectly. Often, beginning pro-
grammers are more secure writing iterative programs than recursive ones, but
an important goal of this book is to accust.om the reader to thinking and pro-
granm1ing recursively, when appropriate. Recursive programs can be simpler
to write, analyze, and understand.
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Notation: Tbe Summation and Product Symbols
An oversized Greek capital letter sigma is often used to denote a RUmmation, 88
in E:':. i. Tbis particular expression representa tbe RUIn of the integers from 1 to
n; tbat is, it &tanda for the SUIn 1 + 2 + 3 + . . . + n. More generally, we can 8UJD
any function /(i) of the summation index i. (Oí oourse, the index could be BOme
symbol other tban i.) Tbe expression E~=. /(i) stands for

/(0) + /(0 + 1) + /(0 + 2) + ... + /(b)

For example, E7:2 j2 standa for the 8UJD 4 + 9 + 16 + . . . + m2. Here, the function
/ is "squaring," and we used index j instead of i.

As a special case, if b < o, tben there are no terms in the sum E~=. /(i), and
the value of the expression, by convention, is taken to be o. If b = o, tben there is
exactly one term, tbat for i = o. Tbus, the value ofthe sum E~. /(i) is just /(0).

The analogous notation for products uses an oversized capital pi. Tbe expres-
sion n~=4 /(i) stands for tbe product /(0) x /(0 + 1) x /(0 + 2) x .. . x /(b); if

b < o, the product is taken to be l.

3. Pn}Ofs by induction. An important technique (or showing that a statement
is true is "proo( by induction." We sha1l cover inductive proofs extensively,
starting in Section 2.3. The following is the simplest (orm o( an inductive
proo(. We begin with a statement S(n) involving a variable n; we wish to
prove that S(n) is true. We prove S(n) by first proving a basis, that is, the
statement S(n) (or a particular value o( n. For example, we could let n = O and
prove the statement S(O). Secand, we must prove an inductive atep, in which
we prove that the statement S, (or one value o( its argument, (ollows from the
same statement S (or the previous values o( its argument; that is, S(n) implies
S(n + 1) for all n ?; O. For example, S(n) might be the (amiliar summation
formula

Basis

stepInductive

which saya that the sum oí the integers from 1 to n equa1s n( n + 1) /2. The basis
oould be 5(1) - that is, Equation (2.1) with 1 in place of n - wbich is just the
equality 1 = 1 x 2/2. The inductive step is to show that ¿:':l i = n(n + 1)/2
implies that ¿'::¡ i = (n + 1)(n + 2)/2; the former is 5(n), wbich is Equation
(2.1) itself, while the latter is 5(n + 1), wbich is Equation (2.1) with n + 1
replacing n everywhere n appears. SectiOD 2.3 will show us how to oonstruct
proofs such as this.

Prools 01 program correctness. In oomputer science, we often wish to prove,
formally or informally, that a statement 5(n) about a program is true. The
statement 5(n} might, for example, describe what is true on the nth iteration
of some loop or what is true for the nth recursive can to some function. Proofs
of this sort are generally inductive proofs.

IrtductitlC definitions. Many important concepts of computer science, especially
t-hcw in,"olving data models, are best defined by an induction in which we give

4.

5.

.
Lí =n(n+ 1)/2
i=al

(2.1)



~

.
)

&

1

1

i
i

.
2.1 What This Chapter Is About++++

.
f

.
t
"
e
)
e
:1
!l
e
s
:1

J

~

s
e
2
:1
1
t .... 2.2 Iteration

~.

e
n
S

y
e

L

27SEC. 2.2 ITERATlON

a basis rule defining the simplest example or examples of the concept, and an
inductive rule or roles, where we build larger instantes of the concept froro
smaller ones. For instante, we noted that a list can be defined by a basis rule
(an empty list is a list) together with an inductive rule (an element followed
by a list is also a list).

6. Anal,'Í8 o/ ronning time. An important criterion for the "goodness" of an
aigorithm is how long it takes to ron on inputs of various sizes (its "running
time"). When the algorithm involves recursion, we use a formula called a
recun-ence equation, which is an inductive definition that predicts how long the
algorithm takes to ron on inputs of different sizes.

Each of these subjects, except the last, is introduced in tbis chapterj the running
time of a program is the topic of Chapter 3.

lo this chapter we meet the following major concepts.

... Iterative programmiog (Sectioo 2.2)

... Inductive proofs (Sections 2.3 and 2.4)

... Inductive definitions (Sectioo 2.6)

... Recursive programming (Sections 2.7 and 2.8)

... Proving the correctness of a program (Sections 2.5 and 2.9)

In addition, we spotlight, through examples oí these concepts, several interesting
and important ideas from computer science. Among these are

... Sorting algorithms, including selection sort (Section 2.2) and merge sort (Sec-
tion 2.8)

... Parity checking and detection of errors in data (Section 2.3)

.. Arithmetic expressions and tbeir transformation using algebraic laws (Sections
2.4 and 2.6)

.. Balanced parentheses (Section2.6)

Each beginning programmer learns to use iteration, employing some kind of looping
construct such as the for- or while-statement oí C. In this section, we present al1
example oí an iterative algorithm, called "selection sort." In Section 2.5 we shall
prove by induction that this algorithm does indeed sort, and we shall analyze its
running time in Section 3.6. In Section 2.8, we shall show how recursion Cal1 help
us devise a more efficient sorting algorithm using a technique called "divide alld
conquer ."
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Common Tbemes: Self-Deflnition and Basis-Induction

As you study thÍB chapter, you should be alert to two themes that ron through the
various concepts. Tbe first is self-definition, in which a concept ÍB defined, or built,
in terms oí itself. For example, we mentioned that a IÍBt can be defined as being
empty or as being an element íollowed by a listo

The second theme ÍB ba8is-induction. Recursive functiOD8 usually have SOlDe
sort oí test íor a "basis" case where no recursive calls are made and an "inductive"
case where one or more recursive calls are made. Inductive proofs are well known
to consÍBt oí a basÍB and an inductive step, as do inductive definitioD8. This basis-
induction pairing ÍB 80 important that these words are highlighted in the text to
introduce each occurrence oí a basis case or an inductive step.

There is no paradox or circularity involved in properly used selí-definition,
because the self-defined subparts are always "smaller" than the object being defined.
FUrther, after a finite number oí 8tep6 to srnaller parts, we arrive at the basis case,
at which the selí-definition ends. For example, a list L is built from an element and
a list that is one element shorter than L. When we reach a list with zero elements,
we have the basis case oí the definition oí a IÍBt: "The empty list is a list."

As another example, if a recursive function woro, the arguments oí the ca11
rnust, in sorne sense, be "smaller" than the arguments oí tbe calling copy oí the
function. Moroover, after sorne number oí recursive calls, we must get to arguments
that are so "small" that the function does not make any more recursive calls.

Sorting
To sort a list oí n elements we need to
appear in nondecreasing order.

Example 2.1. Suppose we are given the Iist ofintegers (3,1,4,1,5,9,2,6,5).
We sort tbis list by permuting it into the sequence (1,1,2,3,4,5,5,6,9). Note that
sorting not ooly orders the valu~ so that each is either less than or equal to the one
that follows, but it also preserves the number of occurrences of each value. Thus,
the sorted list has two 1 's, two 5's, and one each of the numbers tbat appear once
in the originallist. +

+

We can sort a list of elements of any type as long as the elements have a "less-
than" order defined on them, which we usually represent by the symbol <. For
example, if the values are real numbers or integers, then the symbol < stands for the
usualless-than relation on reals or integers, and if the values are character strings,
we would use the lexicographic order on strings. (500 the box on "Lexicographic
Order.") Sometimes when the elements are complex, such as structures, we might
use only a part of each element, such as one particular field, for the comparison.

The comparison o .$: b means, as always, that either o < b OT o and b are tbt'
salDe value. A list (al,a2,." ,a,.) is said to be sorteA if al .$: 02 .$: ... .$: On; that

is, if the values are in nondecreasing order. Sorting is the operation of taking éUl
arbitrary list (al, a2,. . . , on) and producing a list (bl,~,. .., bn) such that

Sorted list

the elements oí tbe list so tbat tbey
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Lexicographic arder
Tbe usual way in which two character strings are compared is according to their
le%icogruphic order. Let CIC2... Ck and d1d2... dm be two strings, where ead1 of the
c's and d's repr~nts a single character. Tbe lengths of the strings, k and m, need
not be the same. We assume that there is a < ordering on characters; for example,
in C characters are small integers, so character coDStants and variables can be used
as integers in arithmetic expressions. Thus we can use the conventional < relation
on integers to ten which of two characters is "less than" the other. This ordering
includes the natural notion that lower-case letters appearing earlier in the alphabet
are "less than" lower-case letters appearing later in the alphabet, and the sanle
holds for upper-case letters.

We mar then define the ordering on character strings called the le%icographic,
dictionary, or alphabetic ordering, as foUows. We say CI C2 . . . Ck < di d2 . . . dm if
either of the foUowing holds:

1. Tbe first string is a proper prefix of the second, which means that k < m and
for i = 1,2,..., k we have Ci = d.. According to this rule, bat < batter. As
a special case of this rule, we could have k = O, in which case the first string
has no characters in it. We shaU use t:, the Greek letter epsilon, to denote the
empty string, the string with zero characters. When k = O, rule (1) says that
t: < s for any nonernpty string s.

2. For sorne value of i > O, the first i - 1 characters of the two strings agree, but
the ith character of the first string is less than the ith character of the second
string. Tbat is, Cj = dj for j = 1,2,...,i -1, and Ci < d.. According to
this rule, hall < base, because the two words first differ at position 3, and at
that position hall has an 1, which precedes the character s found in the third
position of base.

l. List(bl,~,...,bn)issorted.

2. Li~ (bl,~,..., bn) is a permutation oí the originallist. That is, each value
appears in list (al,~,.", an) exactly as many times as that value appears in
list (bl,~,...,bn).

A sorting algorithm takes as input an arbitrary list and produces as output a sorted
list that is a permutation oí the input.

Example 2.2. Consider the list oí words

base, ball, mound, bat, glove, batter

Given this input, and using lexicographic order, a sorting algorithm would produce
this output: ball, base, bat, batter, glove, mound. +

Selection Sort: An Iterative Sorting AIgorithm

Suppose we have an array A oí n integers that wc wish to sort into nondecreasing

..
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Convention Regarding Names and Values

We can think of a variable as a box witb a oame and a value. When we refer to a
variable, such as abc, we use the constant-widtb, or "computer" font for its oame,
as we did in tbis sentence. Wben we refer to tbe value of tbe variable abc, we shall
use italics, as abc. To summarize, abc refers to the oame of the box, and abc to its
contenu.

order. We may do so by iterating a step in which a smallest element 1 not ya part of

the sorted portíon oí the array is found and exchanged with the element in the first
positíon oí tbe unsorted part oí the array. In tbe first iteration, we find ("aelect") a
smal1est element among the values found in the ful1 array A[O. .n-l] and exchange
it witb A[O].2 In tbe second íteration, we find a smalIest element in A[l. .n-l] and
exchange it with A [1]. We continue these iterations. At tbe start of the i + 1st
iteration, A [O. . i -1] contains the i smallest elements in A sorted in nondecreasing
order, and tbe remaining elements of the array are in no particular order. A picture
of A just before tbe i + 1st iteration is shown in Fig. 2.1.

Fig. 2.1.

In the i + 1st iteration, we find a smallest element in A[i. .n-l] and exchange
it with A [i]. Thus, alter the i + 1st iteration, A [O. . i] contains the i + 1 smallest
elements sorted in nondecreasing arder. After the (n - l)st iteration, the entire

alTay is sorted.
A C function for selection sort is shown in Fig. 2.2. This function, whose name

is SelectionSort, takes an alTay A as the first argumento The second argument,
n, i8 the length of array A. .

Lines (2) through (5) select a smallest element in the unsortOO part of the alTay,
l[i. .n-l]. We begin by setting the value of index small to i in line (2). The for-
loop of liDes (3) through (5) consider all higher indexes j in turn, and small is set to
j if A[j] has a smaller value than any ofthe arrayelements in the range A[i. .j-l].
As a result, we set the variable amall to the index of the first occurrence of the
smallest element in A[i. .n-l].

Alter choosiog a value for the iodex saa.ll, we exchange the elemeot in that
position with the element in A [i], in liDes (6) to (8). If small = i, the exchange
is pedonned. but has no effect 00 the array. Notice that in order to swap two
elemeots, we need a temporary place to store ooe oí them. Thus, we move the value

1 We say 80 smallest element" rather than 8the smallest element" bec&U8e there may be 8eveT&l
occurrences of the smallest value. Ir so, we shall be happy with any of thc-. occurrences.

2 1"0 deBCribe a ranr,e of elemeots within an alTay, - adopt a conveotion from the langu~e
PascaI. If A is an array, then A[i. .j] denotes thOBe elements of A with indexes from i to j,
inclusive.

IT~rT ~TI
o i n-l.. " ,~ ~

before the i + 1st iteration of ~Iection sort.Picture o( array just

L



~

a
e,
~l
ts

-
of
st
a

ge
ld
st

¡¡g
re

ge
~t
re

De

lt,

'Y,

)(-

to
J.
be

at

ge
.yo
ue

ral

oge

. j,

SEC. 2.2 ITERATlON 31

int n)(lnt !D.void SelectionSort
{

int i. j. amal1. telDp;
for (i = o; i < n-l; i++) {

/* aet 88811 to the index of the firat occur- */
/* rence of the smal1eat e1ement remaining */
aaal1 . i;
for (j . i+l; j < n; j++)

if (A[j] < A[amall])
amall = j;

/* vhen ve reach here. amall ia the index of */
/* the firat amal1eat e1ement in A[i..n-l]; */
/* ve nov exchange A[amal1] vith A[i] */
temp = A [amall] ;
A [amall] = A [i] ;
A[i] = temp;

}

(1)

(2)
(3)
(4)
(5)

(6)
(7)
(8)

}

Fig. 2.2. lterative selection sort.

in A[small] to temp at line (6), moVe the value in A[i] to A[amall] at line (1),
and finally move the value originally in A[small] from temp to A[i] at line (8).

Example 2.3. Let os study the behavior of SelectionSort on varioos inputs.
First, let os look at what happens when we run SelectionSort on an array with
no elements. When n = O, the body of the for-loop of line (1) is not executed, so
SelectionSort does "nothing" gracefully.

Now let us consider the case in which the array has only one elemento Again,
the body of the íor-loop oí line (1) is not executed. That response is satisfáctory,
because an array consisting oí a single element is always sorted. The cases in which
n is O or 1 are important boun.iary conditions, on which it is important to check
the performance oí any algorithm or programo

Finally, let os run SelectionSort on a small array with four elements, where
A[O] through A [3] are

O 1 2 3
A 140[301201101

We begin the outer loop with i = O, and at line (2) we set amall to O. Lines (3) to
(5) íorm an inner loop, in which j is set to 1, 2, and 3, in turno With j = 1, the
test ofline (4) succeeds, since A[l], which is 30, is less than A[small], which is A[O],
or 40. Thus, we set small to 1 at line (5). At the second iteration of liDes (3) to
(5), with j = 2, the test of line (4) again succeeds, since A[2] < A[l], and so we set
small to 2 at line (5). At tbe last iteration of liDes (3) to (5), with j = 3, the test
of line (4) succeeds, since A[3] < A[2], and we set small to 3 at line (5).

We now fall out of the inner loop to line (6). We set temp to 10, which is
A[small], then A [3] to A[O], or 40, at line (7), and A[O] to 10 at line (8). Now, the

+

,



32 ITERATION, INOUCTlON, ANO RECURSION

Sorting on Keys
\
\

When we sort, we apply a comparison operation to the values being sorted. Often
the comparison is made only on specific parla ol the values and the part used in the
comparison is called the key.

For example, a course roster might be an arfar A ol C structures of the forro

struct STUDENT {
int studentID;

char *name;
char grade;

} A[MA1];

We might want to sort by student ID, or name, or grade; each in tUfO would be
the key. For example, if we wish to sort structures by student ID, we would use the

comparison

A[j].studentID < A[small].studentID

at line (4) of SelectionSort. The type of array A and temporary temp used in the
swap would be struct STUDENT, rather than integer. Note that entire structures
are swapped, not just the key fields.

Since it is tiroe-consuming to swap whole structures, a more efficient approach
is to use a second array of pointers to STUDENT structures and sort only the pointers
in the second arfar. The structures themselves remain stationary in the first arfar.
We leave this version ol selection sort as an exerclse.

first iteration of the outer loop is complete, and array A appears as

O 1 2 3
A 1101301201401

Tbe second iteration oí the outer loop, witb i = 1, sets small to 1 at line (2).
The inner loop sets j to 2 initiaUy, and since A[2] < A[l], line (5) sets sllall to 2.
With j = 3, the test oí Une (4) íails, since A[3) ?: A[2]. Hence, small = 2 when we
reach line (6). Lines (6) to (8) swap A[1] witb A[2], leaving tbe array

O 1 2 3

~, l1ol~l.~I401

Although the array now happens to be sorted, we still iterate the outer loop once
more, with i = 2. We set small to 2 at line (2), and the inner loop is executed only
with j = 3. Since the test of line (4) fails, small remains 2, and at liDes (6) through
(8), we "swap" A [2] with itself. The reader should check that the swapping has no
effect when small = i. ..

Figure 2.3 shows how the function SelectionSort can be used in a complete
program to sort a sequence of n integers, provided that n S 100. Line (1) reads and
stores n integers in an array A. If the number of inputs exceeds MAX, only the first
MAl integers are put into A. A message warning the user that the number of inputs
iR too large would be useful here, but we omit it.

.

...
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Lines (4) and (5) print theLine (3) calls SelectionSort
integers in sorted order.

to sort the 8ITay.

~

#define MAl 100
int A [MAl] ;

int n);void SelectionSort(int A[].

main()
{

int i. ni
/* read and atore input in A */
for (n = O; n < MAl t.t. acanf("~d". U[n]) != EOF; n++)

.
SelectionSort(A.n); /* 80rt A */
for (i = O; i < ni i++)

printf("~d\n". A[i]); /* print A */

}

void SelectionSort(int AD . int n)

{
int i. j. amall. temp;
for (i . Oi i < n-1i i++) {

aaall . ii
for (j . i+1i j < ni j++)

if (A[j] < A[aaall])
amall . j i

temp a A [amall] ;
A[amall] a A[i] i
A[i] . tempi

(1)
(2)
(3)
(4)
(5)

}
}

Fig. 2.3. A sorting program using selection sort.

EXERCISES

2.2.1: Simulate the function SelectionSort on an array containing the elements

a) 6.8, 14. 17. 23

b) 17,23.14,6.8
c) 23,17,14,8,6

How many comparisons and swaps oí elements are made in each case?

2.2.2**: What are the minimum and maximum number oí (a) comparisons and
(b) swaps that SelectionSort can make in sorting a sequence oí n elements?

"
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2.2.3: Write a C function that takes two linked lists of characters as arguments and
returns TRUE ií the first string precedes the second in lexicographic order. Hint:
Implement the algorithm for comparing character strings that was described in
this section. Use recursion by having the function call itself on the tails of the
character strings when it finds that the first characters of both strings are the same.
Altematively, one can develop an iterative algorithm to do the same.

2.2.4*: Modify your program from Exercise 2.2.3 to ignore the case of letters in

comparisons.

2.2.5: What does selection sort do if a1l elements are the same?

2.2.6: Modify Fig. 2.3 to perform selection sort when array elements are not inte-
gers, but rather structures of type struct STUDENT, as defined in the box "Sorting
on Keys." Suppose that the key field is studentID.

2.2.7*: Further modify Fig. 2.3 so that it sorts elements of an arbitrary type T.
You may assume, however, that there is a function key that takes an element of type
T as argument and retums the key for that element, of some arbitrary type K. Also
assume that there is a function lt that takes two elements of type K as arguments
and returns TRUE if the first is "less than" the second, and FALSE otherwise.

2.2.8: Instead of using integer indexes into the array A, we could use pointers to
integers to indicate positions in the array. Rewrite the selection sort algorithm of
Fig. 2.3 using pointers.

2.2.9*: As mentioned in the box on "Sorting on Keys," if the elements to be sorted
are large structures such as type STUDENT, it makes sense to leave them stationary
in an array and sort pointers to these structures, found in a second array. Write
this variation of selection sort.

2.2.10: Write an iterative program to print the distinct elements of an integer array.

2.2.11: Use the ¿ and n notations described at the beginning of this chapter to
express the following.

a) The sum oí the odd integers from 1 to 377

b) The sum of the squares of the even integers from 2 to n (assume that n is even)

c) The product of the powers of 2 from 8 to 2k

2.2.12: Show that when small = i, liDes (6) through (8) of Fig. 2.2 (the swapping
steps) do not have any effect on array A.

.

..."'... 2.3 Inductive...
Mathematical induction is a useful technique Cor proving that a staternent S(n) is
true Cor all nonnegative integers n, or, more generally, Cor all integers at or above
some lower limito For example, in the introduction to this chapter we suggested
that the staternent E7=1 i = n(n + 1)/2 can be proved true Cor all n ?: 1 by an
induction on no

Now, let S(n) be sorne al'bitrary statement about an integer n. In the sirnplest
form of an inductive proof of the staternent S(n), we prove two facts:

Proofs

~
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Naming the Induction Parameter

It is often useful to explain an induction by giving the intuitive meaning of the
variable n in the statement 5(n) th&t we are proving. H n has no special meaning,
as in Example 2.4, we simply say "The proof is by induction on n." In other cases,
n mar have a physical meaning, as in Example 2.6, where n is the number of bits
in the code words. There we can say, "The proof is by induction on the number of
bita in the code words."

1. The basis case, which is frequently taken to be 5(0). However, the basis can be
5(k) for any integer k, with the understanding that then the statement 5(n)
is proved only for n ~ k.

2. The inductive step, where we prove that for all n ~ O [or for all n ~ k, if the
basis is 5(k)], 5(n) implies 5(n + 1). In this part of the proof, we assume
that the statement 5(n) is true. 5(n) is called the inductive hypothesis, and
assuming it to be true, we must tben prove tbat 5(n + 1) is true.

/-~~~ ... r-~V-~~-~V
Fig. 2.4. In an inductive proof, each instance of the statement S(n)

is proved using the statement for tbe next lower vaJue of n.

Figure 2.4 illustrates an induction starting at O. For each integer n, there is
a statement 5(n) to proveo The proof for 5(1) uses 5(0), the proof for 5(2) uses
5(1), and so on, as represented by the arrows. The way each statement depends on
the previous one is uniformo That is, by om proo/ o/ the inductive step, we prove

each o/ the steps implied by the a~ws in Fig. !

n
STATEMENT S(n): ¿2i = 2n+l - 1 for any n ?; O.

i=O
Tbat is, tbe sum of tbe powers of 2, from tbe Otb power to tbe ntb power, is 1 less
than tbe (n + l)st power of 2.3 For example, 1 + 2 + 4 + 8 = 16 - 1. Tbe proof
proceeds as follows.

BASIS. To prove tbe basis, we substitute O for n in the equation S(n). Then S(n)
becomes

3 S(n) can be proved without induction, using the formula for the 8um of a gt'Ometric series.

Howe\'er, it will aerve .. a simple example oC the technique oí mathematical induction.
fUrtht'r, the proofs of t~ formulas for the sum of a geom~tric or arithmetic 8f'ries that you
have probably seen in high !K:hool are ratht'r informal, and ~tri("tly ~peaking. mathetnaticaJ
induction should be uMOCi to pnJVf! thc-. formulas.
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(2.2)

There is onIy one term, for i = O, in the summation on the left side oí Equation
(2.2), so that the left side of (2.2) sums to 2", or l. The right side of Equation (2.2),
which is V - 1, or 2 - 1, also has value l. Thus we have proved the basis of S(n);
that is, we have shown that this equality is true for n = O.

INDUCTION. Now we must prove the inductive step. We assume that S(n) is true,
and we prove the same equality with n + 1 substituted for n. Tbe equation to be
proved, S(n + 1), is

To prove

Tbis sum is almost tbe SalDe as tbe sum on tbe left sirle of S(n), which is

except tbat (2.3) alBO has a term for i = n + 1, tbat is, tbe term 2"+1
Since we are allowed to assume tbat tbe inductive bypotbesis S(n) is true in

OUT proof of Equation (2.3), we sbould contrive to use S(n) to advantage. We do so
by breaking tbe sum in (2.3) into two parts, one of wbich is tbe suro in S(n). Tbat
is, we separate out tbe last term, wbere i = n + 1, and write

Now we can make use oí S(n) by
in Equation (2.4):

n+l~ 2' = 2n+l - 1 + 2n+l (2.5)

,=0
When we simplify the right sirle of Equation (2.5), it becomes 2 x 2n+l - 1, or
2n+2 - l. Now we see that the summation on the left sirle of (2.5) is the same as
the left sirle oí (2.3), and the right sirle oí (2.5) is equal to the right sirle oí (2.3).
We have thus proved the validity oí Equation (2.3) by using the equality S(n); that
prooí is the inductive step. The conclusion we draw is that S(n) holds íor every
nonnegative value oí n. .

Why Does Proof by Induction Work?

In an inductive proof, we first prove that S(O) is true. Next we show that if S(n)
is true, then S(n + 1) holds. But why can we then conclude that S(n) is true for
all n ~ O? We shall offer two "proofs." A mathematician would point out that

o
L 2' = 21 - 1
i=O

(2.3)

(2.3), we begin by considering the 00 the left side,

"

L2i
i=O

n+l nL 2i = L 2i +2"+1
0=0 i=O

(2.4)

its right sirle 2n+l - 1 for ~':' 2', 'L..t=Osubstituting

\
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m

¿2i = 2m+l_1
i=O

We tben litera1ly substitute tbe desired expression, n + 1 in tbis case, for each
occurrence of m. Tbat gives us

,,+1¿ 2' = 2(,,+1)+1 - 1
i=O

When we simplify (n + 1) + 1 to n + 2, we have (2.3).
Note that we should put parentheses around the expression substituted, to

avoid accidentally changing the arder of operations. For example, had we substi-
tuted n + 1 for m in the expression 2 x m, and not placed the parentheses around
n+l, we would have gotten 2 xn+l, r~er than the correct expression 2 x (n+l),

which equals 2 x n + 2.

each of our "proofs" that induction works requires an inductive proof itself, and
therefore is no proof at all. Technically, induction must be accepted as axiomatic.
Nevertheless, many people find the following intuition useful.

In what follows, we assume that the basis value is n = O. That is, we know
that 5(0) is true and that for al1 n greater than O, if 5(n) is true, then 5(n + 1) is
true. Similar arguments work if the basis value is any other integer.

First "proof": Iten¡tion o/ !he inducti11e step. Suppose we want to show tbat
5(a) is true for a p~rticu1ar nonnegative integer a. H a = O, we just invoke the
truth of the basis, 5(0). Ha> O, then we argue as follows. We know that 5(0) is
true, from the basis. The statement "5(n) implies 5(n + 1)," with O in place of n,
says "5(0) implies 5(1)." Since we know that 5(0) is true, we now know that 5(1)
is true. Similarly, if we substitute 1 for n, we get "5(1) implies 5(2)," and so we
alBO know that 5(2) is true. Substituting 2 for n, we have "5(2) implies 5(3)," so
that 5(3) is true, and so on. No matter what the value of a is, we eventually get to

5(a), and we are done.

Second "proof": Least counterexample. Suppose 5(n) were not true for at least
one value of n. Let a be the least nonnegative integer for which 5(a) is falseo H
a = O, then we contradict the basiR, 5(0), and so a must be greater than O. But if
a> O, and a is the least nonnegative integer for which 5(a) is false, then 5(a - 1)

must be true. Now, the inductive step, with n replaced by a-1, tells us that S(a-1)
implies 5(a). Since 5(a-l) is true, S(a) must be true, another contradiction. Since
we assumed there were nonnegative values of n for which S(n) is false alld derived
a contradiction, S(n) must therefore be true for any n ~ O.

.
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Error-Detecting Codes

We shall now begin an extended example of "error-detecting codes," a concept that
is interesting in its own right and also leads to an interesting inductive proof. When
we transmit information over a data network, we code characters (letters, digits,
punctuation, and so on) into strings of bits, that is, O's and 1 's. For the moment let
us assume that characters are represente<! by seven bits. However, it is normal to
transmit more than seven bits per character, and an eighth bit can be used to help
detect sorne simple errors in transmission. That is, occasionally, one of the O's or 1 's
gets changed because of noise during transmission, and is received as the opposite
bit; a O entering the transmission line ernerges as a 1, or vice versa. It is useful Ü
the cornrnunication system can tell when one of the eight bits has been changed, so
that it can signal for a retransmission.

To detect changes in a single bit, we rnust be sure that no two characters are
represented by sequences of bits that differ in only one position. For then, ü that
position were changed, the result would be the code for the other character, and
we could not detect that an error had occurred. For example, ü the code for one
character is the sequence of bits 01010101, and the code for another is 01000101,
then a change in the fourth position frorn the left turns the former into the latter.

One way to be sure that no characters have codes that differ in only one position
is to precede the conventional 7-bit code for the character by a parity bit. ti the
total number of 1 's in a group of bits is odd, the group is said to have odd parity. ti
the number of 1 's in the group is even, then the group has even parity. The coding
scherne we select is to represent each character by an 8-bit code with even parity;
we could as well have chosen to use only the codes with odd parity. We force the
parity to be even by selecting the parity bit judiciously.

Parity bit

.. Example 2.5. The conventional
"American Standard Code for .
ter A is 1000001. That sequence
and so we prefix it by O to get
which differs from the 7-bit

ASCII

seven has an even number of 1 's,
1. The conventional code for C is 1000011,

for A only in the sixth position. However, this
code has odd parity, and 80 we prefix alto it, yielding the 8-bit code 11000011
with even pa..;ty. Note that after prefixing the parity bits to the codes for A and C,
we have 01000001 and 11000011, which differ in two positions, namely the first and
seventh, as seen in Fig. 2.5. +

Fig. 2.5.

We can always pick a parity bit to attach to a 7-bit code so that the number of
1 's in the 8-bit code i8 even. We pick parity bit O if the 7-bit code for the character
at hand has even parity, and we pick parity bit 1 if the 7-bit code has odd parity.
In either case, the number of 1 '8 in the 8-bit code is even.

""" '

A: O 1 O O G O O 1

C: 1 1 O O O O 1 1

We can choose the initial parity bit so the 8-bit code always has even parity.

.
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~

No two sequences of bits that each have even parity can differ in only one
position. For if two such bit sequences differ in exactly one position, then one has
exactly one more 1 than the other. Thus, one sequence must bave odd parity and
the otber even parity, contradicting OUT assumption that both have even parity. We
conclude that addition of a parity bit to make tbe number of l's even serves to
create an error-detecting code for characters.

The parity-bit scheme is quite "efficient," in tbe sense tbat it allows us to
transmit many different characters. Note that there are 2ft different sequences of n
bits, since we mar choose either of two values (O or 1) for tbe first position, either
of two values for the second position, and so on, a total of 2 x 2 x . .. x 2 (n factors)
possible strings. Thus, we might expect to be able to represent up to ~ = 256

characters with eight bits.
However, witb the parity scheme, we can choose only seven of the bits; the

eighth is then forced upon us. We can thus represent up to 27, or 128 characters,
and still detect single errors. That is not so bad; we can use 128/256, or half, of
the possible 8-bit codes as legal codes for characters, and stiU detect an error in one

bit.
Similarly, if we use sequences of n bits, choosing one of them to be the parity

bit, we can represent 2ft-l characters by taking sequences of n - 1 bits and prefixing
the suitable parity bit, whose value is determined by the otber n - 1 bits. Since
there are 2n sequences of n bits, we can represent 2n-l/2n, or half tbe possible
number of characters, and stiU detect an error in any one of the bits of a sequence.

Is it possible to detect errors and use more than half the possible sequences of
bits as legal codes? OUT next example tells us we cannot. The inductive proof uses
a statement tbat is not true for O, and for wbich we must choose a larger basis,
namely 1.

STATEMENT S(n): If C is any set oí bit strings oí length n that is error detecting
(i.e., if there are no two strings that differ in exactlyone position), then C
contains at most 2n-l strings.

This statement is not true for n = O. 8(0) says tbat any error-detecting set of strings
of length O has at most 2-1 strings, that is, half a string. Technically, the set C
consisting of only the empty string (string with no positions) is an error-detecting
set of length O, since there are no two strings in C that differ in only one position.
Set C has more than half a string; it has one string to be exacto Thus, 8(0) is false.
However, for all n ?; 1, 8 (n) is true, as we shall see.

BASIS. The basis is 8(1); that is, any error-detecting set of strings oflength one has
at most 21-1 = 20 = 1 string. There are only two bit strings of length one, the string
O and the string 1. However, we cannot have both of them in an error-detecting
set, because they differ in exactly one position. Thus, every error-detecting set for
n = 1 must have at most one string.

INDUCTION. Let n ?: 1, aIld assume that the indu<."tive hypothesis - all error-

detecting set of strings of lcngth n has at most 2n-l strings - is true. W(' must

I
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show, using this assumption, that any error-detecting set C of strings with length
n + 1 has at most 2ft strings. Thus, divide C into two seta, Co, the set of strings in
C that begin with O, and C1, the set ofstrings in C that begin with 1. For instante,
suppose n = 2 and C is the code with strings of length n + 1 = 3 constructed using
a parity bit. Then, as shown in Fig. 2.6, C consista of the strings 000, 101, 110, and
011; Co consists of the strings 000 and 011, and C1 has the other two strings, 101
and 110.

Consider the set Do consisting of those strings in Co with the leading O removed.
In OUT example above, Do contains the strings 00 and 11. We claim that Do cannot
have two strings differing in only one bit. The reason is that if there are two such
strings - sayal a2 . . . an and bl ~ . . . bn - then restoring their leading O's gives us
two strings in Co, Oala2'" an and Obl~... bn, and these strlngs would differ in only
one position as well. But strings in Co are also in C, and we know that C does not
have two strings that differ in only one position. Thus, neither does Do, and so Do
is an error detecting seto

Now we can apply the inductive hypothesis to conclude that Do, being an
error-detecting set with strings of length n, has at most 2n-l strings. Thus, Co has
at most 2n-l strings.

We can reason similarly about the set Cl. Let Dl be the set of strings in Cl,
with their leading 1 's deleted. DI is an error-detecting set with strings of length
n, and by tbe inductive hypothesis, Dl has at most 2n-l strings. Thus, Cl has at
most 2n-l strings. However, every string in C is in either Co or Cl. Therefore, C
has at most 2n-l + 2n-l, or 2n strings.

.

We have proved that S(n) implies S(n + 1), and so we may conclude that S(n)
is true for all n ::?: 1. We exclude n = O from the claim, because the basis is n = 1,
not n = O. We now see that the error-detecting sets constructed by parity check
are as large as possible, since they have exactly 2n-1 strings when strings of n bits
are used. ...

The set C is split into COI the strings beginning with O, and CI,
the strings beginning with 1. Do and DI are formed by

deleting the leading O's and 1 's, respectively.

Fig. 2.6.

I
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How to Invent Inductive Proofs
Tbere is no "crank to turn" tbat is guaranteed to give you an inductive proof oí any
(true) statement S(n). Finding inductive proofs, like finding proofs of any kind, or
like writing programs tbat work, is a task witb intellectual challenge, and we can
only offer a few words oí advice. If you examine tbe inductive steps in Examples 2.4
and 2.6, you will notice tbat in each case we bad to rework tbe statement S(n + 1)
tbat we were trying to prove so tbat it incorporated the inductive bypotbesis, S(n),
plus sometbing extra. In Example 2.4, we expressed the sum

1 + 2 + 4 + . . . + 2n + 2n+I

as tbe sum

1+2+4+...+2n

wbich tbe inductive hypotbesis tells us sometbing about, plus the extra term, 2n+I.
In Example 2.6, we expressed tbe set C, witb strings of length n + 1, in terms

of two sets of strings (which we called Do and DI) of length n, so that we could
apply tbe inductive bypothesis to these sets and conclude tbat both of these sets

were of limited size.
Of course, working with tbe statement S(n + 1) so that we can apply tbe

inductive bypotbesis is just a special case of the more universal problem-solving
adage "Use wbat is given." The bard part always comes wben we must deal with
tbe "extra" palt of S(n+ 1) and complete tbe prooí of S(n+ 1) from S(n). However,
the íollowing is a universal rule:

... An inductive proof must at some point say ". . .and by tbe inductive bypotbesis
we know tbat... ." If it doesn't, tben it isn't a inductive proof.

EXERCISES

2.3.1: Show the following formulas by induction on n starting at n = l.
a) ~~=1 i = n(n + 1)/2.

b) E::l i2 = n(n+ 1)(2n+ l}J~.¡.,

c) ~~1 i3 = n2(n + 1)2/4.

d) E~=11/i(i + 1) = n/(n + 1).

2.3.2: Numbers of the form tn = n(n + 1)/2 are ca.lled triangular numbers, because
marbles arranged in an equilateral triangle, n on a side, will total ~~1 i marbles,
which we saw in Exercise 2.3.1(a) is tn marbles. For example, bowling pins are
arranged in a triangle 4 on a side and tbere are t4 = 4 x 5/2 = 10 pingo Show by

induction on n tbat ~;=1 tj = n(n + l)(n + 2)/6.

2.3.3: Identify tbe parity of each of the following bit. sequences as evcn or odd:

a) 01101
b) 111000111

,
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c) 010101

2.3.4: Suppose we use
of strings C formed from O's, 1 's, and 2's is
difl'er in onlyone position. For example, {OO,
strlngs of length two, using the digits O, 1,
error-detecting set of strlngs oí length n using tbe
more than 3n-l strlngs.

2.3.5*: Show tbat for any n ~ 1, there is an error-detecting set of strings of lengtb
n, using the digits O, 1, and 2, that has 3n-l strings.

2.3.6*: Show that if we use k symbols, for any k ~ 2, then there is an error-
detecting set of strlngs of length n, using k different symbols as "digits," with kn-l
strings, but no such set of strings with more than kn-l strings.

2.3.7*: If n ~ 1, the number of strlngs using the digits O, 1, and 2, with no two
consecutive places holding the SalDe digit, is 3 x 2n-l. For example, there are 12
such strings of length three: 010, 012, 020, 021, 101, 102, 120, 121, 201, 202, 210,
and 212. Prove this claim by induction on the length of the strings. Is the formula
true for n = O?

2.3.8*: Prove that the ripple-carry addition algorithm discussed in Section 1.3
produces the correct answer. Hint: Show by induction on i that alter considering
the first i places from the right end, the sum of tbe tails of length i for the two
addends equals the number whose binary representation is the carry bit followed by
the i bits of answer generated so far.

2.3.9*: The formula for the sum of n
is

,,-1L ari = (ar" - a)
i:zO (r - 1)

Prove this formula by induction on n. Note that you must assume r ~ 1 for the
formula to boldo Wh~re do you use that assumption in your proof?

2.3.10: The formula for the sum of an arithmetic series with first term a and
increment 6, that is, a, (a + 6), (a + 26),..., (a + (n - 1)6), is

..-1
La + 6i = n(2a + (n - l}b)/2
,=o

a) Prove this formula by induction on n.

b) Show how Exercise 2.3.1(a) is an example of this formula.

2.3.11: Give two informal proofs that induction starting at 1 "works," although
the statement 8(0) may be falseo

2.3.12: Show by induction on the length of strings that the code consisting of the
odd-parity strings detects errors.

digits - 8&Y o, 1, and 2 - to code symbols. A set
en-or detecting if no two strings in C
11,22} is an error-detecting set with

and 2. Show that for any n ~ 1, an
digits O, 1, and 2, cannot have

series a, ar, ar2,..., ar"-l

.
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Arithmetic and Geometric Sums
There are two formulas from high-scl1oo1 algebra that we sha1l use frequently. They
each have interesting inductive proofs, which we ask the reader to provide in Exer-

cises 2.3.9 and 2.3.10.

An arithmetic series is a sequence of n numbers of the forro

a, (a + b), (a + 2b),..., (a + (n - l)b)

The first term is a, and each term is b larger than the one before. The SUJO of these
n numbers is n times the average of the first and last terms; that is:

..-1
La + bi = n(2a + (n -1)6)/2
i=O

For example, consider the sum of 3 + 5 + 7 + 9 + 11. There are n = 5 terms, the
first is 3 and the last 11. Thus, the sum is 5 x (3 + 11)/2 = 5 x 7 = 35. You can
clleck that this sum is correct by adding the five integers.

A geometric series is a sequence of n numbers of the fono

2 -3 n-l
a,ar,ar ,ar-,...,ar

Tbat is, tbe first tenn is a, and each successive term is r times tbe previous termo
Tbe formula for tbe sum of n tenns of a geometric series is

,,-1
¿Mi =
i=O

(arA - a)

~=1)-
Here, r can be greater or less than 1. If r = 1, the above formula does not work,
but all terms are a so the sum is obviously ano

As an example of a geometric series sum, consider 1 + 2 + 4 + 8 + 16. Here,
n = 5, the first term a is 1, and the ratio r is 2. Thus, the sum is

(1 x ~ - 1)/(2 - 1) = (32 - 1)/1 = 31

asyou mar c-Jleck. ForanotberGample, consider 1 + 1/2+ 1/4+ 1/8+ 1/16. Again
n = 5 and a = 1, but r = 1/2. The sum is

(1 X (!)5 -1)/(! -1) = (-31/32)/(-1/2) = 1tl

2.3.13..: If no two strings in acode differ in fewer than three positions, then we
can actually correct a single error, by finding the unique string in the code that
differs froro the received string in only one position. It turns out that there is a
code of 7-bit strings that corrects single errors and contains 16 strings. Find such a
codeo Hint: Reasoning it out is probably best, but if you get stuck, write a program
that searches for such acode.

2.3.14.: Does the even parity code detect any "double errors," that is, changes in
two different bits? Can it correct any single errors?

,
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.:. 2.4

In the examples seen so lar, we have proved that S(n + 1) is true using only S(n)
as an inductive hypothesis. However, since we prove our statement S for values of
its parameter starti~ at the basis value and proceeding upward, we are entitled to
use S(i) for all values of i, from the basis value up to n. This forro of induction is
called complete (or sometimes perfect or strong) induction, while the simple forro of
induction oí Section 2.3, where we used only S(n) to prove S(n + 1) is sometimes
called weak induction.

Let us begin by considering how to pedorro a complete induction starting with
basis n = O. We prove that S(n) is true for all n ?: O in two steps: e

1. We first prove the basis, S(O).

Strong and
weak induction

2. As an inductive hypothesis, we assume all of S(O), S(1),. . ., S(n) to be true.
From tbese statements we prove that S(n + 1) bolds.

As for weak induction described in tbe previous section, we can alBO pick some
value a otber tban O as tbe basis. Tben, for tbe basis we prove S(a), and in tbe
inductive step we are entitled to assume only S(a),S(a + 1),..., S(n). Note that
weak induction is a special case of complete induction in which we elect not to use
any of the previous statements except S(n) to prove S(n + 1).

Figure 2.7 suggests how complete induction works. Each instance of tbe state-
ment S(n) can (optionally) use any of the lower-indexed instances to its right in its

proof.

into which the simple inductions
template.

Say you are going to prove S(n) by
the constant of the basisj usually io

intuitively what n means, e.g.,

-

,
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~

Fig.2.7. Complete induction aIlows each instance to ~ onc, BOrne, or
aI1 of the previous instances in its proaf.

Inductions Witb More Tban One Basis Case
When perfonning a complete inductioo, there are times when it is useful to have
more than one basis case. If we wish to prove a statement S(n) lor al1 n ~ io, then
we could treat oot ooly io as a basis case, but a1so sorne oumber 01 consecutive
integers above io, say io, io + 1, io + 2, . . . ,jo. Tben we must do the 10Uowing two

steps:

1. Prove each 01 tbe basis cases, tbe statements S(io), S(io + 1),..., S(1o).

2. As an inductive hypotbesis, assume al1 01 S(io), S(io + 1),..., S(n) hold, for
some n ~ io, and prove S(n + 1).

Example 2.1. Our first example of a complete induction is a simple ooe that
uses multiple basis cases. As we shall see, it is ooly "complete" in a limited sense.
To prove S(n + 1) we do not use S(n) but we use S(n - 1) ooly. In more general
complete inductions to foUow, we use S(n), S(n - 1), and manyother instances 01

the statement S.
Let us prove by induction on n the 10Uowing statement lor all n ~ 0.4

STATEMENT S(n): There are integers a and b (positive, negative, or O) such that
n = 2a + 36.

"
BASIS. We shall take both O and 1 88 basis ~.

i) For n = O we mar pick a = O and b = O. Surely O = 2 x O + 3 x O.

ii) For n = 1, pick a = -1 and b = 1. Then 1 = 2 x (-1) + 3 x 1.

INDUCTION. Now, we mar assume S(n) and prove S(n + 1), for any n ?: l. Note
that we mar assume n is at least the largest of the consecutive values for which we
have proved the basis: n ?: 1 here. Statement S(n + 1) says that n + 1 = 2a + 3b
for sorne integers a and b.

The inductive hypothesis says that al1 of S(O), S(l),..., S(n) are true. Note
that we begin the sequence at O because that was the Jowest oí the consecutive basis
cases. Since n ?: 1 Cal} be assumed, we know that n -1 ?: O, and therefore, S(n -1)
is true. This statement says that there are integers a and b such that n - 1 = 2a + 36.

4 Actually, tbis ~ment is tme for all n, positive or negative, but tbe Calle of n~ative n
requires a 8ec:ond induction which we leave a.'I éUI I'xercisc.

a and b (positive, negative, or O) such that

4

.
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Since we need a in the staternent S(n+ 1), Jet us restate S(n-l) to use different
llames for the integers and say there are integers a' and b' such that

n - 1 = 2a' + 3b' (2.6)

If we add 2 to both Birles of (2.6), we have n + 1 = 2(a' + 1) + 3b'. If we then Jet
a = a' + 1 and b = b', we have the staternent n + 1 = 2a + 3b for sorne integers a
and b. This staternent is S(n + 1), so we have proved the induction. Notice that in
this proaf, we did not use S(n), but we did use S(n - 1). .

J ustifying Complete Induction

Like the ordinary or "weak" induction discussed in Section 2.3, complete induction
can be justified intuitively as a proof technique by a "Ieast counterexample" argu-
mento Let the basis cases be S(io), S(io + 1),..., SUo), and suppose we have shown
that for any n ?: jo, S(io), S(io+ 1),... ,S(n) togetber imply S(n+ 1). Now, suppose
S(n) were not true for at least one value of n ?: io, and let b be the smallest integer
equal to or greater than io for which S(b) is falseo Then b cannot be between io and
jo, or the basis is contradicted. Furtber, b cannot be greater tban jo. Ir it were, all
of S(io), S(io + 1),... ,S(b - 1) would be true. But the inductive step would then
tell us that S(b) is true, yielding the contradiction.

Norma! Forms for Arithmetic Expressions

We shall now explore an extended example concerning the transformation of arith-
metic expressions to equivalent forms. It offers an illustration of a complete induc-
tion that takes full advantage of the fact that tbe statement S to be proved may be
assumed for aIl arguments from n downward.

By way of motivation, a compiler for a programming ianguage may take ad-
vantage of the algebraic properties of arithmetic operators to rearrange the arder
in which the operands of an arithmetic expression are evaluated. The goal is of this
rearrangement is to find a way for the computer to evaluate the expression using
less time than the obvious evaluation arder takes.

In this section we consider arithmetic expressiODS containing a single associative
and commutative operator, like +, and examine what rearrangements of operands
are possible. We shall prove that if we have any expression involving onIy the
operator +, then the value of the expression is equal to the value of any other
expression with + applied to the salDe operands, ordered and/or: grouped in any
arbitrary way. For example,

(a3 + (a4 + al)) + (a2 + as) = al + (a2 + (a3 + (a4 + as)))

We shall prove this claim by performing two separate inductions, the first oí which
is a complete induction.

Example 2.8. We shall prove by complete induction on n
operands in an expression) the statement

+ (the number of

.
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Associativity and Commutativity
Reca1l tbat tbe associ4tive law for addition says that we can add three values either
by adding tbe first two and then adding tbe third to tbe result, or by adding the first
to the result of adding the second and thirdj tbe result will be the same. Formally,

(El +~)+& =EI +(~+E3)

where El, ~, and & are any arithmetic expressions. For inst<U1ce,

(1 + 2) + 3 = 1 + (2 + 3)

Here, El = 1, ~ = 2, and & = 3. Also,

((xy) + (3z - 2)} + (y + z) = xy + ((3z - 2) + (y + z)}

Here, El = xy, ~ = 3z - 2, and & = y + z.
Also recall that the commutative law for addition says that we can suro two

expr~ions in either order. Fom1ally,

El +~ = ~+EI
For example, 1 + 2 = 2 + 1, and xy + (~z - 2) = (3z - 2) + xy.

STATEMENT S(n): If E is an expressioil involving the operator + and n operands,
and a is one of tbose operands, then E can be transforrned, by using the
associative and cornrnutative laws, into an expression of the form a + F,
where F is an expression involving all the operands of E except a, grouped
in sorne arder using the operator +.

Statement S(n) only holds for n ?: 2, since there must be at least one occurrence
of the operator + in E. Thus, we shall use n = 2 as our basis.

BASIS. Let n = 2. Then E can be only a + b or b + a, for some o~and b other
than a. In the first case, we let F be the expression b, and we are done. In the
second case, we note that by the commutative law, b + a can be transformed joto
a + b, and so we mar again Jet F = b.

INDUCTION. Let E have n + 1 operands, and assume that S(i) is true for i =
2,3, . . . , n. We need to prove the inductive step for n ~ 2, so we mar assume
that E has at least three operands and therefore at least two occurrences of +.
We can write E as El + ~ for some expressions El and E2. Since E has exactly
n + 1 operands, and El and ~ must each have at least one of these operands, it
follows that neither El nor ~ can have more than n operands. Thus, the inductive
hypothesis applies to El and ~, as long as they have more than one operand each
(because we started with n = 2 as the basis). There are four cases we must consider,
depending whether a is in El or E2, and on whether it is or is not the only operand

in El or ~.
a) El is a by itself. An example of this case occurs when E is a + (b + c); here El

is a and ~ is b + c. In this C(ISC, E2 serves as F; that is, E is already of the

form a + F.

.
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b) El has more tban one operand, and o is 8Il1ong tbem. For instante,

E= (c+(d+o») +(b+e)

where El = c + (d + a) and ~ = b + e. Here, since El has no more than
n operands but at least two operands, we can apply the inductive hypotbesis
to teU us tbat El can be transformed, using the commutative and associative
laws, into o+Es. Thus, E can be transformed into (0+&)+&. We apply the
associative law and see tbat E can furtber be transformed into o + (Es + ~).
Thus, we mar choose F to be E3 + ~, which proves the inductive step in
tbis case. For our ex8ll1ple E above, we mar suppose tbat ~ = c + (d + o)
is transformed by the inductive hypothesis into 0+ (c + d). Tben E can be
regrouped into 0+ (c + d) + (b + e»).

c) ~ is o alone. For instance, E = (b+c)+o. In tbis case, we use the commutative
law to transform E into o + El, which is of the desired form if we let F be El'

d) ~ has more than one operand, including a. An example is E = b + (a + c).
Apply tbe commutative law to transform E into ~ + El' Then proceed as

in case (b). HE = b + (o + c), we transform E mst into (o + c) + b. By the
inductive hypothesis, a + c can be put in the desired form; in fact, it is already
tbere. The associative law then transforms E into a + (c + b).

In a1l four cases, we have transformed E to the desired formo Thus, tbe inductive
step is proved, and we conclude that S(n) for a1l n'~ 2. +

... Example 2.9. The inductive proof of Example 2.8 leads directly to an algo-
rithm that puts an expression into the desired formo As an example, consider the
expression

and suppose that v is the operand we wish to "pull out," that is, to play the role oí
a in the tran8Íormation oí Example 2.8. Initially, we have an example oí case (b),
with Et = x + (z + v), and ~ = w + y.

Next, we must work on the expression El and "pulI out" v. El is an example oí
case (d), and so we first apply the commutative law to transíorm it into (z + v) + x.
As an instance oí case (b), we must work on tbe expression z + v, which is an
instance oí case (c). We thus tran8Íorm it by the commutative law into v + z.

Now El has been tran8Íormed into (v+ z) + x, and a further use oí the associative
law tran8Íorms it to v+(z+x). That, in tum, transforms E into (v+(z+x»)+(w+y).
By the associative law, E can be tran8Íormed into v + ((z + x) + (w + y»). Thus,
E = v + F, where F is the expression (z + x) + (w + y). The entire sequence oí
transíormations is summarlzed in Fig. 2.8. +

Now, we can use the statement proved in Example 2.8 to prove our original
contention, that any two expressions involving the operator + and the sanle list
of distinct operands can be transformed one to the other by thc ~sociative and
commutative laws. This proof is by weak induction, as discussoo in SectiOlI 2.3,
rather than complete induction.

E= (%+(z+v)} +(10'+1/)

,
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(s + (z + ti») + (., + ,)
(z + ti) + z) + (w + ,)
(tI+z)+s) +(.,+,)
(ti + (z + s») + (., + ,)
ti + «z + s) + (., + ,»)

Fig. 2.8. Using the commutatiw ud a880ciatiw laws, ~ can "pullout"
any operand, such as ti.

by inductioo 00 n, tbestatem en t

STATEMENT T(n): If E and F are expressioDS involving the operator + and the
salDe set of n distinct operands, then it is possible to transform E into F by
a sequence of applications of the associative and commutative laws.

BASIS. If n = 1, then the two expressions must both be a single operand a. Since
they are the salDe expression, sureiy E is "transformable" into F.

INDUCTION. Suppose T(n) is true, for Bome n ~ 1. We shall now prove T(n + 1).
Let E and F be expressiODS involving the same ~t of n+ 1 operands, and let a be one
of these operands. Since n + 1 ~ 2, S(n + 1) - the statement from Example 2.8 -

must boldo Thus, we can transform E into a + El for some express ion El involving
the other n operands of E. Similarly, we can transform F into a + FI' for some
expression FI involving the salDe n operands as El' What is more important, in
tbis case, is that we can a1so perform the traosformatioDS in the opposite direction,
traosforming a + FI into F by use of the associative and commutative laws.

Now we invoke the inductive hypothesis T(n) on the expressions El and FI.
Eacl1 has the same n operands, and so the inductive hypothesis applies. That teUs
us we can transform El into Fl' and therefore we can transform a+EI into a+FI'
We mar thus perform the traosformations

E -+ +a+EI UsingS(n+1)
-+ . . . -+ a + FI Using T(n)
-+ ... -+ F Using S(n + 1) in reverse

to turn E into F. +

Example 2.11. Let os transform E = (x+y)+(w+z) into F = (w+z)+y)+x.
We begin by selocting an operand, say w, to "pull out." IC we check the cases in
Example 2.8, we see that Cor E we perlonn the sequence oC transformations

(x + y) + (w + z) -+ (w + z) + (x + y) -+ w + (z + (x + y)) (2.7)

while Cor F we do

{(w + z) + y) + x -+ (., + (z + y)) + x -+ w + {(z + y) + x) (2.8)

,
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We now have the subproblem of transforming z + (x + 'J) into (z +~) + x. We
shall do so by «pulling out" x. The sequences of transformations are

z + (x + 'J) -+ (x +~) + z -+ x + (1/ + z) (2.9)

and

(z + 'J) + x -+ x + (z + 1/) (2.10)

Tbat, in turn, giV5 U8 a subproblem of transforming 1/ + z into z + 1/. We do so
by an application of the commutative law. Strictly speaking, we use the technique
of Example 2.8 to "pull out" 'J for each, leaving 'J + z for each expression. Then
the basis case for Example 2.10 tells us that the expression z can be "transformed"
into itself.

We can now transform z + (x + y) ioto (z + y) + x by the steps of line (2.9),
then applying the commutative law to subexpression 'J + z, and finally using the
transformation ofline (2.10), in reverse. We use these transformations as the middle
part of the transformation from (x + 'J) + (w + z) to {(w + z) + 'J) + x. FÍrst we
apply the transformations of line (2.7), and then the transformations just discussed
to change z + (x + 'J) into (z + 'J) + x, and finally the transformations of line (2.8)
in reverse. The entire sequence of transformations is summarized in Fig. 2.9. +

EXERCISES

2.4.1: "Pullout" froro the expression E = (u + ti) + ((w + (x + y)} + z) each of
the operands in tUfO. That is, start from E in each of the six parts, and use the
techniques of Example 2.8 to transform E into an expression of the forro u + El.
Then transform El into an expression of the forro ti + ~, and SO oo.

2.4.2: Use the technique of Example 2.10 to transform

a) w+(x+(y+z)} into (w+x)+y}+z
b) (v + w) + (x + y) + z} into (y + w) + (ti + z)} + x

2.4.3*: Let E be an expression with operators +. -, *. and /; each operator is
binary only; that is, it takes two operands. Show, using a complete induction on
the number of occurrences oí operators in E, that if E has n operator occurrences,
then E has n + 1 operands.

Binnryoperator

(% + W) + (ID + z) Expression E
(ID + z) + (% + W) Middle oí (2.7)
ID + (z + (% + W») End oí (2.7)
ID + (so + J) + z) Middle oí (2.9)
ID + (so + (y + .)) End oí (2.9)
ID + (so + (z + ,») Commutative law
ID + (z + W) +.2.') (2.10) in reverse
(ID + (z + y») + % Middle oí (2.8) in reverse
(UJ + z) + y) + % Expression F, end oí (2.8) in reverse

Fig. 2.9. Transforming one expression into another using the commutative
and ~iative laws.

.
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A Template for AII Inductions

Tbe foUowing organizatioo of ioductive proofs covers complete indUctiODS with mul-
tiple basis cases. As a special case it includes tbe weak inductioos of Sectioo 2.3,
and it includes tbe common situation wbere there is ooly one basis case.

1. Specify tbe statement S(n) to be proved. Say that you are going to prove S(n)
by inductioo 00 n, for n ?: io. Specify what io is; often it is O or 1, but io could
be any integer. Explain intuitively what n represents.

2. State tbe basis case(s). These wiU be a1l tbe integers from io up to some integer
jo. Often jo = io, but jo could be larger.

3. Prove ead1 of the basis cases S(io),S(io + 1),... ,S(jo).

4. Set up the inductive step by stating tbat you are assuming

S(io),S(io + 1),... ,S(n)

(the "inductive bypotbesis") and that you want to prove S(n + 1). State that
you are assuming n ?: jo; that is, n is at least as great as the highest basis case.
Express S(n + 1) by substituting n + 1 for n in the statement S(n).

5. Prove S(n + 1) under the assumptions meotioned in (4). If the inductioo is
a weak, rather than complete, ind':Jctioo, then ooly S(n) will be used in the
proof, but you are free to use any or a1l of the statements of the inductive

hypothesis.

6. Conclude that S(n) is true for a1l n ~ io (but oot o~y ror smaIIer n).

2.4.4: Give an example of a binary operator tbat is commutative but not associa-
tive.

2.4.5: Give an example of a binary operator that is associative but not commuta-
tive.

2.4.6*: Consider an expressiol! E wb~ operaron are all binary. The length of E
is the number of symbols in E, counting an operator or a left or rigbt parenthesis as
one symbol, and aIso counting any operand such as 123 or abc as one symbol. Prove
tbat E must have an odd lengtb. Hint: Prove the claim by complete induction on
tbe length of the expression E.

2.4.7: Show that every negative integer can be written in tbe fonn 2a + 3b for some
(not necessarily positive) integers a and b.

2.4.8*: Show that every integer (positive or negative) can be written in the forro
5a + 7b for some (not necessarily positive) integers a and b.

2.4.9*: Is every proofby weak induction (M. in Section 2.3) aIso a proofby complete"
induction? Is every proof by complete induction aIso a proof by weak indurtion?

2.4.10*: We showed in this section how to justify complete indurtion by a lea.~t
counterexample argumento Show how complete induction can alllO be ju!ltitied by
an iteration.

.
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Truth in Advertising
There are many difficulties, botb theoretical and practical, in proving programs
correcto An obvious question is "What does it mean for a program to be 'correct'?"
As we mentioned in Chapter 1, most programs in practice are written to satisfy some
informal speclflcation. The specification itself mar be incomplete or inconsistent.
Even if there were a precise formal specification, we can show tbat no algoritbm
exists to prove that an arbitrary program is equivalent to a given specification.

However, in spite of these difficulties, it is beneficial to state and prove asser-
tions about programs. The loop invariants of a program are often the most useful
short explanation one can give of how the program works. F\1rther, the programmer
should have a loop invariant in mind while writing a piece of codeo Tbat is, there
must be a reason why a program works, and tbis reason often has to do witb an
inductive hypothesis tbat holds eacl1 time the program goes around a loop or each
time it performs a recursive callo The programmer should be able to envision a
proof, even though it mar be impractical to write out such a proof line by line.

.:. 2.5 Proving Properties of Programs

In this section we shall delve into an area where inductive proofs are essential:
proving that a program does what it is claimed to do. We shall see a tecllnique
for explaining what an iterative program does as it goes around a loop. H we
understand what the loops do, we generally understand what we need to know
about an iterative programo In Section 2.9, we sbaIl consider wbat is needed to
prove properties of recursive programs.

Loop Invariants

The key to proving a property of a loop in a program is selecting a loop invariant,
or inductive assemon, which is a statement S that is true each time we enter a
particular point in the loop. The statement S is then proved by induction on a
parameter that in sorne way measures the nurnber of times we have gone around
the loop. For example, the parameter could be the number of times we have reached
the test of a while-loop, it could be the value of the loop index in a for-loop, or it
could be some expression involving the program variables that is known to increase
by 1 for each time around the loop.

Inductive
assertion

+ Example 2.12. As an example, let us consider the inner loop ofSelectionSort
from Section 2.2. Th~ lines, with the original nwnbering from Fig. 2.2, are

(2) ama11 = i;
(3) for (j = i+l; j < n; j++)
(4) if (A[j] < A[ama11])
"(S) ama11 = j;

.

,
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Flowchart for the inner loop of SelectionSort.Fig.2.10.

Recall that the purpose oí these línes is to make amall equal to the index oí an
element oí A[i. .n-l] with the smallest value. To see why that claim is true,
consider the flowchart íor our loop shown in Fig. 2.10. This flowchart shows the
five steps necessary to execute the program:

1. First, we need to initialize small to i, as we do in line (2). .
2. At the beginning oí the íor-loop oí line (3), we need to initialize j to i + 1.

3. Then, we need to test whether j < n.
4. If so, we execute the body oí the loop, which consists oí lines (4) and (5).

5. At the end oí the body, we need to increment j and go back to the test.

In Fig. 2.10 we see a point just before the test that is labeled by a loop-invariant
statement we have called S(k); we shall discover momentarily what this statement
must be. The first time we reach the test, j has the value i + 1 and small has the
value i. The second time we reach the test, j has the value i + 2, because j has been
incremented once. Because the body (lines 4 and 5) sets small to i + 1 if A[i + 11
ís less than A[i], we see that amall is tbe index of whichever of A[i] and A[i + 1] is

smaller .5

5 In case of a tie, small will be i. In general, we shall pretend that no ties occur and talk about
"the smallest. element." when we really me&n "t.he first. occurrence of t.he smallest. el.,ment.."

,
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Similarly, the third time we reach the test, the value of j is i + 3 and amall
is tbe index of tbe smallest of A [i. . i +2]. We shall thus try to prove the following
statement, which appears to be the general roleo

STATEMENT S(k): If we reach the test for j < n in tbe for-statement of line (3)
witb k as tbe value of loop index j, then the value of amall is the index of
tbe smallest of A [i . . k-l] .

Note that we are using tbe letter k to stand for one of tbe values that the variable
j assumes, as we go around the loop. That is less cumbersome than trying to use
j as tbe value of j, because we sometimes need to keep k fixed while tbe value of
j changes. Also notice tbat S(k) has the fonn "if we reach ... ," because for some
values of k we mar never readl the loop test, as we broke out of the loop for a
smaller value of tbe loop index j. If k is onc of those values, then S(k) is surely
true, because any statement of the forro "if A then B" is true when A is falseo

BASIS. The basis case is k = i + 1, where i is the value of tbe variable i at line
(3).6 Now j = i + 1 when we begin tbe loop. Tbat is, we bave just executed line
(2), which gives small tbe value i, and we have initialized j to i + 1 to begin the
loop. S(i + 1) says tbat small is tbe index of the smallest element in A[i. .i],
wbich means that tbe value of small must be i. But we just observed that line (2)
causes amall to bave the value i. Technically, we DlUSt also sbow that j can never
have value i + 1 except the first time we reach tbe test. Tbe reason, intuitively, is
tbat ead1 time around tbe loop, we increment j, so it wiIl never again be as low as
i + 1. (To be períectly precise, we sbould give an inductive proaf of tbe assumption
tbat j > i + 1 except tbe first time tbrough the test.) Thus, the basis, S(i + 1), has
been sbown to be true.

INDUCTION. Now let us assume as our inductive hypothesis that S(k) holds, for
some k ~ i + 1, and prove S(k + 1). First, if k ~ n, then we break out of the loop
when j has tbe value k, or earlier, and so we are sure never to reach the loop test
with the value of j equal to k + 1. In tbat case, S(k + 1) is surely true.

Thus, let us assume that k < n, so that we actually make the test with j eqUal
to k+1. S(k) says that amall indexes the smallest ofiCio .k-1], and S(k+1) says
that ama11 indexes the smallest of A[i. .k]. Consider what happens in the body of
the loop (lines 4 and 5) when j has the value k; there are two cases, depending on
whether tbe test of line (4) is true or noto

1. If A[k] is not smaller than the smallest of A [i. . k-1], then the value of sma11
does not change. In that case, however, small alSO indexes the smallest oí
A[i. .k], since A[k] is not the smallest. Thus, the conclusion of S(k + 1) is
true in this case.

2. If A[k] is smaller than the smallest of A[i] through A[k - 1], then amall is set
to k. Again, the conclusion oí S(k + 1) now
the smallest oí A [i. . k].

6 As lar as tbe loop of liDes (3) to (5) is concerned, i does not change. Thus. i + I is an

appropriate constant to use as the basis value.

holds, because k is tbe index of

,
~
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Thus, in either case, 88&11 is the index of the smallest of A [1. . k]. We go around
the lar-loop by incrementing the variable j. Thus, just before the loop test, when
j bas tbe value k + 1, tbe conclusion of S(k + 1) balda. We have now shown that
S(k) implies S(k + 1). We bave completed tbe induction and conclude that S(k)
holds for all valu~ k :2: i + 1.

Next, we apply S(k) to make our claim about tbe inner loop oflin~ (3) tbrougb
(5). We exit tbe loop when tbe value of j reaches n. Since S(n) says that small
indexes tbe smallest of A[i. .n-1], we have an important conclusion about the
working of tbe inner loop. We sball see bow it is used in tbe next example. +

(i. o; i < n-1; i++) {
--.11 . i;

for (j . i+l; j < n; j++)

if (j[j] < &[.-.11])
8al1 . j;

~eap . A [smal1] ;

j[8IU.l1] . A[i];&[i] . ~8p; .

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

for

}

Tbe body of the SeleaionSort. function.Fig. 2.11.

Example 2.13. Now, Jet us consider the entire SelectionSort function, the
heart of which we reproduce in Fig. 2.11. A ftowchart for this code is shown in
Fig. 2.12, where "body" refers to liDes (2) through (8) of Fig. 2.11. Our inductive
assertion, which we refer to as T(m), is again a statement about what must be true
just before the test for termination of the loop. Informally, when i has the value
m, we have selected m of the smallest elements and sorted them at the beginning
of the array. More precisely, we prove the following statement T(m) by induction
onm.

STATEMENT T(m): If we reach the loop test i < n - 1 of line (1) with the value

of variable i equal to m, then

a) 1[0. .8-1] are in sorted orderj that is, A[O] ~ A[I] ~ ... ~ A[m - 1].

b) All of A[m. .n-1] are at least as great as any of A[O. .8-1].

+

BASIS. Tbe basis ~ is m = o. Tbe basis is true for trivial reasons. If we look
at the statement T(O), pan (a) says that A[O. . -1] are sorted. But there are no
elements in the range A[O],..., AI-l], and so (a) must be true. Similarly, part (b)
of T(O) says that al} of A [O. . n-1] are at least as large as any of A [O. . -1]. Since
there are no elements of the latter description, part (b) is also truco

\



56 ITERATION,INDUC110N, ANO RECURSION

Fig. 2.12. Flow-chart for the entire sele"ction sort function.

INDUCTlON. For the inductive step, we assume that T(m) is true for some m?; O,
and we show that T(m + 1) holds. As in Example 2.12, we are trying to prove a
statement of the form "ir A then B," and such a statement is true whenever A is
falseo Thus, T( m + 1) is true if the assumption that we reach the for-loop test with
i equal to m + 1 is falseo Thus, we mar assume that we actually reach the test with
i having the value m + 1; that is, we mar assume m < n-l.

When i has tbe value m, the body of the loop finds a smallest element in
A[m. .n-l] (as proved by the statement S(m) of Example 2.12). This element is
swapped with A[m] in liDes (6) through (8). Part (b) of the inductive hypothesis,
T(m), ~ ~ the element chosen must be at least as large as any of A[O. .m-l].
Moreover, those elements were sorted, so now all of A [i. . mJ are sorted. That proves
part (a) of statement T(m + 1).

To prove part (b) ofT(m+ 1), we see that A[m] wasjust selected to be as small
as any ofA[m+l. .n-l]. Part (a) ofT(m) tells us that A[O. .m-l] were already as
small as any of A[m+l. .n-l]. Thus, alter executing the body of liDes (2) through
(8) and incrementing i, we know that all of A[m+l. .n-l] are at least as large as
any of A[O. .m]. Since now the value of i is m + 1, we have shown the truth oí the
statement T( m + 1) and thus have proved the inductive step.

Now, let m = n-l. We know that we exit the outer for-loop when i has the
value n -1, so T(n -1) will hold after we finish this loop. Part (a) of T(n - 1) says
that aU oí A [O. .n-2] are sorted, and part (b) says that A[n - 1] is as large as any
of the other elements. Thus, after the program terminates the elements in A are in
nonincreasing arder; that is, they are sorted. ...

~
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Loop Invariants for While-Loops

When we have a while-loop of the forol

while «condition»
<body>

it usua1ly makes sense to find the appropriate loop invariant for tbe point just
before the test of the condition. Generally, we try to prove the loop invariant holds
by induction on the number of times around the loop. Then, when the condition
becomes false, we can use the loop invariant, together with the falsebood oí tbe
condition, to conclude something useful about what is true after the while-loop

terminates.
However, unlike for-loops, tbere mar not be a variable wbose value counts the

number of times around the while-loop. Worse, while the for-loop is guaranteed to
iterate only up to the limit of the loop (for example, up to n - 1 for the inner loop
of the SelectionSort program), tbere is no reason to believe that the condition of
tbe while-loop will ever become falseo Thus, part of the proof of correctness for a
while-loop is a proof that it eventua1ly terminates. We usually prove termination
by identifying some expression E, involving the variables of the progran1, such that

1. The value of E decreases by at least 1 each time around the loop, and

2. The loop condition is false if E is as low as some specified constant, such as O.

Example 2.14. Tbe factorial function, written n!, is defined as tbe product of
tbe integers 1 x 2 x . .. x n. For example, 1! = 1, 2! = 1 x 2 = 2, and

5! = 1 x 2 x 3 x 4 x 5 = 120

Figure 2.13 sbows a simple program fragment to compute n! for integers n ~ 1.

8canf("Xd", in);
i = 2;
fact.1;
while (i <= n) {

fact = fact*i;

i++;
}
printf("Xd\n"

+

(1)
(2)
(3)'
c(4) .'
(5) 1
(6)

fact);('1)

Fig. 2.13. Factorial program fragmento

To begin, let us prove that the while-loop of lines (4) to (6) in Fig. 2.13 must
terminate. We shall choose E to be the expression n - i. Notice that each time
around the while-loop, i is increased by 1 at line (6) and n remains unchanged.
Therefore, E decreases by 1 each time around the loop. Moreover, when E is -1
or less, we have n - i :s: -1, or i ?: n + 1. Thus, when E becomes negative, the
loop condition i :s: n will be false and the loop will terminate. We don't know how
large E is initially, since we don't know what value OfD will be read. Whatever that
value is, however, E will eventually reach as low as -1, and the loop will tcnninate.

'"
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the
do. The appropriate loop-invarlant
value of the variable i, is

STATEMENT S(j): If we reach the loop ~ i .$: n with the
value j, then the value of the variable fact is (j - 1)!.

BASIS. The basis is S(2). We reach the test with i having value 2 only when we
enter the loop from the outside. Prior to the loop, liDes (2) and (3) of Fig. 2.13 set
fact to 1 and i to 2. Since 1 = (2 - 1)!, the basis is proved.

INDUCTION. Assume S(j), and prove S(j + 1). If j > n, then we break out of the
while-loop when i has the value j or earlier, and thus we never reach the loop ~
with i having the value j + l. In that case, S(j + 1) is trivially true, because it is
of the forlO "If we reach . .. ."

Thus, assume j .$: n, and consider what happens when we execute the body of
the while-loop with i having the value j. By the inductive hypothesis, before line
(5) is executed, fact has value (j - 1)!, and i has the value j. Thus, alter line (5)
is executed, fact has the value j x (j - 1)!, which is j!.

At line (6), i is incremented by 1 and so attains the value j + 1. Thus, when we
reach the loop ~ with i having value j + 1, the value of fact is j!. The statement
S(j + 1) says that when i equals j + 1, fact equals «(j + 1) - 1)!, or j!. Thus, we
have proved statement S(j + 1), and completed the inductive step.

We already have shown that the while-loop will terminate. Evidently, it ter-
minates when i first attains a value greater than n. Since i is an integer and is
incremented by 1 each time around the loop, i must have the value n + 1 when the
loop terminates. Thus, when we reach line (7), statement S(n + 1) must boldo But

Thus, the program prints n!, as wethat statement says that fact has the value nI.
wished to proveo

As a pr~tical matter, we should point out that on any computer the f~torial
program in Fig. 2.13 wiIl print n! as an answer for very few values of n. Tbe problem
is tbat the f~torial function grows so rapidly tbat tbe size of t~e answer quick1y
exceeds the maximum size of an ioteger 00 any real computer. ...

RCISESEXE

2.5.1: What is an appropriate loop invariant for the following program fragment,
whicl1 seta sum equal to the sum oí the

Prove your loop invariant by induction on i, and use it to prove that the program
works as intended.

2.5.2: The following fragment computes the sum ofthe integ(,Is in array A[O. .n-l]:

Fig. 2.13 does what it is ioteoded to
whicll we prove by ioductioo 00 thestatement,

i having the

from 1 to n?integers
scanf ("'/.d" ,in) ;
SUID = O;
for (i = 1; i <= n; i++)

SUID = SUID + i;

"
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2.5.6: Show by induction on the number oí times around the loop oí Fig. 2.10 that
j > i + 1 after the first time around.

.:. 2.6 Recursive Definitions

lnductive In a recursive, or inductive, definition, we define one or more classes oí closely
deflnition related objects (or íacts) in terms oí the objects themselves. The definition must

not be meaningless, like "a widget is a widget oí sorne color," or paradoxical, like
"something is a glotz ií and only ií it is not a glotz." Rather, a recursive definition
involves

l. One or more basis ndes, in which some simple objects are defined, and

2. One or more inductive ndes, whereby larger objects are defined in tenns of
smaller ones in the collection.

.L
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sum . o;

for (i = o; i < n; i++)

sum = sum + A[i];

What is an appropriate loop invariant? Use it to show that the fragment works as

intended.

2.5.3*: Consider the foUowing fragment:

scanf("Xd". in);
x = 2;
for (i = 1; i <= n; i++)

x = x . x;

An appropriate loop invariant for the point just before the test for i ~ n is that ir
we reach that point with the value k for variable i, then x = 22"-1. Prove that this
invariant holds, by induction on k. What is the value of x after the loop terminates?

SUID = O;

scanf ("Xd" J tx);
vhile (x >= O) {

SUID = SUID + X; .

scanf ("Xd" J b);

}

Fig. 2.14. Summing a list of integersterminated by a negative integer.

2.5.4*: The fragment in Fig. 2.14 reads integers until it finds a negative integer,
and then prints the accumulated sumo What is an appropriate loop invariant for
the point just before the loop test? Use the invariant to show that the fragment
performs as intended.

2.5.5: Find the largest value of n for which the program in Fig. 2.13 works on your
computer. What are the implications of fixed-Iength integers for proving programs
correct?

I
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Example 2.15. In the previous section we defined the factorial function by an
iterative algorithm: multiply 1 x 2 x ... x n to get n!. However, we can a1so define
the value of n! recursively, as follows.

BASIS. 1! = 1.

INDUCTION. n! = n x (n - 1)!.

For example, the basis tells us that 1! = 1. We can use this fact in the inductive
step witb n = 2 to find

2! = 2 x 1! = 2 x 1 = 2
With n = 3, 4, and 5, we get

3! = 3 x 2! = 3 x 2 = 6
4! = 4 x 3! = 4 x 6 = 24
5! = 5 x 4! = 5 x 24 = 120

and so oo. Notice that, although it appears that the term "factorial" is defined in
terms of itself, in practice, we can get tbe value of n! for progressively higher values
of n in terms of fue factorials for lower values of n oniy. Tbus, we bave a meaningful
definition of "factorial."

Strictly speaking, we sbould prove that our recursive definition of n! gives the

+

SalDe result as our original definition,

n!=lx2x."xR

To do so, we shall prove the following

STATEMENT S(n): nI, as defined recursively

The proo! will be by induction on n.

BASlS. S(l) clearly holds. The basis of the recursive definition tells us that 1! = 1,
and the product 1 x ... x 1 (i.e., the product of the integers "from 1 to 1") is
evidently 1 as well.

INDUCTION. Assume that S(n) holds; that is, n!, as given by the recursive defini-
tion, equals 1 x 2 x . . . x n. Then the recursive definition tells us that

(n + 1)! = (n + 1) x n!

If we use the commutative law for multiplication, we see that

(n + 1)! = n! x (n + 1) (2.11)

By the inductive hypothesis,

n!=1x2x",xn

Thus, we mar substitute 1 x 2 x ... x n for n! in Equation (2.11) to get

(n + I)!~ 1 x 2 x ... x n x (1/ + 1)

lx2x...xn.

l.-I
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+ Example 2.16. In Section 2.2 we defined the notion of lexicographic order of
Lexicographic strings, and our definition was iterative in nature. Roughly, we test whether string
arder CI . . . Cn precedes string dI . . . dm by comparing corresponding symbols Ci and dt

from the left, until we either find an i for which Ci ~ d; or come to the end of one of
the strings. The following recursive definition defines those pairs of strings w and
x such that w precedes x in lexicographic order. Intuitively, the induction is on the
number of pairs of equal characters at the beginnings of the two strings involved.

BASIS. The basis covers those pairs of strings for which we can immediately resolve
the question of which comes first in lexicographic order. There are two parts of the
basis.

l. f < w for any string w other tharl f itself. Recall that f is the empty string, or
the string with no characters.

2. If C < d, where C alld d are characters, then ror any strings tV and x, we have
cw < dx.

~

,)

L
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which is the statement S(n + 1). We have thereby proved the inductive hypothesis
and shown that our recursive definition of n! is the SalDe as our iterative definition."

Fig. 2.15. In a recursive definition, we construct objects in rounds, where
the objects constructed in one round may depend on objects

constructed in aI1 previous rounds.

Figure 2.15 suggests the general nature of a recursive definition. It is similar
in structure to a complete induction, in that there is an infinite sequence of cases,
each of which can depend on any or a1í of the previous cases. We start by applying
the basis rule or roles. On the next round, we apply the inductive rule or rules to
what we have already obtained, to construct new íacts or objects. On the following
round, we again apply the inductive rules to what we have, obtaining new facts or
objects, and so oo.

In Example 2.15, where we were defining the factoria.l, we discovered the value
oí 1! by fue basis case, 2! by one application oí the inductive step, 3! by two appli-
cations, and so oo. Here, the induction had the form of an "ordinary" induction,
where we used in each round only what we had discovered in the previous round.

,
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INDUCTION. If w < x for strings w and x, then for any character c ~ have

For instance, we can use the above definition to show that base < batter. By
rule (2) ofthe basis, with c = s, d = t, W = e, and x = ter, we have se < tter. If
we apply the recursive rule once, with c = a, W = se, and x = tter, we infer that
ase < atter. Finally, applying the recursive rule a second time with c = b, W =
ase, and x = atter, we find base < batter. That is, the basis and inductive steps
appear as foUows:

se < tter
ase < atter
base < batter

We can aIso show that bat < batter as foUows. Part (1) of the basis tells us
that l < ter. H we apply the recursive rule three times - with c equal to t, a,
and b, in tUfO - we make the foUowing sequence of inferences:

l < ter
t < tter
at < atter
bat < batter

Now we should prove, by induction on the number of characters that two strings
have in common at their left ends, that one string precedes the other according to
the definition in Section 2.2 if and only if it precedes according to the recursive

Expr~ssions

Arithmetic expressions of all kinds are naturally defined recursively. For the basis
of the definition, we specify what the atomic operands can be. For example, in C,
atomic operands are either variables or constants. Then, the induction tells us what
operators mar be applied, and to how many operands each is applied. For instante,
in C, the operator < can be applied to two operands, the operator symbol - can be

applied to one or two operands, and the function application operator, represented
by a pair of parenthesis with as many commas inside as necessary, can be applied
to one or more operands, as /(41, . . . , ~).

+ Example 2.17. It is common to refer to the following set of expressions ~
"arithmetic expressions."

BASIS. types of atomic operands are arithmetic cxpressions:The following

,
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1. Variables
2. Integers
3. Real Dumbers

INDUCTION. H El and ~ are aritbmetic expressiODS. then the following are also
arithmetic expressions:

+EJ)
-Ea)
x Ea)

lEa)

l. (Et
2. (El
3. (Et
4. (Et

The operators +, -, x, and / are said to be binary operators, because they take two
arguments. They are alBO said to be infix operators, because they appear between
their two arguments.

AdditionaUy, we aUow a minus sigo to imply negation (change of sign) , as well
as subtraction. That pO68ibility is refiected in the fifth and last recursive rule:

5. If E is an arithmetic expression, then so is (-E).

An operator like - in rule (5), which takes only one operand, is said to be a unary
operator. It is a1so &&id to be a prefix operator, because it appears before its

2.16 illustrates some aritbmetic expressions and explains why each is an
expression. Note that sometimes parentheses are not needed, and we can omit them.
In the final expression (vi) of Fig. 2.16, the outer parentheses and the parentheses
around -(x + 10) can be omitted, and we could write y x -(x + 10). However, the

are essential, since y x -x + 10 is conventionally interpreted
is not an equivalent expression (try y = 1 and x = O, for

remaining
as (y x -x) + lO,
instance).7 +

Basis rule (1)
Basis rule (2)
Recursive rule (1) 00 (i) and (ii)
Recursive rule (S) 00 (iii)
Basis rule (1)

Recursive rule (3) 00 (v) and (iv)

i} .1:

ii} 10
iii} (.1: + lO) '.

iv} (-(.1: + 10»)
v} 11 ",

vi} (11 x (-(.1: + 10»)

Some sample arithmetic expressions.Fig. 2.16.

7 Parentbeses are redundant wben tbey are implied by tbe conventional precedences of opera-
tors (unary minus bigbest, tben multiplication and division, tben addition and subtraction)
and by tbe convention of "left associativity," wbich saya that we group operators at the sam('
precedence level (e.g., a string of plusses and minuses) from the Jeft. These con\-entions
should be familiar from C, as wel1 as from ordinary aríthmetic.

,



64 ITERATlON,INDUcnON,

More Operator Terminology
A unary operator that appears alter its argument, as does the factorial operator! in
expressions like nI, is said to be a po.stji% operator. Operaton that take more tban
one operand can also be prefix or postfix operaton, if they appear before or alter all
their arguments, respectively. There are no examples in C or ordinary arithmetic oí
operators oí these types, although in Section 5.4 we shall discuss notations in which
all operators are prefix or postfix operaton.

An operator that takes three arguments is a terna,., operator. In C, ?: is
a ternary operator, as in the expression c?x:y meaning "if c then % else "." In
general, if an operator takes k arguments, it is said to be k-a,.,.

Postftx operator

Ternary

operator

Balanced Parentheses

Strings oí parentheses that can appear in expressiODS are called bolanced paTenthues.
For example, the pattern «(») appears in expression (vi) oí Fig. 2.16, and the
expression

(a+b) x «c+d) -e))

has the pattern «) ( () ) ). The empty string, E:, is also a string oí balanced paren-
theses; it is the pattern oí the expression x, íor example. In general, wbat makes a
string oí parenth~ balanced is tbat it is possible to match eacb left pal'eDtbesis
with a right parentbesis tbat appears somewbere to its right. Thus, a common
definition of "balanced parentbesis strings" consists oí two roles:

1. A balanced string has an equal number oí leít and right parentheses.

2. As we move from left to right along the string, tbe profile oí tbe string never
becomes negative, wbere tbe profile is the running total oí tbe number of left
parentbeses seen minus tbe number of rigbt pal'eDtheses seen.

Note tbat the profile must begin and end at O. For example, Fig. 2.17(a) shows tbe
profile oí «) «»), and Fig. 2.17(b) sbows tbe p'.ofile oí () «» ().

There are a number oí recursive definitions íor tbe notion of "balanced paren-
theses." Tbe íoUowing is a bit subtle, but we sha1l prove tbat it is equivalent to tbe
preceding, nonrecursive deflnition involving profiles.

BASIS. Tbe empty string is a string oí balanced parentheses.

INDUCTION. If x and y are strings oí balanced parentheses, tben (x)y is aIso a
string oí balanced parentheses.

Proftle

+ Example 2.18. By the basis, f is a balanced-parenthesis string. If we apply
the recursive rule, with x and y both equal to f, then we infer that () is balanced.
Notice that when we substitute tbe empty string for a variable, such as x or y. that
variable "disappears." Then we may apply the recursive rule with:

AND RECURSION

.
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P rofile- balanced

f

+ Example 2.19. First, let us prove part (1), that every balanced string is profile-
balanced. The proof is a complete induction that mirrors the induction by which
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3 '{ ..t~ c.,

2

1

O

(a) Profile of' (O ( m) .

~

1.

o
( ) ( ( )

(b) Profile of o (O) ().

Fig.2.11. Profiles of two strings of parenth~~.

1.

2.

3.

x = () and y = t:, to discover that «» is balanced.

x = t: and y = (), to find that () () is balanced.

x = y = () to infer that «» () is balanced.

As a final example, since we now know that «» and () () are balanced, we may
recursive role, respectiveIy, and show that «(»)()()let these be x and y

is balanced. .

We can that the
strings. To make things clearer, let us
the recursive definition simply as
the nonrecursive definition as profile-balanced.are those whose -- ends at O and '

things:

two definitions of "balanced" specify the same sets of
refer to strings that are balanced according to

balanced and refer to those balanced according to
That is, the profile-balanced strings

never goes negative. We need to show two

show

profile

1. Every balanced string is profile-balanced.

2. Every profile-balanced string is balanced.

inductiveaims two examples.Tbese are the oí the proofs iD the Dext

the class of balanced strings is defined. That is, we prove

STATEMENT S(n): ti string w is defined to be balanced by n applications oí the
recursive rule, then w is profile-balanced.

,
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BASIS. The basis is n = O. The only string that can be shown to be balanced
without any application of the recursive rule is E, which is balanced according to
the basis rule. Evidently, the profile of the empty string ends at O and does not go

negative, 80 E is profile-balanced.

INDUCTION. Assume that S(i) is true for i = 0,1,..., n, and consider an instance
of S(n + 1), that is, a string w whose proof oí balance requires n + 1 uses of the
recursive rule. Consider the last such use, in which we took two strings x and 1/,
already known to be balanced, and formed w as (x)y. We used the recursive rule
n + 1 times to forro w, and one use was the last step, which helped form neither
x nor y. Thus, neither x nor y requires more than n uses of the recursive rule.
Therefore, the inductive hypothesis applies to both x and 1/, and we can conclude

that x and y are profile-balanced.

Fig. 2.18. Constructing the profile of w = (z)y.

The profile oí w is as suggested in Fig. 2.18. It first goes up one level, in
response to the first left parenthesis. Then comes the profile oí x, raised one level,
as indicated by the dashed line. We used the inductive hypothesis to conclude that
x is profile-balanced; thereíore, its profile begins and ends at level O and never goes
negative. As the x portion oí w's profile is raised one leve! in Fig. 2.18, that portion
begins and ends at level 1 and never goes below level 1.

The explicitly shown right parenthesis between x and y lowers the profile oí w
to O. Then comes the profile oí y. By the inductive hypothesis, y is profile-balanced.
Thus, the y portion oí w's profile does not go below O, and it ends the profile oí w

at O.
We have now constructed the profile oí w and see that it meets the condition

íor a profile-balanced string. That is, it begins and ends at O, and it never becomes
negative. Thus, we have proved that ií a string is balanced, it is profile-balanced. ..

Now we shall address the second direction oí the equivalence between the two
definitions oí "balanced parentheses." We show in the next example that a profile-

balanced string is balanced.

Example 2.20.
by complete induction on the length of the string of parentheses.
ment is

+

~q i1

profile
oís profile

of,
l "

.. ) ,

1

(f

We prove part (2), that "profile-balanced" implies "balanced,"
Tbe fom1al state-

\
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Proofs About Recursive Definitions

Notice that Example 2.19 pro~ an assertion about a class of recursively defined
objects (the balanced strings of parentheses) by induction on the number of times
the recursive rule is used to establish tbat the object is in the defined class. That
is a very common way to deal with recursively defined conceptsj in fact, it is one
of the reasons recursive definitions are useful. As another illustration, in Example
2.15, we showed a property of the recursively defined factorial values (that n! is the
product of the integers from 1 to n) by induction on n. But n is also 1 plus the
number of times we used the recursive rule in the definition of n!, so the proof could
also be considered an induction on the number of applications of the recursive rule.

STATEMENT S(n): If a string w oflength n is profile-balanced, then it is balanced.

BASIS. If n = O, tben the string must be f. We know tbat f is balanced by tbe
basis rule of tbe recursive definition.

INDUCTION. Suppose tbat profile-balanced strings of length equal to or less tban
n are balanced. We must prove S(n + 1), that profile-balanced strings of length
n + 1 are also balanced.8 Consider such a string w. Since w is profile-balanced, it
cannot stan witb a rigbt parentbesis, oÍ' its profile would immediately go negative.
Tbus, w begins witb a left parentbesis.

Let us break w into two parts. Tbe first part starts at the beginning of w and
ends where tbe profile oí w first becomes O. The second part is the remainder oí
w. For example, the profile oí Fig. 2.17(a) first becomes O at the end, so ií w =
«) «»), tben tbe first part is tbe entÍre string and tbe second part is l. In Fig.
2.17(b), wbere w = () «» (), the first part is (), and tbe second part is «» ().

Tbe first part can never end in a left parentbesis, because tben tbe profile
would be negative at tbe position just before. Tbus, the first part begins witb a
left parenthesis and ends witb a rigbt parenthesis. We can tbereíore write w as
(x)y, wbere (x) is tbe first part and y is tbe second parto Both x and y are sborter
tban w, so if we can show tbey are profile-balanced, then we can use tbe inductive
bypothesis to infer tbat tbey are balanced. Tben we can use the recursive rule in
the definition oí "balanced" to show tbat w = (x)y is balanced.

It is easy to see that y is profile-balanced. Figure 2.18 a1so illustrates the
relationship between tbe profiles of w, x, and y here. Tbat is, tbe profile of y is
a tail of the profile of w, beginning and ending at height O. Since w is profile-
balanced, we can conclude tbat y is also. Sbowing tbat x is profile-balanced is
almost the samé. The profile of x is a part of the profile of Wj it begins and ends
at level 1 in the profile of w, but we can lower it by one level to get the profile of
x. We know that the profile oí w never reaclles O during tbe extent oí x, because
we picked (x) to be the shortest prefix of w tbat ends with the profile oí w at level
O. Hence, the profile of x within w never reaches level O, and the profile of x itself
never becomes negative.

We have now sbown botb x and y to be profile-balanced. Since they are each

8 Note that all profile-balanced strings happen to be of even length, 80 if n + 1 is odd, we art'
not saying anything. However, we do not need the ewnness of n for the proof.

\
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sborter tban w, tbe inductive bypotbesis applies to tbem, and tbcy are each bal-
anced. Tbe recursive rule defining "balanced" says tbat if x and y are balanced,
tben so is (x)y. But w = (x)y, and so w is balanced. We bave DOW completed tbe
inductive step and sbown statement S(n) to be true for all n ~ o. ...

EXERCISES

2.6.1*: Prove that the definitions of lexicographic order given in Example 2.16
and in Section 2.2 are the salDe. Hint: The proof consists of two palts, and each
is an inductive proof. For the first part, suppose that w < x according to the
definition in Example 2.16. Prove the following statement S(i) by induction on i:
"If it is necessary to apply the recursive rule i times to show that w < x, then w
precedes x according to the definition of 'lexicographic order' in Section 2.2." The
basis is i = O. The second part of the exercise is to show tbat if w precedes x in
lexicographic order according to the definition in Section 2.2, then w < x according
to the definition in Example 2.16. Now the induction is on the number of initial

positions that w and x have in common.

2.6.2: Draw the profiles of the following strings of parentheses:

a) «() ((»
b) ()(»«()
c) «()(»()(»
d) «)«)«»»
Which are profile-balanced? For tbose tbat are profile-balanced, use the recursive
definition in Section 2.6 to sbow that tbey are balanced.

2.6.3*: Show that every string of balanced parentheses (according to tbe recursive
definition in Section 2.6) is the string oí parentbeses in some arithmetic expression
(see Example 2.17 for a definition of arithmetic expressions). Hint: Use a proof by
induction on the number of times the recursive rule of the definition of "balanced
parentheses" is used to construct the given string of balanced parentbeses.

2.6.4: Tell wbether eacl1 of the following C operators is prefix, postfix, or infix, and
whether they are unary, binary, or k-ary for some k > 2:

a) <
b) t;
c) %

2.6.5: If you are familiar with the UNIX file system or a similar system, give a
recursive definition of the possible directory /file structures.

2.6.6*: A certain set S of mtegers is defined recursively by tbe following roles.

BASIS. O is in S.

INDUCTION. If i is in S, tben i + 5 and i + 7 are in S.

a) What is the largest integer not in 5?

\
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" b) Let j be your answer to part (a). Prove that aU integers j + 1 and greater are
't :' in S. Hint: Note the similarity to Exercise 2.4.8 (although here we are dealing
.. ~ with only nonnegative integers).

~
2.6.7*: Define recursiveIy the set of even-parity strings, by induction on the length
of the string. Hint: It helps to define two concepts simultaneously, both the even-
parity strings and the odd-parity strings.

5 2.6.8*; We can define sorted lists of integers as follows.

:¡ BASIS. A Iist consisting of a single integer is sorted.
e
. INDUCTION. If Lis a sorted list in which the last element is a, and if b ~ a, then
IJ L followed by b is a sorted listo
e
.1
g Prove that this recursive definition of "sorted list" is equivalent to our original,
J nonrecursive definition, which is that the list consist of integers

al ~ a2 ~ . . . ~ a,.

Remember, you need to prove two parts: (a) If a list is sorted by the recursive
definition, then it is sorted by the nonrecursive definition, and (b) if a list is sorted
by the nonrecursive definition, then it is sorted by the recursive definition. Part (a)
can use induction on the number of times the recursive rule is used, and (b) can
use induction on the length of the listo

2.6.9**: As suggested by Fig. 2.15, whenever we have a recursive definition, we~ can classify the objects defined according to the "round" on which each is gener-

ated, that is, the number of times the inductive step is applied before we obtain
~ each object. In Examples 2.15 and 2.16, it was fairly easy to describe the results
1 generated on each round. Sometimes it is more challenging to do so. How do you
¡ characterize the objects generated on the nth round for each of the following?
1 a) Aritbmetic expressions like those described in Example 2.17. Hint: Ifyou are

familiar with trees, which are the subject of Chapter 5, you might consider the
r tree representation of expressions.

b) Balanced parenthesis strings. Note that the "number of applications USed'"
as discussed in Example 2.19, is not the same as the round on which a string
is discovered. For example, «» () uses the inductive rule three times but is
discovered on round 2.

L

.:. 2.7 Recursive Functions

A recursive function is one that is called from within its own body. Often, the call is
Direct and directi for example, a function F has a call to F within itself. Sometimes, however,
indirect the call is indirect: some function Fl calls a function F2 directly, which calls F3
recursion directly, and so on, until some function F,. in the sequence calls Fl.

There is a common belief that it is easier to learn to program iteratively, or
to use nonrecursive function calls, than it is to learn to program recursively. While
we cannot argue conclusively against that point of view, we do believe that recur-
sive programming is easy once one has had the opportunity to practice the style.

,, ~~,~,-
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More Trutb in Advertising
A potential disadvantage oí using recursion is that function cal1s on some machines
are time-consuming, so that a recursive program may take more time to ron than an
iterative program íor the same problem. However, on many modero machines func-
tion calls are quite efficient, and so this argument against using recursive programs
is becoming less important.

Even on machines with slow function-calling mechanisms, one can profile a
program to find how muro time is spent on each part oí the programo One can then
rewrite the parts oí the program in which the bulk oí its time is spent, replacing
recursion by iteration ií necessary. That way, one gets the advantages oí recursion
throughout most oí the program, except íor a small fraction oí the code where speed
is most critical.

Recursive programs are often more succinct or easier to understand than their iter-
ative counterparts. More importantly, some problems are more easily attacked by
recursive programs than by iterative programs.9

Often, we can develop a recursive algorithm by mimicking a recursive definition
in the specification oí a program we are trying to implemento A recursive function
that implements a recursive definition will have a basis part and an inductive parto
Frequently, the basis part checks íor a simple kind oí input that can be solved by
the basis oí the definition, with no recursive call needed. The inductive part oí the
function requires one or more recursive calls to itself and implements the inductive
part J)í the definition. Some examples should clarify these points.

Profiling

Example 2.21. Figure 2.19 gives a recursive function that computes n! given a
positive integer n. This function is a direct transcription oí the recursive definition
of n! in Example 2.15. That is, line (1) oí Fig. 2.19 distinguishes the basis case from
the inductive case. We assume that n ?: 1, so the test of line (1) is really asking
whether n = 1. If so, we apply the basis rule, 1! = 1, at line (2). If n > 1, then we
apply the inductive rule, n! = n x (n -1)!, at line (3).

+

(1)
(2)

(3)

For instance, if we call fact(4), the

9 Such problerns often involve sorne kind of search. For instance, in Chapter 5 we shall see
sorne recursive algorithms for searching trees, algorithms that have no convenient iterative
analog (although there are equivalent iterative algorithms using stacks).

int fact(int n)

{
if (n <= 1)

return 1; /* basis */

el..
return n*fact(n-1); /* induction */

}

to compute n! for n ~ 1.functionFig. 2.19. Recursive

result is a call to fact (3), which calls
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~~

Defensive Programming

The program oí Fig. 2.19 iUustrates an important point about writing recursive
programs so that they do not ron off into infinite sequences of caUso We tacitly
assumed that f act would never be caUed with an argument lesa than 1. Best, of
course, is to begin fact with a test that n ?: 1, printing an error rnessage and
returning sorne particular value such as O if it is noto However, even if we believe
very strongly that t act will never be called with n < 1, we shaU be wise to include in
the basis case all th~ "error cases." Tben, the function fact called with erroneous
input wiU simply return tbe value 1, wbich is wrong, but not a disaster (in fact, 1
is even correct for n = O, since O! is conventionally defined to be 1).

However, suppose we were to ignore tbe error cases and write line (1) oí Fig.
2.19 as

if (n == 1)

Then ifwe caUed tact(O), it would look like an instance ofthe inductive case, and
we would next call fact(-l), tben fact(-2), and so on, terminating with failure
when the computer ran out of space to record the recursive calls.

fact(2), which calls fact(l). At that point, fact(l) applies the basis rule, be-
cause n ~ 1, and returns the value 1 to fact(2). Tbat call to fact completes
line (3), retuming 2 to fact(3). In tum, fact(3) returns 6 to fact(4), which
completes line (3) by retuming 24 as the answer. Figure 2.20 suggests the pattem
of calls and retumBo +

Ca1l.l.

fact(4)
Call.l.

t Return 24
fact(4)

~

t Return 6
fac~(3)fact(3)

Call.!.

~

t Retum 2

~

fact(2) fact(2)
can ... t Return 1

fact(l)

Calls and returns r5ulting &om call to fac~(4).Fig.2.20.

We can picture a recursion muro as we have pictured inductive proofs and
definitions. In Fig. 2.21 we have assumed that there is a notion of the "size" oí
argumenta for a recursive function. For example, for tbe function fact in Example
2.21 the value oí the argument n itaelf is tbe appropriate size. We shall say more
about the matter oí size in Section 2.9. However, let us note here that it is essential
for a recursion to make only ca1ls involving argumenta of smaller size. Also, we
must reach the basis case - tbat is, we must tenninate the recursion - when we

reach some particular size, which in Fig. 2.21 is size O.
In the case of the function tact, tbe calls are not as general as suggested by

Fig. 2.21. A ca11 to fac't (n) resulta in a direct ca11 to fact (n-1), but tact (n) does
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not call f act with any smaller argument

Example 2.22. We can turn the functioo SelectionSort of Fig. 2.2 into a
recursive functioo recSS, if we express the underlyiog algorithm as folIows. Assume
the data to be sorted is in A[O. .0-1].

1. Pick a smallest elemeot from the tail of the array A, that is, from A [i. . n-1] .

2. Swap the elemeot selected in step (1) with A[i].

3. Sort the remaioder of the array, A[i+1. .n-1].

We can express selectioo sort as the foIlowing recursive algorithm.

BASIS. If i = n - 1, then only tbe last element of tbe array remains to be sorted.
Sioce any ooe elemeot is already sorted, we need not do anything.

INDUCTION. If i < n - 1, then find the smallest elemeot in A[i. .n-1], swap it
with A [i], and recursively sort A [i + 1 . . n-1] .

+

The entire algorithm is to períorm the above recursion starting with i = O.
H we see i as the parameter in the preceding induction, it is a case oí backward

induction, where we start with a high basis and by the inductive rule salve instances
with smaller values of the parameter in terms of instances with higher values. That
is a perfectly good style of induction, although we have not previously mentioned
its possibility. However, we can also see this induction as an ordinary, or "forward"
induction on a parameter k = n - i that represents the number of elements in the

tail of the array waiting to be sorted.
In Fig. 2.22, we see the program for recSS (A, i ,n). The second parameter i is

the index of the first element in the unsorted tail oí the array A. The third parameter
n is the total number of elements in the array A to be sorted. Presumably, n is less
than or equal to the maximum size of A. Thus, a call to recSS (A, O ,n) will sort the
entire array A[O. .n-1).

In terms ofFig. 2.21, 8 = n-i is the appropriate notion of "size" for arguments
of the function recSS. The basis is 8 = 1 - that is, sorting one element, in which

case no recursive calls occur. The inductive step tells us bow to sort s elements by
picking the smallest and tben sorting tbe remaining 8 - 1 elements.

At line (1) we test for the basis case, in which there is only one element re-
maining to be sorted (again, we are being defensive, so tbat if we somebow make a

Backward
induction

m'~}.t

itself
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void recSS(int i[]. int i. int n)

{
int j. amall. temp;

(1) if (i < n-l) {/* basis is vhen i = n-l. in vhich case */
/* the function returns vithout changing A */

/* induction follovs */

(2) amall. i;
(3) for (j . i+l; j < n; j++)

(4) if (A[j] < A[amall])
(5) amall = j;
(6) temp = A [amall] ;

(7) A[amall] . A[i];
(8) A[i] = t8p;

(9) recSS(A. i+l. n);
a }
e }

Fig. 2.22. Recursive selection sort.

call with i :?: n, we shall not go into an infinite sequence oí calls). In the basis case,
we have nothing to do, so we just return.

The remainder oí the function is the inductive case. Lines (2) through (8) are
copied directly írom the iterative version oí selection sort. Like that program. thesel. liDes set small to the index oí the array i[i. .n-l] that holds a smallest element

and then swap this element with A [i]. Finally, line (9) is the recursive call, which
sorts the remainder oí the array. +t

EXERCISES

d 2.7.1: We can define n2 recursivelyas íoIlows.
I
t
i BASIS. For n = 1, 12 = 1.
n
e INDUCTION. H n2 = m, then (n + 1)2 = m + 2n + 1.

8 a) Write a recursive C íunction to implement this recursion.
r
s b) Prove by induction on n that this deflnition correctly computes n2.
e

2.7.2: Suppose that we are given array A[O. .4], with elements 10, 13,4,7,11, in

s that order. What are the contents oí the array A just beíore each recursive call to
1 recSS, according to the recursive function oí Fig. 2.22?

" 2.7.3: Suppose we define cells íor a linked Iist oí integers, as discussed in Section 1.3,

using the macro DefCell(int. CELL. LIST) oí Section 1.6. Recall, this macro
expands to be the íoIlowing type definition:

i
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Divide-and-Conquer
One way of attacking a problem is to try to break it roto subproblems and then
salve the subproblems and combine their solutions into a solution for the problem
as a whole. The term ditlide-and-conquer is used to describe this problem-solving
technique. If the subproblems are similar to the original, then we may be able to
use the same function to salve the subproblems recursively.

There are two requirements for this technique to work. The first is that the
subproblems must be simpler than the original problem. The second is that af-
ter a finite number of subdivisions, we must encounter a subproblem that can be
sol ved outright. If these criteria are not met, a recursive algorithm will continue
subdividing the problem forever, without finding a solution.

Note that the recursive function recSS in Fig. 2.22 satisfies both criteria. Each
time it is invoked, it is on a subarray that has one fewer element, and when it is
invoked on a subarray containing a single element, it returns without invoking itself
again. Similarly, the factorial program of Fig. 2.19 involves cal1s with a smaller
integer value at eacll can, and the recursion stops when the argument of the call
reaches 1. Section 2.8 discusses a more powerful use of the divide-and-conquer
technique, called "merge sort." There, the size of the arrays being sorted diminishes
very rapidly, because merge sort works by dividing the size in hall, rather thansubtracting 1, at each recursive callo .

typedef 8truCt CELL *LIST;
atruct CELL {

int element;
LIST next;

};

Write a recursíve functíon find that takes an argument of type LIST and retums
TRu:E if some cell of the list contains the integer 1698 as its element and retums
FALSE if noto

2.7.4: Write a recursive function add that takes an argument of type LIST, as
defined in Exercise 2.7.3, and returns the SUIn of the elements on the listo

2.7.5: Write a version oí recursive selection sort that takes as argument
integers, using tbe cells mentioned in Exercise 2.7.3.

2.7.6: In Exercise 2.2.8 we suggested that one could generalize selection sort to use
arbitrary key and lt functions to compare elements. Rewrite the recursive selection
sort algorithm to incorporate this generality.

2.7.7*: Give a recursive algorithm that takes an integer i and produces the binary
representation of i as a sequence of O's and 1 '5, low-order bit first.

2.7.8*: The greatest common divisor (GCD) oí two ÍDtegers i and j is the largest
ÍDteger that divides both i and j evenly. For example, goo(24,30) = 6, and
goo(24,35) = 1. Write a recursive function that takes two ÍDtegers i and j, with
i > j, and returns goo(i,j). Hint: You mar use the íollowing recursive definition oí
goo. It assumes that i > j.

GCD

a list oí
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I ~ BASIS. If j divides i evenIy, tben j is tbe GCD of i and j.

INDUCTION.1f j does not divide i evenIy, let k be tbe remainder wben i is dividedn by j. Tben gcd(i,j) is tbe same as gcd(j,k).
n
.g 2.7.9..: Prove tbat tbe recursive definition of GCD given in Exercise 2.7.8 gives
o tbe Same result as tbe nonrecursive definition (largest integer dividing botb i and j

evenly).

~~ 2.7.10: Often, a recursive definition can be turned into an algoritbm fairly directly.
For example, consider tbe recursive definition of "less tban" on strings given inoe Example 2.16. Write a recursive function tbat tests whetber the first of two given

le strings is "less than" tbe otber. Assume tbat strings are represented by linked lists

h of characters.

is 2.7.11 *: From tbe recursive definition of a sorted list given in Exercise 2.6.8, create
If a recursive sorting algorithm. How does tbis algorithm compare with the recursive
~ selection 8Ort oí Example 2.22?
11

~

!8 ...:... 2.8 Merge Sort: A Recursive Sorting AIgorithm
D

We sball now consider a sorting algorithm, called merge sort, which is radically
~ different from selection 8Ort. Merge 8Ort is best described recursively, and it il-

Divide and lustrates a powerful use of the divide-and-conquer technique, in which we sort a
conquer list (al, a2,..., a,,) by "dividing" tbe problem into two similar problems oí hall tbe

size. In principie, we could begin by dividing tbe list into two arbitrarily chosen
equal-sized lists, but in tbe program we develop, we shall make one list out of tbe
odd-numbered elements, (al, a3, a5,'.') and tbe otber out oí the even-numbered
elements, (a2,~,~," .).10 We tben sort each of tbe balf-sized lists separately. To
complete tbe sorting of tbe original list of n elements, we merge tbe two sorted,

lB half-sized lists by an algorithm to be described in tbe next example.
lB In tbe next chapter, we sball see that tbe time required for merge sort grows

muro more slowly, as a function oí the length n oí the list to be sorted, tban does
the time required by selection sort. Tbus, even if recursive calls take some extracS time, merge sort is greatly preferable to selection sort wben n is large. In Chapter

3 we shall examine the relative performance of tbese two sorting algorithms.
)f

Merging
e To "merge" means to produce from two sorted lists a single sorted list containing
n all the elements oí tbe two given lists and no other elements. For example, given

the lists (1,2,7,7,9) and (2,4,7,8), tbe merger of these lists is (1,2,2,4,7,7,7,8,9).
Note tbat it does not make sense to ta1k about "merging" lists tbat are not already

y sorted.
One simple way to merge two lists is to examine them from the front. At

each step, we find tbe smaller oí tbe two elements at tbe current fronts oí the lists,
,1 choose that element as the next element on the combined list, and remove tbe chosen
d element from its list, exposing a new "first" element on tbat listo Ties can be broken
h
4' 10 Remember tbat "odd-numberedW and "ewn-numbered" refer to the positions of the elements

on tbe 1i8t, and not to the valUM of th- elements.

"' ""c. c"..~-~~~""""-~'"'" ..,'-,~-*'=--
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arbitrarily, aIthough we shaIl take from the first list when
both lists are the salDe.

Example 2.23. Consider merging the two lists

Ll = (1,2,7,7,9) and L2 = (2,4,7,8)

Tbe first elements of tbe lists are 1 and 2, respectiveIy. Since 1 is smaller, we clloose
it as tbe first element of tbe merged list M and remove 1 from Ll. Tbe new Ll is
tbus (2,7,7,9). Now, botb Ll and L2 bave 2 as their first elements. We can píck
eitber. Suppose we adopt tbe policy tbat we always píck tbe element from Ll in
case of a tie. Tben merged list M becomes (1,2), list Ll becomes (7,7,9), and L2
remains (2,4,7,8). Tbe table in Fig. 2.23 shows tbe merging steps untillists Ll
and L2 are botb exhausted. .

.

We shall find it easier to design a recursive merging algorithm if we represent
lists in the linked forro suggested in Section 1.3. Linked lists will be reviewed
in more detail in Chapter 6. In what folloW8, we shall assume that list elements
are integers. Thus, each element can be represented by a "cell," or structure of
the type struct CELL, and the list by a type LIST, which is a pointer to a CELL.
These definitions are provided by the macro DefCell(int. CELL. LIST), which
we discussed in Section 1.6. This use of macro DefCell expands into:

typedef struct CELL *LIST;
struct CELL {

int element;
LIST next;

};

The element field oí each cell contains an integer, and the next field contains a
pointer to the next cell on the list. H the element at hand is the last on the list,
then the next field contains the value NULL, which representa a null pointer. A list
oí integers is then represented by a pointer to the first cell on the list, that is, by
a variable oí type LIST. An empty list is represented by a variable with the value

Ll L, M

1,2,7,7,9 2,4,7,8 empty
2,7,7,9 2~4, 7,8 1
7,7,9 2,4,7,8 1,2
7,7,9 4,7,8 1,2,2
7,7,9 7,8 1,2,2,4
7,9 7,8 1,2,2,4,7
9 1,8 1,2,2,4,7,7
9 8 1,2,2,4,1,7,7
9 empty 1,2,2,4,7,7,7,8
empty empty 1,2,2,4,1,7,7,8,9

ExampleFig. 2.23.

the leading elements oí
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LIST merge(LIST 1ist1. LIST 1ist2)

{
(1) if (1ist1 == NULL) return 1ist2;

(2) el se if (list2 == NULL) return 1ist1;

(3) el se if (listl->element <= list2->element) {
1* Here. neither list is empty. and the first list

has the smal1er first element. The ansver is the

first element of the first list folloved by the

merge of the remaining elements. *1
(4) list1->next a merge(list1->next. list2);

(5) return list1;

}
e1se { 1* 1ist2 has smaller first element *1

(6) list2->next = merge(list1. list2->next);
(7) return list2;

}
f }

Fig. 2.24. Recursive merge.

NULL, in place oí a pointer to the first elemento
Figure 2.24 is a C implementation oí a recursive merging algorithm. The íunc-

e tion merge takes two lists as arguments and returns the merged listo That is, the
! formal parameters 1istl and list2 are pointers to the two given lists, and the re-
i( turn value is a pointer to the merged listo The recursive algorithm can be described
1 as íollows.
1
1 BASIS. If either list is empty, then the other list is the desired resulto This rule is

implemented by liDes (1) and (2)" oí Fig. 2.24. Note that if both Iists are empty,
then list2 will be returned. But that is correct, since the value oí list2 is then
NULL and the merger oí two empty lists is an empty listot

i
g INDUCTION. If neither list is empty, then each has a first elemento We can refer
1 to the two first elements as list1->element and list2->element, that is, the

element fields oí the cells pointed to by list1 and list2, res¡)ectively. Fig 2.25
~ is a picture oí the data structure. The list to be returned begins with the cel1 oí

the smallest elemento The remainder oí the list is íormed by merging a1I but that
elemento

For example, línes (4) and (5) handle the case in which the first element oí list
1 is smallest. Line (4) is a recursive call to merge. The first argument oí this call is
li st 1- >next, that is, a pointer to the second element on the first list (or NULL if the
first list only has one element). Thus, the recursive caIl is passed the list consisting
oí all but the first element oí the first listo The second argument is the entire second

~ listo As a consequence, the recursive call to merge at line (4) will return a pointer
, to the merged list oí a1I the remaining elements and store a pointer to this merged
t list in the next field oí the first cell on list 1. At line (5), we return a pointer to
v that cell, which is now the first cell on the merged list oí a1I the elements.
e Figure 2.25 illustrates the changes. Dotted arrows are present when merge is

..
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retum value

listl

list2

called. Solid arrows are created by merge. Specifically, the return value of merge is
a pointer to the ceIl of the smallest element, and the next field of that element is
shown pointing to the list returned by the recursive call to merge at line (4).

Finally, liDes (6) and (7) handle the case where the second list has the smallest
elemento The behavior oí the algorithm is exactly as in liDes (4) and (5), but the
roles oí the two lists are reversed.

Example 2.24. Suppose we call merge on tbe lists (1,2,7,7,9) and (2,4,7,8)
of Example 2.23. Figure 2.26 illustrates tbe sequence of calls made to merge, if we
read tbe first column downward. We omit tbe commas separating list elements, but
commas are used to separate tbe arguments of merge.

+

For instante, since the first element of list 1 is less than the first element of
list 2, line (4) of Fig. 2.24 is executed and we recursively merge all but the first
element of list 1. That is, the first argument is the tail of list 1, or (2,7,7,9), and
the second argument is the fulllist 2, or (2,4,7,8). Now the leading elements of
both lists are the SalDe. Since the test of line (3) in Fig. 2.24 favors the first list,
we remove the 2 from list 1, and OUT next call to merge has first argument (7,7,9)
and second argument (2,4,7,8).

The returned lists are indicated in the second column, read upward. Notice
that, unlike the iterative description of merging suggested by Fig. 2.23, the recursive

tomergedUst

.. . . . . . . .
.'

m

.. fc

lnductive step of merging algorithm.Fig.2.25.

CALL RF:roRN

aerge(12779. 2478) 122477789
aerge(2779. 2478) 22477789
aerge(779. 2478) 2477789
merge(779 , 478) 477789
aerge(779. 78) 77789
merge(79. 78) 7789¡ ,
merge(9. 78) 789
aerge(9. 8) 89
merge(9. NULL) O

Recursive caUs to _rge.Fig.2.26.



-; SEC. 2.8 MERGE SORT: A RECURSIVE SOIlTlNG ALGORITHM 79

algorithm asaembles tbe mergeci list &om tbe reaz, wbereas tbe iterative algoritbm
assembles it from tbe front. .

Splitting Lists
Anotber important task required for merge sort is splitting a list into two equal
parts, or into parts wbose lengtbs differ by 1 if tbe original list is of odd length.
One way to do this job is to count the number of elements on the list, divide by
2, and break the list at tbe midpoint. Instead, we shall give a simple recursive
function 8pli t tbat "dea1s" the elements into two lists, one consisting of the first,
third, and fifth elements, and so on, and the other consisting of the elements at
the even positions. More precisely, the function split removes the even-numbered
elements &om the list it is given as an argument and returns a new list consisting

s of the even-numbered elements.
8 The C code for function 8plit is shown in Fig. 2.27. Its argument is a list

t of the type LIST that was defined in connection with the merge function. Note
that the local variable pSecondCell is defined to be of type LIST. We really use

e pSecondCell as a pointer to the second ce1l on a list, rather than as a list itself;

but of course type LIST is, in fact, a pointer to a cell.
It is important to observe that split is a fWlction with a side effect. It removes

) the cells in tbe even positions from the list it is given as an argument, and it
asaembles these ceUs into a new list, which becomes the return value oí the function.

e
t

LIST 8plit(LIST li8t)

{
LIST pSecondCell;

(1) it (li8t .. NULL) return NULL;
(2) .lse it (li8t->n.xt .. NULL) r.turn NULL;

.lse { /. there are at leaat tvo cells ./

(3) pSecondCell. li8t->n.xt;
(4) list->next . pS.condCell->next;

(5) pSecondCell->next. 8plit(pSecondCell->next);
(6) return pSecondCell;

}
}

Fig. 2.21. Splitting a Iist into two equal pieces.

The splitting algorithm can be described inductively, as follows. It uses an
f induction on the lengtb of a list; tbat induction has a multiple basis case.
t
1 BASIS. If the list is of lengtb O or 1, then we do nothing. That is, an empty list
f is "split" into two empty lista, and a list of a single element is split by leaving

the element on tbe given list and returning an empty list oí tbe even-numbered
elements, of which there are DOne. Tbe basis is handled by liDes (1) and (2) oí Fig.
2.27. Line (1) bandles tbe case where list is empty, and line (2) handles tbe case

~ where it is a single elemento Notice tbat we are careful not to examine list->next
~ in line (2) unless we have previously determined, at line (1), tbat li8t is not NULL.

-., -~---,'~~ - .., -
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INDUCTION. Tbe inductive step applies wben tbere are at least two elements on
listo At line (3), we keep a pointer to tbe second cell of tbe list in the local variable
pSecondCell. Line (4) makes the next field of the first cell skip over tbe second
cell and point to the third cell (or become NULL if tbere are only two cells on the
list). At line (5), we call split recursively, on the list consisting of all but tbe first
two elements. The value returned by tbat call is a pointer to tbe fourtb element (or
NULL if tbe list is shorter tban tour elements), and we place tbis pointer in tbe next
field of the second cell, to complete the linking of the even-numbered elements. A
pointer to the second cell is returned by split at Une (6); that pointer gives us
access to tbe linked list of all the even-numbered elements of tbe originallist.

The changes made by split are suggested in Fig. 2.28. Original pointers are
dotted, and new pointers are solido We also indicate the number of the line that
creates each of the new pointers.

list

pSecondCell

retum value

The Sorting

The recursive sorting algoritbm is shown in Fig. 2.29. The algoritbm can be de-
scribed by the following basis and inductive step.

BASIS. H the list to be sorted is empty or of lengtb 1, just return the list; it is
already sorted.

INDUCTION. Ifthe list is oflength at least 2, use the function split at line (3) to
remove the even-numbered elements from list and use them to form another list,
pointed to by local variable SecondList. Line (4) recursively sorts the half-sized
lists, and returns the merger of tbe two lists.

Action of functionFig. 2.28. .plit.

Algorithm

Tbe basis is taken care oí by lines (1) and (2) oí Fig. 2.29.
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I

I

i.o LIST MergeSort(LIST 1iat)
: le {

d LIST SecondLiat;
le
rt (1) if (1iat -= NULL) return NULL;
Ir (2) elae if (1ist->next == NULL) return 1iat;
t else {
A /* at 1east tvo e1ementa on 1ist */
~ (3) SecondLiat = ap1it(list);

/* Note that as a aide effect, half
-e the e1ementa are removed from list */
~t (4) return merge(MergeSort(1ist), MergeSort(SecondList»;

}
}

Fig. 2.29. The merge sort algorithm.

+ Example 2.25. Let us use merge sort on the list of single-digit numbers

742897721

We again omit commas between digits for succinctness. First, the list is split into
two, by the call to sp1i t at line (3) of MergeSort. One of the resulting lists consists
of the odd positions, and the other the evens; that is, 1ist = 72971 and SecondList
= 4872. At line (4), these lists are sorted, resulting in lists 12779 and 2478, and

then merged to produce the sorted list 122477789.
However, the sorting of the two half-sized lists does not occur by magic, but

rather by the methodical application of the recursive algoritbm. lnitially, MergeSort
splits the list on which it is called, ifthe list has length greater tban 1. Figure 2.30(a)
shows the recursive splitting of the lists until each list is of length 1. Then the split
lists are merged, in pairs, going up the tree, until the entire list is sorted. This
process is suggested in Fig. 2.30(b). However, it is worth noting that the splits
and merges occur in a mixed order; oot aIl splits are followed by all merges. For
example, the first half Iisi, 72971, is completely split and merged before we begin
on the second half list, 4872. +

The Complete Program

Figure 2.31 contains the complete merge sort programo It is analogous to the
program in Fig. 2.3 that was based on selection sort. The function MakeList on

~ line (1) reads each integer from the input and puts it into a linked list by a simple, recursive algoritbm, which we shall describe in detail in the next section. Line (2)

oí the main program contains the call to MergeSort, which returns a sorted list to
PrintList. The function PrintLiat marches down the sorted list, printing each

ti elemento

EXERCISES
o

t, 2.8.1: Show the result of applying the function merge to the lists (1,2,3,4,5) and
d (2,4,6,8,10).
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71
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17
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2.8.2: Suppose we start with the list (8,7,6,5,4,3,2, 1). Show the sequence of calls
to merge, aplit, and MergeSort that result.

2.8.3*: A multiwa'J merge sort divides a list into k pieces oí equal (or approximately
~ual) size, sorts them recursiveIy, and then merges a11 k Usts by comparing a11 their
respective first elements and taking the smallest. The merge sort described in this
section is for the case k = 2. Modify the program in Fig. 2.31 so that it becomes a

Multiway merge
sort

multiway merge sort for the case k = 3.

2.8.4*: Rewrite tbe merge sort program to use tbe functions lt
in Exerciae 2.2.8, to compare

2.8.5: Relate each of the functions (a) merge (b) split (c) MakeList to Fig. 2.21.
What is the appropriate notion of size for eacb of theae functions?

INDUCTlON. AND RECURStON

82791 47

\
2 27 4 7 8

1

(a) Splitting.

28179 47

/ I
49 2 1 8

1

(b)

and merging.Fig. 2.30.

andkey,described
type.of
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'include <stdio.h>

'include <stdlib.h>

typedef struct CELL .LIST;
struct CELL {

int element;
LIST next;

}; . ;;

LIST merge(LIST ¡1stI, LtST liat2) i
LIST split(LIST list);
LIST MergeSort(LIST list);
LIS! MakeList();

void PrintList(LIST list);

.-in()

{

LIST liat;

list = MakeList();

PrintList(MergeSort(list);
(1)
(2)

}

LIST MakeList()
{

int x;
LIST pNevCell;

if (scanf("%d". tx) == EOF) return NULL;

else {
pNevCell = (LIST) aalloc(sizeof(struct CELL»;

(3)

(4)
(5)
(6)
(7)

pNevCell->next = MakeList();

pNevCell->element = x;

return pNevCell,
)

)

void PrintList(LIST liat)

{
while (list ! = NULL) {

printf("~d\n", list->element);
list = list->next;

(8)
(9)

(W}

.}

Fig. 2.31(a). A sorting program using merge sort (start).
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Fig. 2.31(b). A sorting program using merge sort (conclusion).

+++ 2.9 Proving Properties of Recursive Programs
+

Ir we want to prove a certain property of a recursive function, we generally need to
prove a statement about the effect of one caIl to that function. For example, that
effect might be a relationship between the arguments and the retum value, such as
"the function, caIled with argument i, returns i!." Frequently, we define a notion of
the "size" of the arguments of a function and pedorm a proof by induction on this

LIST MergeSort(LIST 1ist)
{

LIST SecondList;

if (1ist == NULL) return NULL;
e18e if (1ist->next == NULL) return 1iat;

e1se {
SecondList = sp1it(1iat);

return merge(MergeSort(1ist). MergeSort(SecondLiat»;
}

}

LIST merge(LIST listl,
{

if (listl .. NULL) return liet2;
else if (list2 Z8 NULL) return listl;
else if (listl->eleaent <= list2->element)

listl->next list2);

LIST list2)

- merge(liatl->next,

return li8tl;

}.
8188 {

li8t2->next =
return li8t2;

merge(list.l. list2->next);

}
}

LIST aplit(LIST liat)

{
LIST pSecondCell;

if (list ~Z NULL) return NULL;

818e if (liat->next ~~ NULL) return NULL;

e1se {
pSecondCell. list->next;
list->next . pSecondCell->next;

pSecondCell->next = split(pSecondCell->next);

return pSecondCell;

}
}
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Size of gire. Some of the many possible ways in which size of arguments could be defined
argumenta are

1. The value of some argumento For instance, for the recursive factorial program
of Fig. 2.19, the appropriate size is the value of the argument n.

2. The length of a list pointed to by some argumento The recursive function spli t
of Fig. 2.27 is an example where the length of the list is the appropriate size.

3. Some function of the arguments. For instance, we mentioned that the recursive
selection sort of Fig. 2.22 performs an induction on the number of elements in
the array that remain to be sorted. In terms of the arguments n and i, this
function is n - i + 1. As another example, the appropriate size for the merge
function of Fig. 2.24 is the sum of the lengths of the lists pointed to by the two
arguments of the function.

Whatever notion of size we pick, it is essential that when a function is called
with arguments of size s, it makes only function calls with arguments of sire s - 1 or
less. That requirement is so we can do an induction on the size to prove a property
of the programo F\1rther, when the size falls to some fixed value - say O - the
function must make no recursive calls. This condition is so we can start off our
inductive proof with a basis case.

. Example 2.26. Consider the factorial program ofFig. 2.19 in Section 2.7. The
statement to prove by induction on i, for i ?: 1, is

STATEMENT S(i): When called with the value i for the argument n, fact re-
t ..

urns l..

BASIS. For i = 1, the test at line (1) of Fig. 2.19 causes the basis, line (2), to be
executed. That results in the return value 1, which is 1!.

INDUCTION. Assume S(i) to be true, that is, when called with some argument
i?: 1, fact retums i!. Now, consider what happens when fact is called with i + 1
as the value of variable n. If i ?: 1, then i + 1 is at least 2, so the inductive case, line
(3), applies. The retum value is thus n x fact(n - 1); or, since the variable n has
the value i + 1, the result (i + 1) x fact(i) is retumed. By the inductive hypothesis,
fact(i) retums i!. Since (i + 1) xi! = (i + 1)!, we have proved the inductive step,
that fact, with argument i + 1, returns (i + 1)!. .

. Example 2.27. Now, let us examinethe function MakeList,oneofthe auxiliary
routines in Fig. 2.31(a), in Section 2.8. This function creates a linked list to hold
the input elements and retums a pointer to this listo We shall prove the following
statement by induction on n ?: O, the number of elements in the input sequence.

~,
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STATEMENT S(n): H Xl, X2, ..., X" is the sequence oí input elements, Makelist
creates a linked 1ist that contains Xl, X2, ..., X" and returns a pointer to this
listo

BASIS. The basis is n = O, that is, when the input sequence is empty. The test
for EOF in line (3) of MakeList causes the retum value to be set to NULL. Thus,
MakeList correctly retums an empty listo

INDUCTION. SUppose that S(n) is true for n ~ o, and consider what happens
when MakeList is caUed on an input sequence of n + 1 elements. Suppose we have
just read the first element Xl'

Line (4) of MakeList creates a pointer to a new cell c. Line (5) recursively caUs
Makelist to create, by the inductive hypothesis, a pointer to a linked list for the
remaining n elements, X2, X3, . . . , Xn. This pointer is put into the next field of c at
line (5). Line (6) puts Xl into the element field of c. Line (7) returns the pointer
created by line (4). This pointer points to a linked list for the n + 1 input elements,
XI,X2,...,Xn.

We have proved the inductive step and conclude that MakeList works correctly
on all inputs. +

+ Example 2.28. For our last example, let us prove the correctness oí the merge-
sort program oí Fig. 2.29, assuming that the functions split and merge perform
their respective tasks correctly. The induction will be on the length oí the list
that MergeSort is given as an argumento The statement to be proved by complete
induction on n ~ O is

STATEMENT S(n): If list is a list oí length n when HergeSort
HergeSort returos a sorted list oí the salDe elements.

BASIS. We take the basis to be both 8(0) and 8(1). When list is oí length O,
its value is NULL, and 80 the test oí line (1) in Fig. 2.29 8ucceeds and the entire
functioD returos NULL. Likewise, if list is oí length 1, the test oí line (2) 8ucceeds,
and the function retums listo Thus, MergeSort returos list when n is O or l.
This observatioD proves statements 8(0) and 8(1), because a 1ist oí length O or 1 is
already sorted.

INDUCTION. Suppose n ~ 1 and S(i) is true íor all i = 0,1,..., n. We must
prove S(n + 1). Thus, consider a list oí length n + 1. Since n ~ 1, tbis list is oí
lengtb at least 2, 80 we reach Une (3) in Fig. 2.29. Tbere, 8plit divides the list
into two lists oí length (n + 1)/2 if n + 1 is even, and oí lengths (n/2) + 1 and n/2
if n + 1 is odd. Since n ~ 1, none oí tbese lists can be as long as n + 1. Thus,
tbe inductive bypotbesis applles to them, and we can conclude tbat the half-sized
lists are correctly sorted by the recursive calls to MergeSort at line (4). Finally, tbe
two sorted lists are merged into one list, which becomes the retum value. We have
assumed tbat merge works correctly, and so the resulting retumed list is sorted. +

is caUed, then
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DefCe11(int. CELL. LIST);

int sum(LIST L)
{

if (L == NULL) SUB - O;
e1s8 sum = L->e1ement + sum(L->next);

}

int findO(LIST L)
{

if (L == NULL) findO = FALSE;
else if (L->e1ement == O) findO = !ROE;
e1s8 findO = findO(L->next);

}

Fig. 2.32. Two recursive functions, SUID and findO.

EXERCISES

2.9.1: Prove that the function PrintList in Fig. 2.31(b) prints the elements on the
list that it is passed as an argumento What statement S(i) do you prove inductively?
What is the basis value for i?

2.9.2: The function SUDI in Fig. 2.32 computes the sum of the elements on its given
list (whose cells are of the usual type as defined by the macro DefCell of Section 1.6
and used in the merge-sort program of Section 2.8) by adding the first element to
the sum of the remaining elements; the latter sum is computed by a recursive call
on the remainder of the listo Prove that SWD correctly computes the sum of the list
elements. What statement S(i) do you prove inductively? What is the basis value
for i?

2.9.3: The functioo findO in Fig. 2.32 returns TRUE if at least one of the elements
on its list is O, and returns FALSE otherwise. It returos FALSE if the list is empty,
returns TRUE if the first element is O and otherwise, makes a recursive call on the
remainder of the list, and returos whatever answer is produced for the remainder.
Prove that f indO correctly determines whether O is present 00 the listo What
statement S(i) do you prove inductively? What is the basis value for i?

2.9.4.: Prove that the functions (a) merge of Fig. 2.24 and (b) split of Fig. 2.27
pedorro as claimed in Section 2.8.

2.9.5: Give an intuitive "least counterexample" proof of why inductioo starting
from a basis including both O and 1 is valido

2.9.6..: Prove the correctness of (your C implementation oí) the recursive GCD
algorithm of Exercise 2.7.8.

Surnrnary of Chapter 2

Here are the important ideas we should take from Chapter 2.
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Inductive proofs, recursive definitions, and recursive programs are closely re-
lated ideas. Each depends on a basis and an inductive step to "work."

In "ordinary" or "weak" inductions, successive steps depend on1y on the previ-
ous step. We frequently need need to perform a proof by complete induction,
in which each step depends on all the previous steps.

There are several different ways to sort. Selection sort is a simple but slow
sorting algorithm, and merge 80rt is a faster but more complex algorithm.

Induction is essential to prove that a program or program fragment works

correctIy.

Divide-and-conquer is a useful technique for designing some good algorithms,
such as merge sort. It works by dividing the problem into independent subparts
and then combining the results.

Expressions are defined in a natural, recursive way in terms of their operands
and operators. Operators can be classified by the number of arguments they
take: unary (one argument), binary (two arguments), and k-ary (k arguments).
AIso, a binary operator appearing between its operands is infix, an operator
appearing before its operands is prefix, and one appearing after its operands is
postfix.

..

..

+

.

..

+

...:... 2.11 Bibliographic Notes for Chapter 2

An excellent treatment of recursion is ~berts [1986]. For more on sorting algo-
rithms, the standard source Ís Knuth [1973]. Berlekamp [1968] tells about tech-
Diques - of which the error detection scheme in Section 2.3 Ís the simplest - for
detecting and correcting error! in streams of bita.

Berlekamp, E. R. [1968]. Algebraic Coding Tbeory, McGraw-Hill, New York.

Knuth, D. E. [1973]. Tbe Art of Computer Progr~mming, Vol. III: Sorting and
Searching, Addison-Wesley, Reading, Mass.

TbinkingRoberts, E. [1986]. Recursively, Wiley, New York.
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6CHAPTER

..."'...
... The List

Data Model

Like trees, lista are among the most basic of data models uaed in computer programs.
Lists are, in a sense, simple forma of trees, because one can think of a list as a binary
tree in which every left child is a lea!. However, lista aJso preaeot BOme aspecta that
are oot special cases of what we have learoed about torees. For instance, we shall talk
about operations 00 lists, such as pusbing and popping, tbat bave no common analog
for trees, and we sball t.alk of character striogs, wbidl are special and importaot
kinds of lista requiriog tbeir own data structUre8.

.:. 6.1 What This

We introduce list terminology in Section 6.2. Tben in tbe remainder oí the chapter
we present the íollowing topics:

+ The basic operations on lista (Section 6.3).

+ Implementations oí abstract lista by data structur5, especially the linked-list
data structure (Section 6.4) ud an alTay data structure (Section 6.5).

+ The stack, a list upon wbich we insert and delete at only one end (Section 6.6).

+ The queue, a Iist upon wbicb we inaert at one end ud delete at tbe otber

(Section 6.8).

+ Character strings ud tbe special data structUr5 we use to repre8ent them

(Section 6.10).

Furtber, we shall study in detail two applications oí lista:

+ The run-time stack and the way C ud many other languages implement re-
cursive functions (Section 6.7).
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The problem oí finding longest common SUbeequences oí two strings, and its
solution by & "dynamic programming," or table-filling, algorithm (Section 6.9).

+

A list is a finite sequence of zero or more elernenta. If the elements are all of type
T, then we say that the type of the list is "Iist of T." Thus we can have lists of
integers, lists of real nurnbers, lists of strudures, lists of lists of integers, and 80 on.
We generally expect the elernents oí a list to be of some ORe type. However, since
a type can be the union of severa! types, the restriction to a single "type" can be
circumvented .

A list is often written with ita elementa sepal'ated by commas and enclosed in

parentheses:

(al,a2,.. .,an)

where the ai's are the elements of the list.
In sorne situations we shall not show cornmas or parentheses explicitly. In

particular, we shall study charocter siringa, which are lists oí characters. Character
strings are generally written with no cornrna or other separating marks and witb no
surrounding parentheses. Elements of character strings will normally be written in
typewriter font. Thus too is the list of three characters oí which the first is t and
the second and third are o.

Example 6.1. Here are some examples of lists.

l. The list of prime numbers leM tban 20, in order of gire:

(2, 3, 5, 7, 11, 13, 17, 19)

2. Tbe list of noble gasses, in order of atomic weigbt:

(helium, n«)n, argon, krypton, xenon, radon)

3. The list of the numbers of days in tbe months of a non-leap year:

(31, 28,31, 30, 31, 30, 31, 31, 30, 31, 30, 31)

As this example reminda us, the BalDe element can appear more than once on &
listo +

Example 6.2. A line of text is another example of a listo The individual charac-
ters making up the line are the elements of this list, 80 the list is a character string.
Tbis character string usually includes several occurrences of the blank character,
and normally the last character in a line of ten is the "newline" character.

As another example, a document can be viewed 88 & listo Here tbe elements
of the list are the liDes of texto Thus a document is a list wh~ elements that are
tbemselves lista, character strings in particular. +
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+ Example 6.3. A point in n-dimensionalspace can be represented by a list oí n
real numbers. For example, the vertices oí the unit robe can be represented by the
triples shown in Fig. 6.1. The three elements on each list represent the coordinates
oí a point that is one oí the eight corners (or "vertices") oí the cube. The first
compooeot represents the z-coordinate (horizontal), the second represents the y-
coordinate (ioto the page) , and the third represeots the z-coordinate (vertical).
+

Fig. 6.1.

The Length oí a List

Tbe length oí a list is tbe number oí occurrences oí" elements on the listo If the
number oí elements is zero, then the list is said to be empty. We use the Greek
letter l (epsilon) to represent the empty listo We can also represent the empty list
by a pair oí parentbeses surrounding nothing: (). It is important to remember that
lengtb counts positions, not distinct symbols, and 80 a symbol appearing k times
on a list adds k to the length oí the listo

Empty list

Example 6.4. The length of list (1) in Example 6.1 is 8, and the length of list
(2) is 6. The length of list (3) is 12, since there is one position for each month. The
fact that there are only three different numbers on the list is irrelevant as far as the
length of the list is concerned. +

+

Parts of a List

Head and tail of Ir a list is not empty, then it consists of a first element, called the head and the
remainder of the list, called the tail. For instance, the head of list (2) in Example
6.1 is helium, while the tail is the list consisting oí the remaining five elements,

(neon, argon, krypton, xenon, radon)

a list

,.1 '~ ~ ~ !!C~,.i }[u ~,,- """'""

(Q,l.ij .. :.:':;t~ j,., ~J;,tt 11)A'" , ,
'i. '

".

(0,0.1..,

)1,0)
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Su!

The vertices af the unit cube represented as triples.
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Sublist

Subsequence

+ Example 6.5. Let L be the character string abc. The sublists of L are

l, a, b, C, ab, bc, abc

These are &11 SUbeequences of L as weIl, and in addition, ac is a SUbeequence, but
not a sublist.

For another example, let L be the character string abab. Then the sublists are

l, a, b, ab, ba, aba, bab, abab

These are &1eo subeequences of L, and in addition, L has tbe 8Ubeequences aa, bb,
aab, and abb. Notice tbat a character string like bba Í8 not'a subsequence of L.
Even though L has two b's and an a, they do not appear in such an arder in L
that we can forro bba by striking out elements of L. That Í8, there is no a after the
eecond b in L. +

Preflx and
8ufflx

+ Example 6.6. Tbe prefixes of tbe list abc are l, a, ab, and abc. Its suffixes are
l, C, bc, and abc. +
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Elements and Lists of Length 1

It is important to remember tbat tbe bead of a list is an element, wbile tbe tail of
a list is a listo Moreover, we sbould not confuse the bead of a list - saya - witb
the list of lengtb 1 containing only tbe element a, wbich would normally be written
with parentbeses as (a). Ir the element a is of type T, tben tbe list (a) is of type
"list of T."

Failure to recognize the difference leads to programrning errors wben we irn-
plernent lista by data structures. For example, we mar represent lists by linked
cells, wbich are typically structures with an el..ent field of BOrne type T, holding
an element, and a n.xt field holding a pointer to the next cell. Then elernent a is
of type T, wbile tbe list (a) is a cell witb el_ent field holding a and next field
holding NULL.

H L = (al, a2,..., an) is a list, then for any i and j such that 1 $ i $ j $ n,
(4i, 4i+l, . . . ,aj) is &&id to be a sublist of L. That is, a sublist is formed by starting
at some ~ition i, and taking all the elements up to some position j. We a1so say
that (, the empty list. is a sublist of any listo

A ..ubsequence of the list L = (al. a2. . . . . an) is a list formed by striking out
zero or more elements oí L. The remaining elements, which forro the subsequence,
must appear in the SalDe order in which they appear in L, but the elements of the
8ubsequence need not be consecutive in L. Note that ( and tbe list L itself are
always 8Ubsequences, as well as sublists, of L.

A prefir oí a list is any sublist that starts at the beginning oí the listo A 8Uffi:r:
is a sublist that tennÍDates at the end oí the listo As special ~I we regard ~ as

of any listoboth a prefix and a suffix
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Car and Cdr
In the programming language Lisp, the head is called the car and the tail is called
the cdr (pronounced "cudder"). The terms "car" and "cdr" arose from the names
given to two fields of a machine instruction on an IBM 709, the computer on which
Lisp was first implemented. Cal stands for "contents of the address register ," and
cdr stands for "contents of the decrement register." In a sense, memory words
were seen as cells with eleaent and next fields, corresponding to the cal and cdr,

respectively.

The Position of an Element on a List

Each element on a list is associated with a position. If (al, a2, o o ., an) is a list and
n ~ 1, then al is said to be first element, a2 the second, and so on, with an the last
elemento We also say that element aí occurs at position io In addition, oi is said
to follow aí-l and to precede Oi+l' A position holding element a is said to be an
occurrence oí a.

The number oí positions on a list equals the length of the listo It is possible
for the same element to appear at two or more positionso Thus it is important not
to confuse a position with the element at that positiono For instance, list (3) in
Example 6.1 has twelve positions, seven of which hold 31 - namely, positions 1, 3,

5, 7, 8, 10, and 120

Occurrence of

sn element

EXERCISES

6.2.1: Answer the foUowing questions about the list (2,7,1,8,2).

a) What is the length?
b) What are all the prefixes?
c) What are all the suffixes?
d) What are all the sublists?
e) How many subsequences are there?
f) What is the head?
g) What is the tail?
h) How many positions are there?

6.2.2: Repeat Exercise 6.2.1 for the character string banana.

6.2.3..: In a liet of length n ~ O, what are the largest and smallest pO8Sible
numbers of (a) prefixes (b) sublists (c) subsequences?

6.2.4: If the tail of the tail of the list Lis the empty list, what is the length of L?

6.2.5.: Bea Fuddled wrote a list whose elements are themselves lista of integers,
but omitted the parentheses: 1,2,3. There are many lists oí lists that could have
been represented, such as «(1),(2,3)). What are all the possible lista that do not
have the empty list as an element?
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ListsOperations on
A great variety of operations can be perfonned on lista. In Chapter 2, when we
discu88ed merge IOn, t.he basic problem was to IOn a list, but we also needed to
split a list into two, and to merge two sort.ed lista. Fonnally, t.he operation of
3orting a list. (a}, a2,. . ., an) amounta to replacing the list with a list consisting of
a permut.ation of it.s elemente, (6},62,.. .,6n), such t.hat. 6} 5 ~ 5 ... 5 6n. Dere,
as before, 5 repreeenta an ordering of t.he elementa, such as "leas t.han or equal to"
on int.egers or reals, or lexicographic order on st.rings. The operat.ion of merying
t.wo sorted lista consiste of const.ruct.ing from t.hem a sort.ed list. cont.aining t.he same
elementa as t.he t.wo given lista. Mult.iplicity must. be preserved; t.hat is, if there are
k occurrences of element a among the t.wo given lista, t.hen the result.ing list. has k
occurrences of a. Review Sect.ion 2.8 for examples of these two operations on lista.

Insertion, Deletion, and Lookup
Recall from Section 5.7 that a "dictionary" is a set of elementa on which we perform
the operations in8ert, delete, and lookup. There is an important difference between
sets and lists. An element can never appear more than once in a set, although, as
we have seen, an element can appear more than once on a listj this and other issues
regarding seta are discussed in Chapter 7. However, lista can implement seta, in
the sense that the elements in a set {al, a2, . . ., an} can be placed in a list in any
order, for example, the order (a1,a2,.' .,an), or the order (an,an-1,'. .,a1)' Thus
it should be no surprise that there are operations on lista analogous to the dictionary
operations on seta.

l. We can insert an element % onto a list L. In principie, % could appear anywhere
on the list, and it does not matter if % already appears in L one or more times.
We insert by adding one more occurrence of %. As a special case, if we make %
the head oí the new list (and therefore make L the tail), we 8&Y that we pulh
% onto the list L. IfL = (al,'. .,an), the resulting list is (%,a1,'. .,a..).

2. We can dele te an element % from a list L. Here, we delete an occurrence of %
from L. If there is more than one occurrence, we could specify which occurrence
to deletej for example, we could always delete the first occurrence. Ir we want
to delete all occurrences of %, we repeat the deletion until no more %'s remain.
Ir % is not present on list L, the deletion has no effect. As a special case, if
we delete the head element of the list, 80 that the 1ist (%, al, . . . , an) becomes
(al, . . ., a..), we are said to pop the listo

3. We can lookup an element % on a list L. This operation returns !RUS or FALSE,
depending on whether % is or is not an element on tbe listo

Example 6.7. Let L be tbe list (1,2,3,2). Tbe result of in8ert(1, L) could be
tbe list (1,1,2,3,2), if we ch~ to pusb 1, tbat is, to iD8ert 1 at tbe beginning. We
could also insert the new 1 at the end, yielding (1,2,3,2,1). Alternatively, tbe new
1 could be placed in any of three ~itioD8 interior to the list L.

The result of delete(2, L) is tbe list (1,3,2) if we delete tbe first occurrence of
2. If we ask lookup(z, L), tbe answer is TRUB if z is 1, 2, or 3, but FALSE if z la any
otber value. ..
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Concatenation
We concatenate two lista L and M by forming the list that begins with the elements
of L and then continues with the elements of M. That is, if L = (al, a2, o .., an)
and M = (bl, b2,' 0.' bk), then LM, the concatenation of L and M, is the list

(al,a2,00.,an,b1,b2,...,bk)
Note that the empty list is the identity for concatenationo That is, for any list L,
we have EL = LE = L.

Example 6.8. If Lis the list (1,2,3) ud M is the list (3,1), then LM is the list
(1,2,3,3,1)0 If L is the character string dog and M is the character string house,
then LM is the character string doghouBe. ...

Other List Operations
Another family of operations on lists refers to particular positions of the listo For

example,
a) The operation jirst(L) returns the first element (head) of list L, and last(L)

returns the last element of L. Both cause an error if L is an empty listo

b) The operation retrieve(i, L) retums the element at the ith position of list Lo
It is an error if L has length less than io

There are additional operations that involve the length of a listo Some common

operations are:

c) length(L), which returns the length oflist Lo

d) isEmpty(L), which returns TRUE if Lis an empty list ud returns FALSE if noto
Similarly, isNotEmpty(L) would return the oppositeo

Identity for
concatenation

.

First snd last of
lists

Retrieve

isEmpty

EXERCISES

6.3.1: Let L be the list (3,1,4,1,5,9).

a) What is the value of delete(5, L)?
b) What is the value of delete(l, L)?
c) What is the result of popping L?
d) What is the result of pushing 2 anta list L?
e) What is retumed if we perform lookup with the element 6 and list L?
f) If M is the list (6,7,8), what is the value oc LM (the concatenation of L and

M)? What is M L?
g) What is jirst(L)? What is lost(L)?
h) What is the result of retrieve(3, L)?
i) What is the value of length(L)?
j) What is the value of isEmpty(L)?

6.3.2**: If L and M are lista, under what conditions is LM = M L?

6.3.3**: Let z be an element and L a listo Under what conditions are the following
equations true?
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.,
b)
c)
d)

in.ert(%, L»= L
ddeie(%, L)) = L

delefe(z,
in8ert(ZI
firlt(L) = retrieve(l, L)
101t(L) = retrieve(lengtl L)

-List Data StructureL

The easiest way to implement a list is to use a linked list of cells. Each cell consists
of two fields, one containing an element. of the list., the ot.her a pointer to the next.
cell on t.he linked list.. In t.his chapter we shall make t.be simplifying assumption t.hat
elements are integers. Not only mar we use the specific type int for the type of
elements, but we can compare elements by t.be standard compariaon operators =, <,
and 80 oo. Tbe exercises invite tbe reader to develop variante of our functions that
work for arbitrary types, where compariaons are made by uaer-defined functions
such as eq to test equality, lt(z, y) to test if z precedes y in some ordering, and 80
oo.

In wbat follows, we sball use our macro from Section 1.6:

DefCell(int. CELL. LIST);

which expande into our standard structure for cells and lists:

tYpe4ef struct CELL .LIST;
atruct CELL {

int el..ent;
LIST nen;

r;

Note that LIST is the type of a pointer to a cell. In effect, the next field of each
cell pointa both to the next cell and to the entire remainder of the listo

Figure 6.2 shows a linked list that representa the abstract list

L=(Ol,O2,...,an)

There is one cell for each element; the element Oí appears in the eleaent field of the
ith cell. The pointer in the ith ceU points to the (i + l)st cell, for i = 1,2,. . ., n -1,
and the pointer in the last cell is WLL, indicating the end of the listo Outside the
list is a pointer, named L, that points to the first cell of the list; L is of type LIST.
If the list L were empty, then the value o( L would be ROLL.

L [~I~~~3.--"'{~~I~3 . . . --"[~~I~]

FiS. 8.2. A 6nked list .~..-~ tJJe Iist L = (al,~ , G,.).

Implementation ol Dictionary Operations by Linked Lists

Let us consider how we can implement the dictionary operations ir we represent the
dictionary by a linked listo The following operations on dictionaries were defined in
Section 5.7.
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Lists and Linked Lists
Remember that a list is an abstract, or mathematical modelo The liDked list is a
simple data structure, which was meDtioDed iD Chapter l. A linked list is one way
to implement the list data model, although, as we shall see, it is Dot the oDly way.
At aDY rate, this is a good time to remember once more the distinctioD between
modela and the data structures that implement them.

l. insert(z, D), to insert elemeDt z joto dictioDary D,

2. delete(z, D), to delete element z from dictioDary D, and

3. lookup(z, D), to determine whether element z is iD dictionary D,

We shall see that the liDked list is a simpler data structure for implemeDtiDg dic-
tioDaries than the biDary search tree that we discussed iD the previous chapter.
However, the runniDg time of the dictioDary operatioDs wheD USiDg the linked-list
represeDtatioD is Dot as good as wheD USiDg the biDary search tree. ID Chapter 7 we
shall see an even better implemeDtation for dictioDaries - the hash table - which

makes use, as subroutines, of the dictioDary operations OD lists.
We shall &88ume that our dictioDary coDtains iDtegers, and cells are defiDed as

they were at the begiDDiDg of this section. Then the type of a dictionary is LIST,
alBO as defined at the begiDDiDg of this sectiOD. The dictionary containing the set of
elements {al, a2, . . . , an} could be represented by the liDked list of Fig. 6.2. There
are many other lista that could represent the same set, since order of elements is
not important in sets.

Lookup
To pedorro lookup(x, D), we examine each cell of the list representing D to see
whether it holds the desired element Xo If so, we ieturn TRUE. Ir we reach the end
of the list without finding x, we return FALSEo As before, the defined constants
TRUE and FALSE stand for the constants 1 and O, and BOOLEAll for the defined type
into A recursive function lookup(x.D) is shown in Figo 6.3.

BOOLEAN lookup(int x. LIST L)
{

if (L = IULL)
return FALSE;

el.e if (x = L->el..ent)
return TRUE;

e1.e
return lookup(x. L->next);

}

Fig. 6.3. Lookup on a linked listo

If the list has length n, we claim that the function of Fig. 6.3 takes O(n) time.
Except for the recursive call at the end, lookup takes 0(1) time. When the call is
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made, the length of the remaining list is 1 less than the length of the list L. Thus
it should surprise no one that 1ookup on a list of length n takes O( n) time. More
formally, the following recurrence relation gives the running time T(n) of 1ookup
when the list L pointed to by the second argument has length n.

BASIS. T(O) is 0(1), because there is no recursive call when L is IULL.

INDUCTION. T(n) = T(n - 1) + 0(1).

The solution to this recurrence is T(n) = O(n), as we saw several times in Chapter
3. Since a dictionary of n elements is represented by a list of length n, lookup takes
O(n) time on a dictionary of size n.

Unfortunately, the average time for a successfullookup is also proportional to
n. For if we are looking for an element x known to be in D, the expected value of
the position of x in the list is (n+ 1)/2. That is, x could be anywhere from the first
to the nth element, with equal probability. Thus, the expected number of recursive
calls to 1ookup is (n + 1)/2. Since each takes 0(1) time, the average successful
lookup takes O(n) time. Oí course, if the lookup is unsuccessful, we make all n
calls before reaching the end of the list and returning FALSE.

Deletion
A function to delete an element x from a linked list is shown in Fig. 6.4. The second
parameter pL is a pointer to the list L (rather than the list L itself). We use the
"call by reference" style here because we want de1ete to remove the cell containing
x from the listo As we move clown the list, pL holds a pointer to a pointer to the
"current" cell. If we find x in the current cell C, at line (2), then we change the
pointer to cell C at line (3), so that it points to the cell following C on the listo If
C happens to be last on the list, the Corroer pointer to C becomes IULL. If x is not
the current element, then at line (4) we recursively delete x from the tail of the listo

Note that the test at line (1) causes the function to return with no action if
the list is empty. That is because z is not present on an empty list, and we need
not do anything to remove x from the dictionary. If D is a linked list representing
a dictionary, then a call to de1ete(x. t;D) initiates the deletion of x from the

dictionary D.

yoid de1ete(int x. LIST *pL)
{

(1) i.t «*pL) != IULL)
(2) i.t (x == (*pL)->e1eaent)
(3) (*pL) = (*pL)->next;

e18e
(4) de1ete(x. .«*pL)->next»;

}

Fig. 6.4. Deleting an elemento

If the element x is not on the list for the dictionary D, then we run clown to
the end of the list, taking 0(1) time for each elemento The analysis is similar to
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that for the lookup function of Fig. 6.3, and we
Thus the time to delete an element not in D is
in the dictionary D, then, on the average, we
listo Therefore we search (n + 1)/2 cells on the
successful deletion is alBO O(n).

Insertion
A function to insert an element x into a linked list is shown in Fig. 6.5. To insert
X, we need to check that X is not already on the list (if it is, we do nothing). Ir X
is not already present, we must add it to the listo It does not matter where in the
list we add x, but the function in Fig. 6.5 adds x to the end of the listo When at
line (1) we detect the NULL at the end, we are therefore sure that x is not already
on the listo Then, liDes (2) through (4) append x to the end of the listo

Ir the list is not NULL, line (5) checks for x at the current ceno Ir x is not there,
line (6) makes a recursive call on the tail. Ir x is found at line (5), then function
insert terminates with no recursive call and with no change to the list L. A call
to insert(x. I;D) initiates the insertion of x into dictionary D.

void in8ert(iD~ x.

{
(1)
(2)
(3)

,.(4)

(5)
(6)

}

As in the case of lookup and deletion, if we do not find x on the list, we travel to
the end, taking O(n) time. If we do find x, then on the average we travel halfwayl
down the list, and we still take O(n) time on the average.

A Variant Approach with Duplicates

We can make insertion run rastel if we do not check for the presence of z on the
list before inserting it. However, as a consequence, there mar be several copies oí
an element on the list representing a dictionary.

To execute the dictionary operation insert(z, D) we simply create a new cell,
put z in it, and push that cell onto the front of the list for D. This operation takes
0(1) time.

The lookup operation is exactly the &ame as in Fig. 6.3. The only nuance is
that we mar have to search a longer list, because the length of the list representing
dictionary D mar be greater than the number of members of D.

In the Collowing analyaes, we .hall U8e tenns like "halC~" or "n/2" when we mean the
middle of a list oC length n. Strictly apeaking, (n + 1)/2 is more accurate.

leave the details for the reader.
) if D has n elements. Ir z is

encounter z halfway down the
and the running time of aaverage,

LIST .pL)

if «*pL) = NULL) {
(*pL) = (LIST) aalloc(aizeof(atruct CELL»;
(*pL)->element = x;
(*pL)->next = NULL;

}
C.pL)->el..ent)
tCC.pL)->next»;

81a8 if (x !=

inaert(x.

Fig.6.5.
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Abstraction Versus Implementation Again

It mar be surprising to lee us using duplicates in lists that rep~t dictionari~,
since the abstract data type mCfIONARY is defined as a set, and sets do not have
duplicates. However, it is not the dictionary that has duplicates. Rather the data
structure implementing the dictionary is a!lowed to have duplicates. But even when
z appears severa! times on a linked list, it is only present once in the dictionary
that the linked list represents.

Deletion is slightly differeot. We cannot stop our search for z wheo we eo-
counter a cell with element z, because there could be other copies of z. Thus we
must delete z from the tail of a list L, even wheo the head of L cootains z. As a
result, not ooly do we have looger lista to conteod with, but to achieve a successful
deletion we must search every cell rather than an average of half the list, as we
could for the case io which no duplicates were allowed on the listo The details of
these versions of the dictionary operations are left as an exercise.

lo summary, by allowiog duplicates, we make iosertioo rastel, 0(1) instead of
O(n). However, successful deletioos require search ofthe entire list, rather than an
average of hall the list, and for both lookup and deletioo, we must contend with lista
that are longer than when duplicates are not allowed, altbough how much looger
dependa on howoften we insert an element that is already present in the dictionary.

Which method to choose is a bit subtle. Clearly, if insertioos predominate, we
should allow duplicates. lo the extreme case, where we do only inaertioDS but Dever
lookup or deletion, we get performance of 0(1) per operation, iostead of 0(n).2 If
we can be Bufe, for some reasoo, that we shall oever insert an element already io
the dictionary, then we can use both the fut inaertioo and the fut deletioo, where
we stop wben we find ooe occurrence of the elemeot to be deleted. 00 the other
hand, if we may insert duplicate elelheots, and lookups or deletioos predominate,
then we are best off checking for tbe p~nce of z before inserting it, as in tbe
insert function of Fig. 6.5.

Sorted Lists to Represent Dictionaries

Another alternative is to keep elements sorted in increasing arder on the list repre-
senting a dictionary D. Then, if we wish to lookup element %, we have only to go as
far as the position in which % would appearj on the average, that is halfway down
the listo If we meet an elemeot greater than %, then there is no hope of fioding z later
in the listo We thus avoid goiog all the way down the list 00 unsuccessful 8eardles.
That saves us about a factor of 2, aJthough the exact factor is somewhat clouded
because we have to ask whether z follows in sorted arder each of the elements we
meet on the list, which is an additionaJ step at each cell. However, the sarne factor
in savings is gained on unsuccessful searches during iD8ertion and deletion.

A lookup function for sorted lists is shown in Fig. 6.6. We leave to the reader
the exerciae of modifying the functions of Figs. 6.4 and 6.5 to work on sorted lists.
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BOOLEAN lookup(int x. LIST L)
{

if (L == NULL)

return FALSE;
.1.. if (x> L->.l...nt)

return 100kup(x, L->next);
e18e if (x == L->element)

return TRUE;
e18e /* here x < L->element, and 80 x could not be

}

Fig. 6.6.

Comparison oí Methods

The table in Fig. 6.7 indicates the number oí cells we must search íor each oí
the three dictionary operations, íor each oí the three list-based representations oí
dictionaries we have discussed. We take n to be the number of elements in the
dictionary, which is alBO the length of the list ií no duplicates are allowed. We use
m íor the length oí the list when duplicates are allowed. We know that m ~ n, but
we do not know how much greater m is than n. Where we use n/2 -+ n we mean
that the number oí cells is an average oí n/2 when the search is successful, and n
when unsuccessíul. The entry n/2 -+ m indicates that on a successfullookup we
shall see n/2 elements oí the dictionary, on the average, before seeing the one we
want,3 but on an unsuccessful search, we must go all the way to the end oí a list oí
length m.

Notice tbat all oc tbese running times, except Cor insertion witb duplicates,
are worse tban tbe average running times Cor dictionary operations wben the data
structure is a binary search tree. As we saw in Section 5.8, dictionary operations
take only O(logn) time 00 tbe average wheo a binary searcb tree is used.

.f, In fact, aince the~ may be duplicates, we may have to examine somewhat more than "/2
celJa before we can expect to 8ee "/2 diffe~nt elementa.

liat L ./on the 8orted
return FALSEi

Lookup on a lOrted list.

lNSERr DELETE LOOKUP
No duplicatea n/2-+ n _/2 -+ n n/2 -+ n
Duplicates O m n/2 -+ m

Sorted n/2 n/2 n/2
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J udicious Ordering of Tests

Notice the order in which the three testa of Fig. 6.6 aI'e made. We have no choice
but to test that L is not RUIJ. first, since if L is RUIJ. the other two tests will cause
an error. Let 1/ be the value of L->el.ent. Then in all but the last cell we visit,
we shall have z < y. The reaaon is that if we have z = 1/, we terminate the lookup
successfully, and if we have z > 1/, we terminate with failure to find z. Thus we
make the test z < 1/ first, and only if that fails do we need to separate the other
two cases. That ordering of tests follows a general principie: we want to test for the
most common cases first, and thus save in the total number of tests we perform, on
the average.

If we visit k cells, then we test k times whether L is RUIJ. and we test k times
whether z is less than 1/. Once, we shall test whether z = y, making a total of
2k + 1 tests. That is only one more test than we make in the lookup function of
Fig. 6.3 - which uses u~rted lista - in the c~ that t,he element z is found. If
the element is not found, we shatl expect to use many fewer tests in Fig. 6.6 than
in Fig. 6.3, because we can, on the average, stop after examining only half the cells
with Fig. 6.6. Thus atthough the big-oh running times of the dictionary operations
using either sorted or unsorted lists is O(n), there is usually a slight advantage in
the constant factor if we use sorted lista.

Doubly Linked Lists

In a linked list it is not easy to move from a cell toward the beginning of the listo
The doubly linked list is a data stmcture tbat facilitates movement botb forward
and backward in a listo Tbe cells of a doubly linked list of integers contain tbree
fields:

tJpdef struct CELL
struct CELL {

LIST pr..ioU8;
int el_ent;
LIST next;

.LIST ;.

};

The additional field contains a pointer to the previoua cen on the listo Figure 6.8
shows a doubly linked list datastructure that represents the list L = (al. a2. . . .. an).

:;:::~~~~I~I~JL

thelist L=(al,a2 ,a,.).Fig. 6.8.

Dictionary operatioos on a doubly linked list structure are essentially tbe same
as tb~ on a singiy linked list. To see tbe advantage oí doubly linked lista, coosider
tbe operation oí deleting an element 4i. given only a pointer to tbe ce)) containing
tbat elemento Witb & singly linked list, we would bave to find tbe previou8 cell by
searching tbe list írom tbe beginning. Witb a doubly linked list, we can do tbe task
in 0(1) time by a sequence oí pointer manipulatioos, as shown in Fig. 6.9.
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void delete(LIST p, LIST .pL)
{

/. p is a pointer to the cell to be deleted,
and pL points to the list ./

if (p->next ! = NULL)
p->next->previous = p->previous;

it (p->previous == NULL) /. p points to tirat cell ./
(.pL) = p->next;

else
p->previous->next = p->next;

(1)
(2)
(3)
(~)

(5)
}

The function delete(p.pL) shown in Fig. 6.9 takes as arguments a pointer p
to the cell to be deleted, and pL, which is a pointer to the list L itself. That is,
pL is the address of a pointer to the first cell on the listo In line (1) of Fig. 6.9 we
check that p does not point to the last cell. Ir it does not, then at line (2) we make
the backward pointer of the following cell point to the cell before p (or we make it
equal to BULL if p happens to point to the first cell).

Line (3) tests whether pis the first cell. If so, then at line (4) we make L point
to the second cell. Note that in this case, line (2) has made the previou8 field of
the second cell NULL. Ir p does not point to the first cell, then at line (5) we make
the forward pointer of the previous cell point to the cell following p. That way, the
cell pointed to by p has effectively been spliced out of the list; the previous and
next cells point to each other.

EXERCISES
.

6.4.1: Set up the recurrence relations Cor the running times oC (a) delete in Fig.
6.4 (b) insert in Fig. 6.5. What are their solutions?

6.4.2: Write C Cunctions Cor dictionary operations insert, lookup and delete using
linked lists witb duplicates.

6.4.3: Write C functions for insert aod delete, using sorted lista as in Fig. 6.6.

6.4.4: Write a C function tbat inserts an element z into a new cell tbat follows
the cell pointed to by p on a doubly linked listo Figure 6.9 is a similar function for
deletion, but for insertion, we don't need to koow the list header L.

6.4.5: If we use tbe doubly linked data structure for lista, ao option is to represent a
list not by a pointer to a cell, but by a cell with the element field unused. Note that
this "header" cell is not itself a part of the listo The next field of the header points
to the first true cell of the list, and the previous field of the first cell points to the
header cell. We can then delete the cell (not the header) pointed to by pointer p
without koowing the header L, as we needed to know in Fig. 6.9. Write a C function
to delete from a doubly linked list using the format described here.

6.4.6: Write recursive functions for (a) retrieve(i, L) (b) length(L) (c) last(L)
using the linked-list data structure.

Deleting a ceO from a doubly linked listoFig.6.9.
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ing functions to cells wit.h an arbitrary t.ype BTYPE
~,y) to test if z and y are equal and lt(z, y) to te"
the elemeots of EnPE.

6.4.7: Extend each of tbe foUc
for elementa, using functions e.
if z precedes y in an ordering 4

a)
b)
c)
d)
e)

lookup 88 in Fig. 6.3.
delete as in Fig. 6.4.
insert as in Fig. 6.5.
insert, delde, ud lookup using lista with duplicates.
insert, delete, and lookup using sorted lists.

Anotber common way to implement a list Í8 to create a structure consisting oí

l. An array to bold tbe elements and

2. A variable length to keep track oí the count of the number oí elements currently
in the listo

Figure 6.10 shows how we might rep~nt the list (Oo. al. . ... Gn-I) using ao anay
A[O. .RAX-1]. Elements ao. al,'..' an-1 are stored in A[O. .D-1] , aod length = n.

. o ao

1 41

.. .

a"'- 1 ~-1'

l e 't ~ :
M ,aV: t ..-,-,.,rLA'- fi. .'

The alTaY 1 holding the list (00,01,...,0,,-1),Fig. 6.10.

As in the previous section, we 888ume that list elements are integers and invite
the reader to generalize the functions to arbitrary types. The structure declaration
for tbia array-baeed implementation of lists is:

tJpedef .trtlct {
int A [XAX] ;
int length;

} LIST;
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Here, LIST is a structure oí two fieldsj tbe first is an array A tbat sto~ tbe elements,
the second an integer lengtb tbat contains tbe number oí elements currently on
tbe listo Tbe quantity IIAI is a user-defined constant tbat bounds tbe number of
elements tbat will ever be stored on tbe listo

The array-based repreaentation of lista is in many ways more convenient tban
the linked-list representation. It does suffer, bowever, from the limitation tbat lista
cannot grow longer than the array, wbich can cause an insertion to fail. In tbe
linked-list repreaentation, we can grow lista as long as we bave available computer

memory.
We can perform the dictionary operations on array-based lista in rougbly tbe

same time as on lista in the linked-list representation. To insert x, we look for x,
and if we do not find it, we check wbetber length < M AX. If not, tbere is an error
condition, as we cannot lit the new element into tbe arfar. Otberwise, we atore x
in A [lengtb] and tben increase length by 1. To delete x, we again lookup x, and if
found, we shift aIl following elements of A clown by one position; tben, we decrement
length by 1. Tbe details of functions to implement insert and delete are left as
exercises. We shall concentrate on tbe details of lookup below.

Lookup with Linear Search

Figure 6.11 i. a (unction tbat implements tbe operation lookup. Becauae tbe array
A may be large, we ch~ to pass a pointer pL to tbe structure o( type LIST as a
formal parameter to lookup. Witbin the function, tbe two fielda of tbe structure
can tben be referred to as pL->A[i] and pL->length.

Starting witb i = O, tbe (or-loop o( liDes (1) to (3) examines each location o(
tbe array in turn, until it either reaches tbe last occupied location or linda %. If it
finda %, it retorna TaO. If it has examined eacb element in tbe list without finding
%, it retorna FALSE at line (4). Tbis metbod o( lookup is called linear or sequential
searcb .

BOOLEAB lookup(int x,
{

int i;

(1)
(2)
(3)
(4)

for (i = o; i < pL->length;

if (x = pL->A[i)

return TRUB;

return FALSE;

}

It is easy to ~ that., on the average, we 8earcl1 halfthe array A[O. .leDgth-1]
before finding z if it is presento Thus letting n be the value of length, we take
O(n) time to perform a lookup. If z is not preeent, we aearch the whole array
A [O. .length-1] , again requiring O( n) time. This performance is the &ame as for
a linked-list rep~ntation of a listo

LIST .pL)

i++)

Fig. 6.11.
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The Importance of Constant Factors in Practice

Throughout Chapter 3, we emphasized the importante of big-oh measures of run-
ning time, and we mar have given the impression that big-oh is all that matters
or that any O(n) algorithm is as good as any other O(n) algorithm for the same
job. Yet hete, in our discussion of sentinels, and in other sections, we have exam-
ined rather carefully the constaot factor hidden by the O(n). The reason is simple.
While it is true that big-oh measures of running time dominate constant factors, it
is alao true that everybody studying the subject learns that fairly quickly. We learn,
for example, to use an O(nlogn) running time sort whenever n is large enough to
matter. A competitive edge in the performance of software frequently comes from
improving the constaot factor in an algorithm that already has the right "big-oh"
running time, and this edge frequently translates into the success or failure of a
commercial software producto

with SentinelsLook
We can simplify the cacle in the rol-loop of Fig 6.11 and Speed up the program
by temporarily inserting z at the end oí the listo This z at the end of the list is
called a .entinel. Tbe t«bnique was first mentioned in a box on "More Defensive
Programming" in Section 3.6, and it has an important application here. Aasuming
that there always is an extra slot at tbe end oí the list, we can use the program in
Fig. 6.12 to search ror z. The running time oí the program is still O(n), but the
constant oí proportionality is smaller because the number oí machine instructions
required by tbe body and teBt of tbe loop will typicalIy be smaller for Fig. 6.12 tban
for Fig. 6.11.

BOOLEAl' ookup(iD't z, LIST .pL)

{
1nt 1;

(1)
(2)
(3)
(4)
(5)

pL->A[pL->l8D¡t;h] = Xi

i = O;

_hile (x != pL->A[1])

i++;
retan (1 < pL->length);

)

F\mction tbat doea lookup witb a eentinel.Fig.6.12.

The sentinel is placed just beyond the list by line (1). Note tbat since length
d~ not change, tbis z is not really part oí the listo The loop oí liDes (3) and (4)
increases i until we find z. Note that we are guaranteed to find z even if the list
is empty, because oí the sentinel. Aíter finding z, we test at line (5) whether we
have íound a real occurrence oí z (tbat is, i < length), or whetber we have íound
the sentinel (that is, i = length). Note that if we are using a sentinel, it is eaential
that length be kept strictly leas than MAX, or else tbere will be no place to put the
sentinel.
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Lookup 00 Sorted Lists with Bioary Search

Suppose Lis a list in which the elements ao, al,..., an-l have been sorted io 000-
decreasing order. Ir the ~rted list is stored in an array &[0. .n-1], we can speed
lookups coosiderably by using a technique known as binary sean:h. We must first
find the index m of the middle element; that is, m = L(n -1}/2J.4 Then we com-
pare element z with A[m]. Ir they are equal, we have found z. Ir z < A[m], we
recursively repeat the search on tbe sublist &[0. .8-1]. Ifz > A[m], we recursively
repeat tbe search on tbe sublist J. [8+1. . n-1]. Ir at &Oy time we try to search an
empty list, we report failure. Figure 6.13 illustrates the division proceM.

The cacle for a function 6insearch to locate z in a aorted array A is shown in
Fig. 6.14. The function uses the variables lo. .and high for the lower and upper
bounds of the range in which z might lie. Ir the lower range exceeds the upper, we
have failed to find z; the function terminates and retorna FALSE.

Otherwise, 6in6earch computes the midpoint of the range, by

mid = L(low + high)f2J

Then the function examines A[midJ, the element at the middle of the range, to
determine whether z is there. Ir not, it continues the search in the lower or upper
half of the range, depending on whether z is lea than or greater than A[midJ. This
idea generalizes the division suggested in Fig. 6.13, where low was O and high was
n-l.

The function bin.8arcb can be proved correct using the inductive assertion
that if z is in the array, then it must lie within the range A [lo.. . bighJ. The proaf
is by induction on the difference high -low and is left. as an exercise.

At each iteration, 6insearch either

1. Finds the element z when it reaches line (8) or

The nota&ion tajo the floor of 4, i. the inteser part of a. Thu. l6.5J = 6 and l6J = 6.
Also, ralo the ceilin9 of a, i. the .mallest inteler ¡reater than or equal to 4. For in.tance,
r6.5l = 7 and f61 = 6.

4

A
o ' , ~

Seucbhere
.., ~." ,~.. if Z' < A[l(n - 1)/2J]
¡ ~ ;-, "

l(n - l)/2J

c Search here
,~ r ir z > A[L(n - 1)/2J]

n-l

Fig. 6.13. Binary eearch divides a in two.
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bin8earch(int x. int AO. int 108. int higb)

.id;

BOOLEAH

{
int .id;

if (108> high)
r.turn FALSE;

els. {
.id = (108 + high)/2;

if (z < A [81d])

return binsearch(z. A. 108. .1d-1);
else if (z > Araid])

return binsearch(z. A. 8id+1. high);
el.. l. z = Araid] .1

return TRUE;
'-

(1)
(2)

(3)
(4)
(5)
(6)
{1;)

(8)

}

F\mction that doea lookup uaing binary 8eard1.Fig.6.14.

2. Calls itaelf recursively at line (5) or line (7) on a sublist that is at m~t half as
long as the array A [lov. .high] that it was given to search.

Starting with an array of length n, we cannot divide the length of the array to be
searched in half more than log2 n times before it has length 1, whereupon we either
find % at A [aid] , or we fail to find % at aIl after a call on the empty listo

To Iook for % in an array , witb n elementa, we call bin.earch(x.A.O.D-1).
We see that binsearch calla itaelf O(logn) times at m~t. At each call, we spend
0(1) time, plus the time of the recursive callo The running time of binary search
is therefore O(logn). That compares favorably with the linear search, which takes
O(n) time on the average, as we have ~n.

EXERCISES

6.5.1: Write function8 to (a) i~rt z and (b) delete z frorn a li8t L, using linear
search of an array.

6.5.2: Repeat Exerciae 6.5.1 for an array with 8entinels.

6.5.3: Repeat Exerciae 6.5.1 for a sorted array.

6.5.4: Write the following functions aauming that list elernents are of sorne arbi-
trary type BTTPE, for which we have functions eq(z, y) that tells whether z and y
are equal and lt(z, y) telling whether z precedes y in the arder of elernents oí type
BTTPE.

a)
b)
c)

functían lookup af Fíg. 6.11.
functían lookup af Fig. 6.12.
functían binsearch af Fig. 6.14.
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6.5.5**; Let P(k) be the lengtb (high-low+ 1) oCthe longest arfar such that the
binary search algorithm oC Fig. 6.14 never makes more than k probes [evaluations of
aid at line (3)]. For example, P(I) = 1, and P(2) = 3. Write a recurreoce relatioo
Cor P(k). What is tbe solutioo t.o your recUfrence relatioo? Does it demonstrate
tbat binary search makes O(log n) probes?

6.5.6*: Prove by ioduction 00 the difl'erence between low and high tbat if z is in
the range J. [lo.. . high] ,tben the binary search algorithm of Fig. 6.14 will find z.

6.5.7: Suppose we allowed arrays to have duplicates, so insertion could be done in
0(1) time. Write insert, delete, and lookup fundion8 for tbis data structure.

6.5.8: Rewrite the binary search program t.o use iteration rather than recursion.

6.5.9.*: Set up and solve a recurrence relation for tbe running time oC binary search
on an arfar of n elements. Hint: To simplify, it helps t.o take T(n) as an upper
bound on the running time of binary searcb on any array of n or fewer elements
(rather tban on exactly n elements, as would be our usual approach).

6.5.10: In temary sean::h, given a range low t.o high, we compute the approximate
1/3 point of tbe range,

first = L(2 x low + high)/3J

and compare tbe lookup element z with A[first]. Ifz > A[/irst], we compute the
approximate 2/3 point,

second = f(low + 2 x high)/31

and compare z with A[aecond). Tbus we isolate z t.o witbin one of three ranges,
each no more than one third tbe range low to high. Write a function to perform
ternary search.

6.5.11**: Repeat Exercise 6.5.5 for temary 8earcb. That is, find and solve a
recurrence relation for the largest arfar that reqúires no more than k probes during
ternary search. How do the number of probes required for binary and ternary search
compare? That is, for a giveo k, can we handle larger arrays by binary search or
by temary search?

Probes in
binary search

Ternary search

.:. 6.6 Stacks

A stock is an abstract data type based on the list data model in which all operations
are performed at oRe end of the list, which is called the top of the stack, The term
"LIFO (for lut-in first-out) list" is a synonym for stack,

The abstract model of a stack is the same 88 that of a list - that is, a sequence
of elements 01,02,.. "o.. of BOme one type. What distinguishes stacks from general
lists is the particular set of operations permitted, We shall give a more complete set
of operations later, but for the momeot, we note that the quintessential stack oper-
ations are pt¡8h ud pop, where pu8h(z) puts the element z 00 top of the stack ud
pop removes the topmost elemeot from the stack. If we write stacks witb tbe top at
the right end, the operation pu8h(z) applied to the list (01,02,. . .,0..) yields the list
(01.02, . . .,0.., z). Popping the list (01,02,. , .,0..) yields tbe list (01,02,. . .,0..-1);
popping the empty list, t. is impossible ud causes an error coodition.

Top of stack

Push and pop ,)
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The ADT stack

Clear stack

Full and empty
stacks

SEC. 6.6 STACKS 307

Example 6.9. Many compilers begin by tuming the infix expressions that
appear in programa into equivalent postfix expressions. For example, the expression
(3 + 4) x 2 is 3 4 + 2 x in postfix notation. A sta can be u8ed to evaluate postfix
expreaions. Starting with an empty sto, we scan the postfix expression from left
to right. Each time we encounter an argument, we push it onto the stack. When we
encounter an operator, we pop the sto twice, remembering the operands popped.
We then apply tbe operator to the two popped values (with the aecond as the left
operand) and push the result onto the stack. Figure 6.15 shows the stock after each
step in the processing of the postfix expression 3 4 + 2 x. The result, 14, rem&Íns
on the stack after pro<:e88Íng. +

Fig. 6.15. Evaluating a postfix exprel8iOll usin« a stack.

Operatioos 00 a Stack

The two previous ADT's we discussed, the dictionary and the priority queue, each
had a definite set of &88Ociated operations. The stack ia re&lly a family of similar
ADT's with the SalDe underlying rnodel, but with BOrne variation in the set of
allowable operations. In thia section, we shall discuss the common operations on
stacka and show two data structu~ that can serve as implernentations for the stack,
one b&8ed on linked lista and the other on arfays.

In any collection of stack operations we expect to see puBh and pop, as we
rnentioned. There ia another common thre&d to the operations ch~n for the stack
ADT(s): they can all be implemented simply in 0(1) time, independent of the
number of elernents on the stack. You can check as an exercise that íor the two
data structu~ sugg~ted, all operations require only constant time.

In addition to puBh and pop, we generally need an operation dear that initial-
izes the stack to be empty. In Example 6.9, we tacitly aMurned that the stack started
out empty, without explaining how it got that way. Another pO88ible operation is
a test to determine whether the stack ia currently empty.

The lut of the operations we sh&ll consider is a test whether the stack is
"full." Now in our abstract model oí a stack, there is no notion oí a fullstack, since
a stack is a list and lista can grow as long as we like, in principie. However, in any
irnplementatioo oí a stack, there will be BOrne length beyond which it cannot grow.
The ~t comrnon example is when we represent a list or stack by an array. As
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seen in tbe previous section, we bad to assume tbe list would not grow beyond tbe
constant RAI, or our implementatioD oí iRse" would not work.

Tbe formal definitions oí tbe operations we sball use in our implementatioD oí
stacks are the íollowing. Let S be a stack oí type BTYPE and z an element oí type
ETYPE.

1. clear(S). Make the stack S empty.

2. iaEmpt,(S). Retum TRUE if S is empty, FALSE otherwÍ8e.

3. iaFull(S). Retum TRUE if S is full, FALSE otherwise.

4. pop(S, %). If S is empty, retum FALSE; otherwise, set z to tbe value of the top
element 00 stack S, remove tbis element from S, and return TRUE.

5. puah(%, S). If S is full, retum FALSE; otberwiae, add tbe element % to tbe top
of S and retum TRUE.

There is a commoo variation of pop that 8.88umes S is nonempty. It takes only S
a.s an argument and returns tbe element z tbat is popped. Yet anotber altemative
version of pop does not retum a value at all; it just removes the element at tbe top
of tbe stock. Similarly, we may write push with the assumption that S is oot "full."
. .. . . . .
In that case, push does not return any value.

Array Implementation of Stacks

The implementations we used for lists can &\so be used Cor stacks. We shall discuss
an array-based implementation first, fol\owed by a linked-list rep~ntation. In eadt
case, we take the type of elements to be int. Generalizations are left 88 exercises.

The declaration for an array-baaed stack of integers is

} STACI

DATA MODEL

. ~,
t i., ..:!1 J" r.' -'~

1 - _. . ti

, -.

¡ ,

. -1 1

K-l

representing a stack.Fig. 6.16.
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yoid clear(STACI ~)
{

pS->top = -1;

}

BOOLEA1f

{

Y (STACK .pS)i8E8pt

(pS->top < O);returu
}

BOOLEAR i8Full(STACK .pS)
{

return (pS->top >= MAl-1);

}

BOOLEAN pop(STACK .pS, int .px)
{

it (i8Eapty(pS»
return FALSE;

e18e {
(.px) = pS->A[(pS->~op)--];

r.~urn TRUB;
}

}

BOOLEAN puah(int x. STACX .pS)
{

if (isFull(pS»
return FALSE;

.18. {
pS->A(++(pS->top») = x;
return TRUE;

}

~

}

F\mctions to imFig.6.17. stack operations on arraya.

With an array-baaed implementation, the stack can grow either upward (from lower
locatiom to higher) or downward (from higher locations to lower). We choose to
have the st.ack grow upward;5 t.hat is, the old~t elemento ao in t.he st.ack is in
location O, the next-to-old~t elemento al is in location 1, and t.he m~t. recently
inserted element Bn-1 is in the location n-l.

The field top in the array st.ructure indicates the position of the top of st.ack.
Thus, in Fig. 6.16, top has t.he value n-l. An empty stack is rep~nted by having
top = -l. In that case, the content of array A is irrelevant, there being no elements
on the stack.

Tbe programa for t.he five stack operations defined earlier in t.his section aI'e

5 Thus tbe "top" of tbe 8t8ck ia pbyaicaJly 8hown at tbe bottom of tbe Pase, an unfortunate

but quite standard CORftotion.
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void clear(STACI .pS)
{

(.pS) = NULL;
}

BOOLEAN isEapty(STACI .pS)
{

return «'pS) = IULL);

}

BOOLEAN isFull(STACK .pS)
{

return FALSE;
}

BOOLEAN pop(STACI .pS, int .px)
{

if «.pS) = NULL)

return FALSE;
.1.. {

(.px) = (.pS)->el888Dt;
(.pS) = (.pS)->next;
retum TRUE;

}

BDOLEAN puah(int x, STACI .pS)

{
STACK ne.Cell;

ne.cell = (STACI) aalloc(.izeof (atruct CELL»;

ne.Cell->eleaent = x;

ne.Cell->next = (.pS);

(.pS) = ne.cell;

return TRUE;

shown in Fig. 6.17. We pa88 stacks by reference to avoid having to copy large anays
that are argumente of the functions.

Linked-List Implementation of a Stack

We can represent a stack by a linked-list data structure, like any listo However, it
is convenient if the top of the stack is the front of the listo That way, we can push
and pop at the head of the list, which takes only 0(1) time. If we had to find the
end of the list to push or pop, it would take O(n) time to do t.h~ operations on a
stack of length n. However, &8 a conaequence, the sto S = (al, a2, . . . ,an) must
be represented "backward" by the linked list, as:

}

Fig. 6.18.
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T

The type definition macro we have used for list ceUs can as weU be used for
stacks. The macla

DetCell(int, CELL, STACK);

defines stacks of integers, expanding into

tYpdef struct CELL *STACK;
struct CELL {

int el..ent;

STACK next;

};

Witb tbis representation, tbe five operations can be implemented by tbe íunctions
in Fig. 6.18. We 8BSume that aalloc never runs out oí space, whicb means tbat
the isFull operation always returns FALSE, and tbe push operation never íails.

The effects oí push and pop on a stack implemented as a linked list are illus-
trated in Fig. 6.19. .

L

(a) List L.

~

",.
'Pl

(b) push(x, L).

.
L

(c) After executing pop(L,.x) 00 list L of (a).

Fig. 6.19. Push and pop operations 00 a stack implemented as a Iinked listo

EXERCISES

6.6.1: Show the stack that remaios after executing the following sequence of oper-
atioos, starting with an empty stack: push(a), push(b), pop, push(c), push(d), pop,
push(e) , pop, popo

6.6.2: Using only the five operatioos on stacks discussed in this section to ma-
nipulate the stack, write a C program to evaluate postfix expreMioos with integer
operands and the four usual arithmetic operators, following the algorithm suggested
in Example 6.9. Show that you can use either the arfar or the linked-list imple-
mentation with your program by defining the data type STACK appropriately and
including with your program first the functioos of Fig. 6.17, and then the functions
of Fig. 6.18.
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6.6.3*: How would you uae a stack to evaluate prefix exp~ions?

6.6.4: Compute the running time oí each oí the Cunctions in Figs. 6.17 and 6.18.
Are they alI0(1)7

6.6.5: Sometimes, a stack ADT uses an operation top, where top(S) returns the
top element oí stack S, which must be assumed nonempty. Write Cunctions for top
that can be used with

a) The array data structure
b) The linked-list data structure

that we defined for stacks in this section. Do your implementations of top all take
0(1) time?

6.6.6: Simulate a stack evaluating the foUowing postfix expressions.

a) ah+cdx +ex
b) abcde + + + +
c) ab+c+d+e+

6.6.7*: Suppose we start with an empty stack and perform BOme push and pop
operations. If tbe stack after these operatioDs is (al, a2, . . ., an) (top at tbe rigbt),
prove that ai was pushed before ai+l was pusbed, for i = 1,2, . . ., n-l.

.... 6.7 Implementing Function Calls

An important application oí stacks is normally hidden íram view: a stack is used to
allocate space in the computer's memory to the variables belonging to the various
functions oí a programo We shall diacuss the mechanism used in C, although a
similar mechanism is used in almost every other programming language as well.

int fact(int n)

{
(1) 1f (n <= 1)
(2) return 1; /. ba.is ./

.1..
(3) return n.fact(n-1); /. induction./

}

To see what the problem is, consider the simple, recursive factonal function
fact froro Section 2.7, which we reproduce here as Fig. 6.20. The function has a
parameter D and a retum value. As fact calla itself recursively, difl'erent calla are
active at the same time. These calla have different values oí the parameter D and
produce different retum values. Where are these different objects with the same
names kept?

To answer the question, we must Iearn a little about the ron-time oryanuation
associated with a programming language. The run-time organization is the plan
used to subdivide the computer's memory into regions to hold the various data items

Run-time
organization

a StackU sing

RecUr8ÍYe function to compute n!.Fig. 6.20.
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used by a programo When a program is ron, each execution of a function is ca!led
an activation. The data objects aaociated with each activation are stored in the

Activation memory of the computer in a block called an activation record for that activation.
record The data objects include parameters, the return value, the return address, and any

variables local to the function.

! tt
C.c>d8

S tatic ~
.

\ '$t¡ack
c:

J,

,,"p i:" '

Heap

Fig. 6.21. Typical nm-time memory organization.

Figure 6.21 shows a typica! subdivision of run-time memory. The first area
contains the object code for the program being executed. The next area contains

Static data the static data for the program, such.as the va!ues of certain constants and exter-
Run-time stack na! variables used by the programo The third afea is the ron-time stack, which

grows downward toward the higher addresses in memory. At the highest-numbered
memory locations is the heap, an area set aside for the objects that are dynamically
allocated using malloc.6

The run-time stock holds the activation records for all the currently live acti-
vations. A stack is the appropriate structure, because when we call a function, we
can push an activation record onto the stack. At all times, the currently executing
activation Al has its activation record at the top of the stack. Just below the top of
the stack is the activation record for the activation A2 that called Al. Below A2's
activation record is the record for the activation that called A2' and 50 oo. When
a function returns, we pop its activation record off the top of stack, exposing the
activation record of the function that called it. That is exactly the right thing to
do, because when a function returns, control passes to the calling function.

+ Example 6.10. Consider the skeletal programshown in Fig. 6.22. This program
is nonrecursive, and there is never more than one activation for any one function.

8 Do not coníuBe thia U8e oí the tenn "heap" with the heap data structure diecussed in Section
5.9.

"C,- "~- ,',," ..~~, -"c," ,""',..~'c ,_c "~-' ,.,.
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When the main function starts to execute, its activation record containing the space
for the variables x, y, and z is pushed onto the 8tack. When function P is called,
at the place marked Here, its activation record, which contains the space for the
variables p1 and p2, is pushed onto tbe 8tack.7 When P caUs Q, Q's activation record
is pushed onto tbe stack. At thi. point, the stack i. as shown in Fig. 6.23.

When Q finishes executing, its activation record i. pOPped off the stack. At
that time, P is aIao finisbed, and 80 its activation record is popped. Finally, aain
too is finished and has its activation ~rd popped off the stack. Now the stack is
empty, and the program is finished. +

+ Example 6.11. Consider tbe ~ursive function tac~ from Fig. 6.20. Tbere
may be many activations of tac~ live at any one time, but each one will bave an
activation ~ord of the same form, namely

~=J
consisting of a word for tbe parameter D, wbich is filled initially, and a word for tbe
return value, wbich we bave denoted tac~. Tbe retum value is not filled until tbe
last step of tbe 8(:tivation, just before tbe return.

7 Noti~ tbat tbe acti~ion ~ for P bu two data objecta, and 10 ia of & "type" different

from tbú of tbe actiY&tion ~ for the main Prosram. HoweYer. - may ~prd all ac-
ti~ion record fonn. rOl" & Prosram as varian&. of a .in¡le record type, thu. preserving the
viewpoint that a .tack bu all its elementa of the same type.

~

DATA MODELLIST

.014 P()i

.014 Q()i

aain() {
int x, J. z;

P(); /. Bere ./

}

.014 P();
<

iDt pl. p2j

Q() ;
}

Q()'1'014

{

int ql. q2. q3;

}

Skeletal program .Fig. 6.22.
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1.
p1
p2

q1
q2
~

Run-time stack when functioD Q is executiog.Fig.6.23.

Suppose we cal) fact(4). Then we create one activation record, of the forro

ID 4 I

I fact - I

As fact(4) calla fact(3), we next push an activation record for that activation
whichonto the ron-time stack,

D 4
fact -

D 3
fact -

Note that there are two locations named D and two named tacto There is no
confusion, since they belong to different activations and only one activation record
can be at the top of the stack at any one time: the activation record belonging to
the currently executing activation.

n 4
fac't -

n a
f~ ~

n 2
fac't -
n 1
fac't -

Activation record. during execution of tactoFig.6.24.

Tben fact(3) calla fact(2), wbich calla fact(1). At tbat point, tbe ron-time
stack is 88 in Fig. 6.24. Now tact(l) makes no recursive call, but assigns fact = l.
The value 1 is thus placed in the slot of the top activation record reserved for tacto
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Tbe otber slots labeled fact are unaffected, as sbown in Fig. 6.25.
Then, fact(1) returns, exposing the activation record ror fact(2) and return-

ing control to the activation fact(2) at the point where fact(1) was called. The
return value, 1, from fact (1) is multiplied by the value of n in the activation record
for fact(2), and tbe product is placed in the slot for fact of that activation record,
as required by line (3) in Fig. 6.20. The resulting stack is shown in Fig. 6.26.

Similarly, fact(2) tben returns control to fact(3), and tbe activation record
for fact(2) is poPped off tbe stack. Tbe return value, 2, multiplies n of fact(3),
producing tbe return value 6. Tben, fact(3) returns, and its return value multiplies
n in fact(4), producing tbe return value 24. Tbe stack is now

In 4 I

I fac~ 24 I

At tbis point, fact(4) returns to sorne bypotbetical calling function wbose
activation record (not sbown) is below tbat of fact(4) on tbe stack. However, it
would receive tbe return value 24 as tbe value offact(4), and would proceed witb
its own execution. +

EXERCISES

6.1.1: CoDsider the C program of Fig. 6.27. The activatioD record for main has a
slot for the integer i. The important data in the activation record for SU8 is

n t
fae't -
n $
fa" -
n 2
:fa.ct -
. ..
fact 1

After fact(1) computes its value.Fig. 6.25.

.

. .
fac~ -
. 3
f~ -
. '2:, ""'.
fac't 2" ,

After fact (2) computes its value.Fig.6.26.
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#define MAX 4
int A[MAX];

int sum(int i);

~~

aain()
{

~

. .1.,int

~

for (i = o; i < MAX; i++)

scanf("'¡;d". tA[i]);
(1)
(~C
(3) printf("~" 8118(0»;

}

int 8ua(int i)

{
if (i > MAX)

return O;

e1ae
retUrD A[i]

(4)
(5)

(6) + 8ua(i+1)i

1,

Fig. 6.27. Program for Exerciee 6.7.1.

1. The parameter i.
2. The return value.
3. An unnamed temporary location, which we shall call teap, to atore the value

Of8U8(i+l). The latter iscomputed in line (6) ud then added to A[a1 toform
the return value.

Show the stack of activation records irnrnediately before and irnrnediately &!ter each
call to sum, on the 888urnption that the value of A[al is lOio That is, show the stack
irnrnediately alter we have pushed an activation record for sua, and just before
we pop an activation record off the stack. You need not show the contente of the
bottom activation record (for aain) each time.

~

yoid delete(int x. .pL)LIST
{

it «*pL) != NULL)
it (x == (*pL)->e1eaent)

(*pL) = (*pL)->next;

e18e

delete(x. t«*pL)->nen»;
end

Fig. .6.28. for Exerciae 6.7.2.
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6.1.2.: The functíon delete of Fíg. 6.28 removes the first occurrence of ínteger z
from a linked list composed of the usual cells defined by

DefCell(int, CELL, LIST);

The activation record for delete consists of the parameters x and pL. However,
since pL is a pointer to a list, the value of the second pararneter in the activation
record is not a pointer to the first cell on the list, but rather a pointer to a pointer
to the first cell. Typically, an activation record will hold a pointer to the next field
ofsorne cell. Show the sequence ofstacks when delete(3,1:L) is called (frorn sorne
other function) and L is a pointer to the first cell of a linked list containing elernents
1,2,3, and 4, in that arder.

..".... 6.8 Queues
Another important ADT based on the list data model is the queue I a restricted
forro of list in which elements are inserted at one end, the rear, and removed from
the other end, the jront. The term "FIFO (first-in first-out) list" is a synonym for

queue.
The intuitive idea behind a queue is a line at a cashier's window. People enter

the line at the rear and receive service once they reach the front. Unlike a stack,
there is fairness to a queue; people are served in the order in which they enter the
line. Thus the person who has waited the longest is the one who is served next.

Front and rear
of queue

Operations on a Queue
The abstract mooel oí a queue is the same as tbat oí a list (or a stack), but tbe
operations applied are special. The two operations that are characteristic oí a
queue are enqueue and dequeue; enqueue(z) adds z to the rear oí a queue, dequeue
removes the element from the íront oí tbe queue. As is true oí stacks, there are
certain other useíul operations tbat we may want to apply to queues.

Let Q be a queue whose elements are of type ETYPE, and let z be an element
oí type ETYPE. We shall consider the íollowing operations on queues:

1. clear(Q). Make the queue Q empty.

2. dequeue(Q,z). IfQ is empty, return FALSE; otherwise, set z to the value oí
the element at the front of Q, remove this element from Q, and return TRUE.

3. enqueue(z, Q). If Q is full, return FALSE; otherwise, add the element z to the
real of Q and return TRUE.

4. isEmpty(Q). Return TRUE if Q is empty and FALSE otherwise.

5. isFuU(Q). Return TRUE if Q is fuIl and FALSE otherwise.

As with stacks, we can bave more "trusting" versions of enqueue and dequeue tbat
do not check for a full or empty queue, respectively. Tben enqueue does not return
a value, and dequeue takes only Q as an argument and retums the value dequeued.

A Linked-List Implementation oí Queues
A useful data structure for queues is básed on linked lists. We start with the usual
definition oí cells given by the macro

Enqueue and
dequeue
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void clear(QUEUE .pQ)
{

pQ->front = NULL

}

BOOLEAJI isEmpty(QUEUE .pQ)
{

}

(pQ->front == NULL);return

BooLtAN isFull(QUEUE *pQ)
{

}
return FALSE;

BOOLEAN dequeue(QUEUE .pQ, int .px)
{

if (i8Eapty(pQ»

return FALSE;

e188 {
(.px) = pQ->front->81eaent;

pQ->front = pQ->front->next;

return TRUE;
}

}

QUEUEenqueue(int x, .pq)BOOLEU

{
if (isEllpty(pQ» {

pQ->front = (LIST) aalloc(aizeof(struct CBLL»;
pQ->rear = pQ->front;

}
e18e {

pQ->rear->next = (LIST) malloc(sizeof (struct CBLL»;
pQ->rear = pQ->rear->next;

}
pQ->rear->eleaent = x;
pQ->rear->next = NULL;
retum TRUE;

}

Fig. 6.29. Procedures to linked-list queue operations.

D.fC.ll(iD~, CELL, LIST);

As previously io this ch apter , we assume that elemeots of our queues are iotegers
and invite the reader to geoeralize our fuoctions to arbitrary elemeot types.

The elements of a queue will be stored 00 a linked list of cells. A queue itself
is a structure with two pointers - one to the front cell (the first on the linked list)
and another to the real cell (tbe last 00 tbe linked list). Tbat is, we define
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More Abstract Data Types
We can add the stack and queue to the table of ADT's that we started in Section
5.9. We covered two data structures for the stack in Section 6.6, and one data
structure for the queue in Section 6.8. Exercise 6.8.3 covers anotber data structure,

the "circular array," for tbe queue.

ADT Stack Q\leue

Abstract List L-
Implementation
Data 1) Llnked Liat. 1) Link«! List
Structures 2) Array 2) Circular Array

typedef struct {
LIST front. rear;

} QUEUE ;

If the queue is ernpty, front will be RULL, ud the value of rear is then irrelevant.
Figure 6.29 gives programs for the queue operations rnentioned in this section.

Note that when a linked list is used there is no notion of a "full" queue, and so isFull
returns FALSE always. However, if we used sorne sort of array-based irnplernentation
of a queue, there would be the possibility of a full queue.

EXERCISES

Circular array



++++ 6.9 Longest Common Subsequences

Diff cornmand

LCS

Common

subsequence

+

SEC.6.9 LONGEST COMMON SUBSEQUENCES 321

6.8.4*: Show that ir (al, a2,..', an) is a queue
enqueued before ai+l, for i = 1,2", "n -l.

with al at the front, then aj was

This section is devoted to an interesting problem about lista. Suppose we have two
lists and we want to know what differences there are between them. This problem
appears in many different guises; perhaps the most common occurs when the two
lista represent two different versions of a text lile and we want to determine which
liDes are common to the two versions. For notational convenience, throughout this
section we shall assume that lists are character strings.

A useful way to think about this problem is to treat the two files as sequences
of symbols, x = al. . . am and y = b1 . . . bn, where a; represents the ith line of the
first lile and bj represents the jtb line of the second lile. Thus an abstract symbol
like ai mar really be a "big" object, perhaps a full sentence.

There is a UNIX command diff that compares two text files for their differ-
ences. One lile, x, might be the current version of a program and the other, y,
might be the version of the program before a small change was made. We could
use diff to remind ourselves of the changes that were made tuming y into x. The
typical changes that are made to a text lile are

1. Inserting a line.

2. Deleting a line.

A modification of a line can be treated as a deletion followed by an insertion.
Usually, if we examine two text files in which a small number of such changes

have been made when transforming one into the other, it is easy to see which liDes
correspond to which, and which lin~ have been deleted and which inserted. The
diff command makes the assumption that one can identify what the changes are by
first finding a longest common Bubsequence, or LCS, ofthe two lista whose elements
are the liDes of the two text fiJes involved. An LCS represents those línea that have
not been changed.

Recall that a subsequence is formed from a list by deleting zero or more ele-
mente, keeping the remaining elements in order. A common sub.sequence of two lists
is a list that is a SUbsequence of botb. A longest common subsequence of two lista
is a common subsequence that is as long as any common SUbsequence of the two
lista.

Example 6.12. In wbat follows, we can tbink of characters like a, b, or c,as standing for liDes of a text lile, or as any otber type of elements if we wisb. -

As an example, baba and cbba are botb longest common subsequences of abcabba
and cbabac. We see tbat baba is a subsequence of abcabba, because we may take
p~itions 2, 4, 5, and 7 of tbe latter string to form baba. String baba is also a
subsequence of cbabac, because we may take positions 2, 3, 4, and 5. Similarly,
cbba is formed from positions 3, 5, 6, and 7 of abcabba and from positions 1, 2,
4, and 5 of cbabac. Tbus cbba toa is a common subsequence of tbese strings. We
must convince ourselves tbat tbese are longest common subsequences; tbat is, there
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are no common SUbsequences of length five or more. That fact will follow from the
algorithm we describe next. +

A Recursion That Computes the LCS

We offer a recursive definition of the length of the LCS of two lista. This definition
will let us calculate the length easily, and by examining the table it constructs,
we can then discover one of the possible LCS's itself, rather than just its length.
From the LCS, we can deduce what changes were made to the text files in question;
essentially, everything that is not part of the LCS is a change.

To find the length of an LCS of lista z and 1/, we need to find the lengths of
the LCS's of all pairs of prefixes, one from z and the other from y. Recall that a
prefix is an initial sublist of a list, 80 that, for instance, the prefixes of cbabac are
(, c, cb, cba, and 80 oo. Suppose that z = (al,a2,.. .,am) and y = (b1,b2,.. .,bn).
For each i and j, where i is between O and m and j is between O and n, we can ask
for an LCS of the prefix (al'...' Qi) from z and the prefix (b1,... ,bj) from y.

If either i or j is O, then one of the prefixes is (, and the only possible common
SUbsequence of the two prefixes is (. Thus when either i or j is O, the length of
the LCS is O. This observation is formalized in both the basis and rule (1) of the
induction that follows our informal discussion of how the LCS is computed.

Now consider the case where both i and j are greater than O. It helps to think
of an LCS as a matching between certain positions of the two strings involved. That
is, for each element of the LCS, we match the two positions of the two strings from
which that element comes. Matched positions must have the same symbols, and
the liDes between matched positions must not cross.

Example 6.13. Figure 6.30(a) shows one oí two possible rnatchings between
strings abcabba and cbabac corresponding to tbe cornrnon SUbsequence baba and
Fig. 6.30(b) shows a matching corresponding to cbba. +

..

(a) For baba. (b) For cbba.

Fig. 6.30. LCS's as matchings between positions.

Tbus let us consider any matching between prefixes (al,. . ., ai) and (61, . . ., 6j).
Tbere are two cases, depending on wbetber or not the last symbols of tbe two lists
are equal.

a) If ai # 6j, then tbe matching cannot include botb ai and 6j. Thus an LCS of
(al,.. .,aj) and (bl,.. .,6j) must be eitber

i) AnLCSof(al,...,ai-l) and ('6l,...,6j),or
ii) An LCS of(al,...,ai) and (6l,...,bj-l).

abcabba

/~//
cbabac

b

I
b

b b a

//
b a c

a c a

/
ac
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If we have already found tbe lengtbs of the LCS 's of these two pairs of prefixes,
then we can take the larger to be the length of the LCS of (al,"" al) and
(b1, . . . , bj). Tbis situation is formalized in rule (2) of the induction tbat follows.

b) If aí = bj, we can match a; and bj, and the matching wiIl not interfere
with any other potential matches. Thus tbe length of the LCS of (a 1, . . . , aí)
and (b1,..., bj) is 1 greater than the lengtb of the LCS of (al,"" aí-l) and
(111, . . . , bj -1). This situation is formalized in rule (3) of the foIlowing induction.

These observations let us give a recursive definition for L( i, j), the length of the
LCS of (al"'" Oí) and (b1,..., bj). We use complete induction on the sum i + j.

BASIS. If i + j = O, then both i and j are O, and 80 the LCS is (. Thus L(O, O) = O.

INDUCTION. Consider i and j, and suppose we have already computed L(g, 11) for
any 9 and h such that 9 + h < i + j. There are three cases to considero

l. Ifeither i or j is O, then L(i,j) = O.

2. If i > O and j > O, and aí ~ bj, then L(i,j) = max(L(i,j - 1), L(i - 1,)j).

3. If i > O and j > O, and aí = bj, tben L(i,j) =1 + L(i -l,j - l}.

A Dynamic Programming Algorithm for the LCS

Ultimately what we want is L(m, n), the length of an LCS for the two lists x and
y. If we write a recursive program based on the preceding induction, it will take
time that is exponential in the smaller of m and n. That is far too much time to
make the simple recursive algorithm practical for, say, n = m = 100. The reason
this recursion does so badly is a bit subtle. To begin, suppose there are no matches
at all between characters in the lists x and y, and we call L(3,3). That results in
calls to L(2,3) and L(3,2). But each of these calls results in a call to L(2,2). We
thus do the work of L(2,2) twice. The number of times L( i, j) is called increases
rapidly as the arguments of L become smaller. If we continue the trace of calls, we
find that L(I, 1) is called 6 times, L(O, 1) and L(l, O) are called 10 times each, and
L(O, O) is called 20 times.

We can do much better if we build a two-dimensional table, or arfar, to store
L(i,j) for the various valueS of i and j. If we compute the values in order of the
induction - that is, smallest values of i + j first - then the needed values of L

are always in the table when we compute L(i,j). In fact, it is easier to compute L
by rows, that is, for i = 0,1,2, and so on; within a row, compute by columna, for
j = 0,1,2, and so oo. Again, we can be sute of finding the needed values in the
table when we compute L(i,j), and no recursive calls are necessary. As a result, it
takes only 0(1) time to compute earo entry of the table, and a table for the LCS
of lista of length m and n can be constructed in O( mn) time. -

In Fig. 6.31 we see C code that fills this table, working by row rather than
by the sum i + j. We assume that the list x is stored in an array a[1..83 and
y is stored in b[1. .n]. Note that the Oth elements of these are unused; doing so
simplifies the notation in Fig. 6.31. We leave it as an exercise to show that the
running time of this program is O(mn) on lists of length m and n.s

a Strictly apeaking, we discuased only big-oh expre88ions that are a function of one variable.

However, the meaning here ahould be clear. If T(m,n) is tbe running time of the program
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Dynamic Programming
The term "dynamic programming" comes from a general theory developed by R.
E. Bellman in the 1950's for solving problems in control systems. People who work
in the field of artificial intelligence often speak of the technique under the llame
memoing or tabulation.Memoing

A table-filling technique like thia example ia often called a dynamic progrnm-
ming algorithm. As in thia case, it can be much more efficient than a straightforward
implementation of a recursion that solves the sarne subproblem repeatedly.

Dynamic
programming
algorithm

Example 6.14. Let z be the list cbabac and y the list abcabba. Figure 6.32
shows the table constructed for these two lista. For instance, L(6, 7) is a case where
~ ~ 6? Thus L(6, 7) is the larger of the entri~ just below and just to the left.
Since th~ are 4 ud 3, respectively, we ~t L(6,7), tbe entry in the upper right
corner, to 4. Now consider L(4,5). Since both G4 and ha are the symbol b, we add
1 to the entry L(3,4) that we find to the lower left. Since that entry is 2, we ~t
L(4, 5) to 3. .

+

Recovery of 8n LCS

We now bave a table giving us the lengtb oí the LCS, not only for tbe lista in
question, but cor each pair of tbeir prefixes. From this information we must deduce
one oc the p()88ible LCS's Cor the two lista in question. To do so, we shall find the
matching paira of elements tbat forro one of tbe LCS's. We sball find a patb tbrougb
the table, beginning at the upper rigbt comer; this patb will identify an LCS.

Suppoee tbat our patb, starting at the upper right comer, has taken U8 to row
i and column j, tbe point in the table that corresponda to the pair of eIementa a;

00 lis" of Ieucth m and n, then tbere are constan"
and n ~ no. T(m,n) $: cmn.

(j - Oi j <= Di j++)
L[O] [j] . Oi
(i - 1i i <= 8i i++) {
L[i] [O] . Oi
tor (j . 1i j <- Di j++)

it (.[i] != b[j])

for

for

if (L[i-1] [j] >= L[i] [j-1])
L[i] [j] = L[i-1] [j] :

.1..
L[i] [j] . L[i] [j-1] :

.1.. /* a[i] = b[j] */
L[i] [j] = 1 + L[i-1] [j-1] :

}

C fragment to fill tbe LCS tabIe.Fig. 6.31.

mo. no. and c Iuch that Cor all m ?: mo
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01233334
O 1 2 2 3 3 3 4
O t 2 2 2 3 3 3
O 1 1 1 2 2 2 3
00111222
O O O 1 1 1 1 1

c 6
a 5
b 4
a 3
b 2
c 1

O

abcabba

Fig. 6.32. Table of Iongest common subsequences for cbabac and abcabba.

and bj. If o, = bj, tben L(i,j) WM chosen to be 1 + L(i - l,j - 1). We thus treat
Oi and bj M a matched pair of elements, and we shall include the symbol that is Oi
(and also bj) in the LCS, ahead of all the elements of the LCS found so faro We
then move our patb clown and to the left, tbat is, to row i - 1 and column j - 1.

However, it is also possible that Oj # bj. H so, tben L( i, j) must equal at leMt
one of L(i - l,j) and L(i,j - 1). If L(i,j) = L(i - l,j), we shall move our path
one row clown, and ifnot, we know tbat L(i,j) = L(i,j -1), and we shall moveour
path one column left.

When we follow this rule, we eventually arrive at tbe lower left corner. At tbat
point, we have selected a certain sequence of elements for our LCS, and the LCS
itself is the list of these elements, in the reverse of tbe order in which they were
selected.

~~

o 1 2 3 3 3 3 4

O 1 2 2 3 3 3 4

O 1 2 2 2 3 3 3

01112223

O O 1 1 1 2 2 2

7:,0 O O 1 1 1 1 1'. i
O O O O O O 0,0

1) 1 2 $1;4 5 6 7

6
5
4
3

c

a
b
a
b

c

2
1
O

Fig. 6.33. A path tbat finds the LCS caba.

Example 6.15. The table of Fig. 6.32 is shown again in Fig. 6.33, with a
path shown in boldo We start with L(6,7), which is 4. Since 06 # 67, we look
immediately to the left and clown to find the value 4, which must appear in at least
one ofthese places. In this case, 4 appears only below, and so we go to L(5, 7). Now
05 = 67; both are a. Thus a is the last symbol of the LCS, and we move southwest,
to L(4, 6).
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Since ~ and b6 are both b, we include b, ahead oí a, in the LCS being íormed,
and we again move southwest, to L(3,5). Here, we find as :1= bs, but L(3, 5), which
is 2, equals both the entry below and the entry to the leít. We have elected in this
situation to move down, so we next move to L(2,5). There we find a2 = bs = b,
and so we put a b ahead oí the LCS being íormed and move southwest to L(1,4).

Since al :1= b. and only the entry to the leít has the same value (1) as L(I,4),
we move to L(I,3). Now we have al = b3 = c, and so we add c to the beginning
oí the LCS and move to L(O, 2). At this point, we have no choice but to move leít
to L(O, 1) and tben L(O, O), and we are done. The resulting LCS consista oí tbe
four characters we discovered, in the reverse order, or cbba. That happens to be
one of the two LCS's we mentioned in Example 6.12. We can obtain other LCS's
by choosing to go left instead oí down wben L(i,j) equals both L(i,j - 1) and

L( i -1, j), and by cboosing to go leít or down when one of these equals L( i, j), even
in the situation when aí = bj (i.e., by skipping certain matches in favor of matches
íartber to tbe leít). .

We can prove that this patb finding algorithm always finds an LCS. The state-
ment that we prove by complete induction on the SUln oí the lengths oí the lista
18:

STATEMENT S(k): If we find ourselves at row i and column j, where i + j = k,
and if L(i,j) = v, then we SUbsequently discover v elements for our LCS.

BASIS. The basis is k = O. If i + j = O, then both i and j are O. We have finished
our path and find no more elements Cor the LCS. As we know L(O, O) = O, the
inductive hypothesis halda for i + j = O.

INDUCTION. Assume the inductive hypothesis Cor suma k or leM, and let i + j =
k + 1. Suppose we are at L(i,j), which has value v. If a; = bj, then we find one
match and move to L(i - 1,j -1). Since the 8um (i -1) + (j -1) is leas than i+j,
the inductive hypothesis applies. Since L(i - 1,j -1) must be v - 1, we know that
we shall find v - 1 more elements for our LCS, which, with the one element just
found, will give U8 v elements. That observation provea the inductive hypothesis in
this case.

The only other case is when ai # bj. Then, either L( i - 1, j) or L( i, j - 1), or
both, must have the value v, and we move to one of these positions that does have
the value v. Since the sum of the row and column is i + j - 1 in either case, the

inductive hypothesis applies, and we conclude that we find v elements Cor the LCS.
Again we can conclude that S(k + 1) is true. Since we have considered all C&8e8,

we are done and conclude that if we are at an entry L(i,j), we always find L(i,j)
elements for our LCS.

EXERCISES

6.9.1: Wbat is the length oí the LCS oí the lists

a) banana and cabana
b) abaacbacab and bacabbcaba
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of lista from Exercise 6.9.1. Hint: After6.9.2*: Find all the LCS's of the
building the table from
following each choice in tUfO when
two or three different ways.

, trace backward Crom the upper right comer I
you come to a point that could be explained in

6.9.3**: Suppose we use the recursive algoritbm for computing tbe LCS tbat we
described first (instead of the table-filling prograrn that we recommend). Ir we call
L(4,4) with two lists having no symbols in common, how many calls to L(l,l) are
made? Hint: Use a table-filling (dynamic prograrnming) algorithm to compute a
table giving the value of L(i,j) for all i and j. Compare your result with Pascal's
triangle from Section 4.5. What does this relationship suggest about a formula for
the number of calls?

6.9.4**: Suppose we have two lists x and y, each of length n. For n below a certain
size, there can be at most one string that is an LCS oí x and y (although that string
mar occur in different positions of x andfor y). For example, if n = 1, then the
LCS can only be (, unless x and y are both the same symbol a, in which case a
is the only LCS. What is the smallest value oí n for which x and y can have two
different LCS's?

6.9.5: Show that the program of Fig. 6.31 has running time O(mn).

6.9.6: Write a C program to take a table, such as that computed by the program
of Fig. 6.31, and find the positions, in each string, of one LCS. What is the running
time of your program, if the table is m by n?

6.9.7: In the beginning of this section, we suggested that the length of an LCS and
the size of the largest matching between positions of two strings were related.

a*) Prove by induction on k that if two strings have a common subsequence oí
length k, then they have a matching of length k.

b) Prove that if two strings have a matching of length k, then they have a common
subsequence of length k.

c) Conclude froro (a) and (b) that the lengths ofthe LCS and the greatest aize of
a matching are the same.

Character strings are probably the most common forro of list encountered in prac-
tire. There are a great many ways to represent strings
are rarely appropriate for other kinds of lists.
to the special issues regarding character strings.

First, we should realize that storing a single character string is rarely the whole
problem. Often, we have a large number of character strings, each rather short.
They may forro a dictionary, meaning that we insert and delete strings from the
population as time goes on, or they may be a sta tic set ofstrings, unchanging over
time. The following are two typical examples.
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Concordance 1. A useful tool íor studying texte is a concordance, a list oí all the words ueed in
the document and the placa in wbich tbey occur. Tbere will typically be tens
oí thousands oí different words used in a large document, and each occurrence
must be stored once. The set oí words used isstatic; that is, once íormed it does
not change, except perhape ií there were errors in the original concordance.

2. The compiler that tUfOS a C program into machine code must keep track oí
all the character strings that represent variables oí the programo A large pro-
gram mar bave hundreds or thousands oí variable names, especially when we
remember tbat two local variables named i that are declared in two functions
are really two distinct variables. As the compiler 8C&Da the program, it finds
new variable names and inserte them into the set oí names. Once the com-
piler has finished compiling a íunction, the variables oí that íunction are not
available to subsequent functioos, and 80 mar be deleted.

In botb oí these examples, there will be many short character atrings. Short
words abound in English, and programmers like to use single letters such as i or x
for variables. On the other hand, there is no limit on the length oí words, either in
English texte or in programa.

Character Strings in C

Character-string constante, as might appear in a C program, are stored as arrays of
Null character characters, íollowed by the special character '\0', called the null character, whose

value is O. However, in applications such as the ones mentioned above, we need the
íacility to create and atore new strings as a program ruos. Tbus, we need a data
structure in which we can store arbitrary character strings. Some oí the pO88ibilities
are:

1. Use a fixed-length array to hold character strings. Strings shorter than the
arfar are íollowed by a nulJ character. Strings longer than the arfar caDnot be

Thuncation stored in tbeir entirety. They must be troncated by storing only their prefix of
length equal to tbe lengtb of the array.

2. A scheme similar to (1), but 888ume that every string, or prefix oí a truncated
string, is íollowed by the null character. Tbis approach simplifies the reading
oí strings, but it reduces by one the number oí string characters that can be
stored.

3. A scheme similar to (1), but instead oí íollowing strings by a null charader,
use another integer length to indicate how long tbe string really is.

4. To avoid tbe restriction oí a maximumstring length, we can store tbe characters
oí the string as the elemente oí a linked listo POMibly, several characters can
be stored in one cell.

5. We mar create a large arfar of characters in which individual character strings
are placed. A string is tben rep~ted by a pointer to a place in the array
where tbe string begios. Strings mar be terminated by a null character or they
mar have an associated length.

~. "
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Fixed-Lengtb Array Representations
Let us consider a structure oí type (1) above, where strings are represented by
fixed-length arrays. In the following example, we create structures that bave a
fixed-Iength array as one of their fields.

. Example 6.16. Consider the data structure we might use to hold one entry in
a concordance, that is, a single word and its associated information. We need to
hold

1. The word itself.
2. The number of times the word appears.
3. A list of the liDes oí the document in which there are one or more occurrences

oí the word.

Thus we might use the íollowing structure:

typedef struct {
char vord[MAI];
int occurrencea;
LIST linea;

} VORDCELL;

Here, MAl is the maximum length of a word. All VORDCELL structures have an array
called vord of MAl bytes, no matter how short the word happens to be.

The field occurrences is a count oí the number of times the word appears,
and liDes is a pointer to the beginning of a linked list of cells. These cells are of
the conventional type defined by the macro

DefCell(int. CELL. LIST);

Each cell holds ORe integer, representing a line on which there are ORe or more
occurrences of the word in question. Note that occurrences could be larger tban
the length of tbe list, if the word appeared several times on ORe line.

In Fig. 6.34 we see the structure for tbe word earth in the first chapter of
Genesis. We assume IIAI is at least 6. The complete list of line (verse) numbers is

(1,2,10,11,12,15,17,20,22,24,25,26,28,29,30).

vord: ".~h\O"
occurrence.: 20
1 i n e s : [II3-"{~B-"~3-"'" ... {~G

Fig. 6.34. Concordance entry for the word earth in the fint chapter oí GenesÍB.

The entire concordance might consist of a collection oí structures of type VORD-
CELL. These might, for example, be organized in a binary search tree, with the <
ordering of structures based on tbe alphabetic order oí words. That structure would
allow relatively fast access f.o words as we use the concordance. It would alBO allow
us to create the concordance efficiently as we scan the text f.o locate and list the
occurrences of the various words. To use the binary tree structure we would re-
quire left- and righkhild fields in the type VORDCELL. We could alBO arrange these

~



330 THE LIST DATA MODEL

structures in a linked list, by adding a "next" field to the type VORDCELL instead.
That would be a simpler structure, but it would be less efficient if the number of
words is large. We shall see, in the next chapter, how to arrange these structures
in a hash table, which probably offers the best peñormance of all data structures
for this problem. ..

Linked Lists for Character Strings
The limitation on the length of character strings, and the need to allocate a fixed
amount of space no matter how short the string, are two disadvantages of the
previous implementation of character strings. However, C and other languages allow
us to build other, more flexible data structures to repreeent strings. For example, if
we are concerned that there be no upper limit 00 the length of a character string,
we can use conventionallinked lists of characters to hold character strings. That is,
we can declare a type

tYpedef struct CHARCELL .CHARSTRING;
struct CHARCELL {

char character;
CHARSTRING next j

};

In the type VDRDCELL, CHARSTRING becomes the type of the field vord, as

typedef {
CHARSTRING vord;
int occurrences;
LIST lines;

} VDRDCELL;

For example, the word earth would be rep~nted by

[~~I3-"~~]~3-"[~J~3-"'[~~I~3-.[~I~
This scheme removes any upper limit on the length of words, but it is, in practice,
oot very ecooomical of space. The reasoo is that each structure of type CHARCELL
takes at least five bytes, assuming one for the character and a typical four for a
pointer to the next cell 00 the listo Thus, the great majority of the space is used
for the "overhead" of pointers rather than the "payload" of characters.

We can be a bit more clever, however, if we pack several bytes into the data
field of each cell. For example, if we put four characters into each cell, and pointers
consume four bytes, then half our space will be used for "payload," compared with
20% payload in the one-character-per-cell scheme. The only caution is that we
must have some character, such as the null character, that can serve as a string-
terminating character, as is the case for character strings stored in arrays. In
general, if CPC (characters per cell) is the number of characters that we are willing
to place in one cell, we can declare cells by

typedef struct CHARCELL .CHARSTRING;
struct CHARCELL {

char characters [CPC] ;
CHARSTRING next;

};

Packiog
characters joto
cells
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For example, ir CPC = 4, tben we could atore tbe word earth in two cells, as

jet =.1, ~ .I~ I +--Ih_I\~[ -.,IJc..I~~~1
We could also increase CPC above 4. As we do so, tbe fraction of space taken

for pointers decreases, which is goodj it meaDa that the overhead of using linked
lista ratber tban arrays is dropping. On tbe other band, if we used a very large
value for CPC, we would find tbat almost all words used only one cell, but that cell
would bave many unused locations in it, just as an arfar of length CPC would.

Example 6.17. Let U8 suppose that in our population of character strings,
30% are between 1 8Jld 4 characters long, 40% between 5 8Jld 8 characters, 20% in
the range 9-12, 8Jld 10% in the r8Jlge 13-16. Then the table in Fig. 6.35 gives the
number of bytes devoted f.o linked lista rep~nting words in the loor ranges, for
four values of CPC, namely, 4, 8, 12, 8Jld 16. For our assumption about word-length
frequencies, CPC = 8 comes out best, with 8Jl average usage of 15.6 bytes That is,
we are best off using cells with room for 8 bytes, using a total of 12 bytes per cell,
including the 4 bytes for the next pointer. Note that the total space cost, which is
19.6 bytes when we include a pointer f.o the front of the list, is not 88 good 88 using
16 bytes for a character array. However, the linked-list scheme C8Jl accommodate
strings longer than 16 characters, even though our assumptions put a 0% probability
on finding such strings. +

CHARACTERS PER CELL

Fig.6.35. Numbers of bytes used for strings in various length
rauges by different values of CPC.

Mass Storage of Character Strings

There is another approach to the storage oí large numbers oí character strings that
combines the advantage oí arfar storage (little overhead) with the advantages oí-
linked-list storage (no wasted space due to padding, and no limit on string length).
We create one very long array oí characters, into which we shall store each char-
acter string. To tell where one string ends and the next begins, we need a special
character called the endmar*er. The endmarker character cannot appear as part oí
a legitimate character string. In what íollows, we shall use . as the endmarker, íor
visibility, although it is more usual to choose a nonprinting character, such as the
null character.
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+ Example 6.18. Suppoee we declare an array .pace by

char .paC8 [KAX] ;

We can tben atore a word by giving a pointer to tbe first position of .pace devoted
to that word. Tbe VORDCELL structure, analogoua to that of Example 6.16, would
then be

tJpedef .truct {

char .word;

int occurr8nc8.;

LIST line.;

} VDRDCELL;

In Fig. 6.36 we see the VORDCELL structure Cor tbe word the in a concordance based
on the book of Genesis. The pointer vord refers us to .pace (3], where we see the
beginning of the word th8.

Note that the lowest elements of the array .pace might appear to contain the
text itself. However, that would not continue to be the case for long. Even if the
next elements contain the words beginning, God, and created, tbe second the
would not appear again in the array 8pace. Rather, that word would be accounted
Cor by adding to the number of occurrences in tbe VORDCELL structure for the. As
we proceeded through the book and found more repetitions of words, the entries in
.pace would stop resembling the biblical text itselC. +

_pace:

Pág. 6.36.

As in Example 6.16, the structures of Example 6.18 can be formed into data
structures such as binary search trees or linked lists by adding the appropriate
pointer fields to tbe VORDCELL structure. The function lt(W1, W2) that compares
two VORDCELL 's Wl and W2 follows the vord fields of these structures and compares
tbem lexicographically.

To build a concordance using such a binary search tree, ft maintain a pointer
available to tbe first unoccupied position in the arfar .pace. Initially, available
points to .pace (OJ. Suppoee we are scanning the text for which the concordance

vord:

occurrenc..: 1377

lin..:

6 7 8o 1

Repre8enting words by
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What Happens When We Run Out of Space?

We have 888umed that sp&ce is so large that there is always room to add a new
word. Actually, each time we add a character we must be careíul that the current
pOOtion into which we write is leas than MAl.

lí we want to enter new words after running out oí space, we need to be prepared
to obtain new blocks oí space when the old one runs out. Instead oí creating just
one array .pace, we can define a character-array type

tYpedef char SPACE[MAX];

We can then create a new array, the first character oí which is pointed to by
available, by

available = (char .) aalloc(sizeof(SPACE»;

It is useíul to remember the end oí this array by immediately assigning

last = available + MAX;

We then insert words into the array pointed to by available. lí we can no
Jonger fit words into this array, we call aalloc to create another character array.
or course we must be careful not to write past the end of the array, and if we are
presented witb a string oí length greater tban M AX, tbere is no way we can store
tbe word in this scheme.

is being built and we find the next word - say, the. We do not know whether or
not the is already in the binary search tree. We thus temporarily add the. to the
position indicated by available and the three folIowing positions. We remember
that the newly added word takes up 4 bytes.

Now we can search for the word the in the binary search tree. If found, we
add 1 to its count of occurrences and insert the current line into the list of liDes.
If not found, we create a new node - which includes the fields of the VORDCELL
structure, plus left- and right-child pointers (both rroLL) - and insert it into the

tree at the proper place. We set the vord field in the new node to available, so
that it refers to our copy of the word the. We set occurrence. to 1 and create a
list for the field line. consisting of only the current line of texto Finally, we must
add 4 to available, since the word the has now been added permanently to the
space array.

EXERCISES

6.10.1: For the structure type VORDCELL discussed in Example 6.16, write the
following programa:

a) A function create that returns a pointer to a structure of type VDRDCELL.

b) A function insert(VDRDCELL .pVC. int line) that takes a pointer to the
structure VORDcELL and a line number, adds 1 to the number of occurrences
for that word, and adds that line to the list of liDes if it is not already there.



334 THE LIST DATA MODEL

6.10.2: Redo Example 6.17 under the 888umption that any word length from 1 to
40 is equally likely; that is, 10% of the words are oí length 1-4, 10% are of length
5-8, and 80 on, up to 10% in the range 37-40. What is the average number of bytes
required if CPC is 4, 8, . . . , 40?

6.10.3*: If, in tbe model of Example 6.17, all word lengtbs from 1 to n are equalIy
likely, wbat value of CPC, as a function of n, minimizes tbe number of bytes used?
If you cannot get tbe exact answer, a big-ob approximation is useful.

6.10.4*: ORe advantage of using tbe structure of Example 6.18 is tbat one can sbare
parts of tbe space array among two or more words. For example, tbe structure for
tbe word he could bave vord field equal to 5 in the array of Fig. 6.36. Compress
the words all, call, m&D, aania, m&Diac, recall, tvo, voaan into as few elements
of the space array as you can. How much space do you save by compression?

6.10.5*: Anotber approach to storing words is to eliminate tbe endmarker character
from the .pace array. Instead, we add a length field to tbe VORDCELL structures of
Example 6.18, to te" us how many characters from the first character, as indicated
by tbe vord field, are included in the word. Assuming tbat integers take four bytes,
does this scbeme save or cost space, compared with tbe scbeme described in Example
6.18? What ifintegers could be stored in ORe byte?

6.10.6**: Tbe scbeme described in Exercise 6.10.5 alBO gives us opportunities to
compress the .pace array. Now words can overlap even if neither is a suffix of the
other. How many elements of the space array do you need to atore tbe words in the
list of Exercise 6.10.4, using the scheme of Exercise 6.10.5?

6.10.7: Write a program to take two VORDCELL's as discussed in Example 6.18 and
determine wbich one's word precedes tbe otber in lexicographic arder. Recail tbat
words are terminated by . in tbis example.

.:. 6.11 Summary of Chapter 6

The íollowing points were covered in Chapter 6.

... Lists are an important data model representing sequences oí elements.

... Linked lists and arrays are two data structures that can be used to implement
lists.

.. Lists are a simple implementation oí dictionaries, but tbeir efficiency does not
compare with that of the binary search tree of
be covered in Chapter 7.

+ Placing
we are seeking is a useful efficiency improver.

.. Stacks and queues are important ~pecial kinds of lista.

.. Tbe stack is used "behind tbe scenes" to implement recursive functions.

5 or the hash table toChapter

a "sentinel" at the end of an arfar to make sure we find the element
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A character string is an important special ca&e ol a list, and we have a number
of special data structures lor representing character strings efliciently. These
include linked lists that hold several characters per cell and large arrays shared
by many character strings.
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by a technique known as "dynamic programming," in which we fi" a table of
infarmatian in the proper arder.
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CHAPTER

++++

The set is the m06t fundamental data model of mathematics. Every concept in
mathematics, from trees to real numbers, is expre8ible 88 a special kind of seto
In this book, we have leen seta in the guise oí events in a probability space. The
dictionary abstract data type is a kind oí set, on which particular operations -
insert, dele te, and lookup - are performed. Thus, it should not be surprising that

sets are aIao a fundamental model of computer 8CÍence. In this chapter, we learn
the basic definitions conceming seta and then consider algorithms for efficiently
implementing set operations.

7.1 What This Chapter Is About++++

This chapter covers the following topics:

+ The baaic definitions of set theory and the principal operations on seta (Sections

7.2-7.3).

+

+

+

+

7

SetThe
Data Model

The three most common data structures used to implement sets: linked lista,
characteristic vectors, and hash tabl~. We compare theae data structures
with respect to their relative efficiency in supporting various operations on seu
(Sections 7.4-7.6).

Relations and functions as seu of pair& (Section 7.7).

Data structures for representing relations and functions (Sections 7.8-7.9).

Special kind8 of binary relations, such as partial orders and equivalence rela-
tions (Section 7.10).

Infinite seu (Section r.ll).

337

Felix Calderon
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..".... 7.2 Basic Definitions

In mathematics, the term "set" is not defined explicitly. Rather, like terms such as
"point" and "line" in geometry, the term set is defined by its properties. Specifically,
there is a notion of membership that makes sense only for sets. When S is a set and
x is anything, we can ask the question, "lB x a member of set 5'1" The set S then
consists of all those elements x for which x is a member of S. The following points
summarize some important notations for talking about sets.

l. The expression x E S means that the element x is a member of the set S.

2. If Xl, X2, . . ., Xn are all the members of set S, then we can write

S = {Xl, X2, . . ., Xn}

Here, each of the x's must be distinct; we cannot repeat an element twice in a
seto However, the order in which the members of a set are listed is arbitrary.

3. The empty set, denoted 0, is the set that has no members. That is, x E 0 is
false, no matter what x is.

Empty set

Example 7.1. Let S = {l,3,6}j that is, let S be the set that has the integers
1, 3, and 6, and nothing else, as members. We can say 1 E S, 3 E S, and 6 E S.
However, the statement 2 E S is false, as is the statement that any other thing is a
member of S.

Sets can alBO have other sets as members. For example, let T = {{l, 2}, 3, e}.
Then T has three members. First is the set {l,2}, that is, the set with 1 and 2 as
is sale members. Second is the integer 3. Third is the empty seto The following are
true statements: {l,2} E T, 3 E T, and e E T. However, 1 E T is falseo That is,
the fact that 1 is a member of a member of T does not mean that 1 is a member of
T itself. +

+

Atoms
In formal set theory, there really is nothing but sets. However, in our informal
set theory, and in data structures and algorithms baaed on sets, it is convenient to
assume the existence of certain atoms, which are elements that are not sets. An
atom can be a member of a set, but nothing can be a member of an atoro. It
is important to remember that the empty set, like the atoms, has no members.
However, the empty set is a set rather than an atom.

We shall generally assume that integers and lowercase letters denote atoms.
When talking about data structures, it is often convenient to use complex data
types as the types of atoms. Thus, atoms mar be structures or arrays, and not be
very "atomic" at all.

Deftnition of Sets by Abstraction

Enumeration of the members of a set is not the only way we mar define sets. Often,
it is more convenient to start with some set S and some property of elements P,
and define the set of th~ elements in S that have property P. The notation for
this operation, which is called abstmction, is



Multiset or bag

la

l.

18

ft

s.
i&

Set former

J}.
88
~

is,
of

+ Example 7.2. Let S be the eet {1,3,6} from Example 7.1. Let P(z) be the
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~or + Example 7 .3. The~t {t,2} is the set that has exactly the elements t and 2 as

members. We can present th~ elements in either arder, so {1, 2} = {2, 1}. There
are also many ways to expr~ this set by abetraction. For example,
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Sets and Lists

Altbough our notation for a list, 8uch as (%1, %2, . . ., %n), and our notation for a set,
{%1' %2,"" %n}, look very muro alike, tbere are important differences. First, tbe
arder ofelements in a set is irrelevant. Tbe set we write 88 {1,2} could jU8t as well
be written {2, 1}. In contrast, tbe list (1,2) is not the same as tbe list (2,1).

Second, a list may bave repetitions. For example, tbe list (1,2,2) has tbree
elements; tbe first is 1, the second is 2, and tbe tbird is also 2. However, tbe set
notation {l, 2,2} makes no sense. We cannot bave an element, 8ucb as 2, occur as a
member of a set more than once. If tbis notation means anytbing, it is tbe same as
{1,2} or {2, 1} - that is, the set witb 1 and 2 as members, and no otber members.

Sometimes we 8peak of a multiset or bag, wbicb is a set wbose elements are
alJowed to bave a multiplicity greater than l. For example, we could speak of the
multiset that contains 1 once and 2 twice. Multisets are not tbe same as lists,
because they still bave no order associated witb tbeir elements.

{x I x E S and P(x)}

or "tbe set of elements x in S gucb tbat x has property P."
Tbe preceding expression is called a ..et former. The variable x in the set

Corroer is local to the expression, and ~ could just as well bave written

{yly E S and P(y)}

to describe the same seto

{z I z E S and z is odd }

is anotber way of defining tbe set {1,3}. Tbat ia, we accept the elernents 1 and 3
frorn S because they are odd, but we reject 6 because it ia not odd.

As anotber exarnple, consider the set T = {{1,2},3,1} frorn Example 7.1.
Then

{A I A E T and A is a set }

denotes the set {{1, 2}, e}. .

Equality of Sets

We rnust not confuse what a set i.. with how it ia represented. Two sets are equal,
that ia, tbey are really tbe same set, if tbey bave exactly tbe same mernbers. Thús,
most sets have rnany different representations, including those that explicitly enu-
rnerate their elernents in BOrne order and rep~ntations that use abetraction.
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{z I z E {1,2,3} and z < 3}

is equal to the aet {1,2}. +

Example 7.4. The set former+

{zlzEZandz<3}
stands Cor the set oC al! the negative integers,

{z I z e Z and ..(i e Z)

represents the set oí integers that are perfect sqUare8, that is, {O, 1,4,9,16,... }.
For a third example, let P(z) be the property that z is prime (i.e., z > 1 and

z has no divisora except 1 and z itself). Then the set oí primes is denoted

{% I % E N and P(%)}

This expression denotes the infinite eet {2,3, 5, 7,11,.. .}. .
,

There are some 8U
up the matter again in Section 7.11.

EXERCISES

7.2.1: What are the members ofthe ~t {{a,b},{a},{b,c}}?

7.2.2: Write set-former expressions for the following:

a) The set of integers greater than 1000.
b) The set of even integers.

7.2.3: Find two different
tion, tbe otber noto

a) {a,b,c}.
b) {O, 1,5}.

SET DATA MODEL

plus O, 1, and 2. The set Corroer

btle and interesting properties oí infinite sets.
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Russell's Paradox

One might wonder why the operation of abstraction requires that we designate some
otber aet from which the elements of tbe new aet must come. Why can't we just
use an expression like {z I P(z)}, for example,

{z I z is blue }

to define tbe set of all blue things? The reason is that alJowing such a general way
to define aets gets us into a logical inconsistency discovered by Bertrand Ru~ll and
called Russell'8 parndoz:. We may bave met this paradox informally when we heard
about the town where the barber shaves everyone who doesn't shave himself, and
then were asked whether the barber shaves himself. If he d~, then he doesn 't, and
if he doesn't, he does. The way out of this anomaly is to realize that the statement
"shaves everyone who doesn't shave himself," while it looka ~nable, actually
makes no formal BenBe.

To understand Ru~ll's paradox concerning aets, Suppose we could define sets
ofthe form {z I P(x)} for any property P. Then let P(z) be Lhe property "z is not
a member of z ." That is, let P be true of a eet z if x is not a member of itself. Let
S be the set

S = {z I z is not a member of z}

Now we can ask, "Is eet S a member of itself?"

Case 1: Suppoee Lhat S is not a member of S. Theo P(S) is true, and so S is
a member of the aet {z I x is not a member of z}. But that set is S, and so by
assumiog that S is not a member of itself, we prove that S is indeed a member of
iteelf. Thus, it caooot be that S is oot a member of itself.

Case .e: Suppose that S is a member of itself. Then S is not a member of

{z I Z is not a member of z}

But again, that set is S, and so we conclude that S is not a member of it8elf.

Thus, when we start by assuming that P(S) is false, we prove that it is true,
and when we start by assuming that P(S) is true, we wind up proviog that it is
falseo Since we arrive at a contradiction either way, we are forced to blame the
notation. That is, the real problem is that it makes no sense to define the set S as
we did.

Anot.her ioteresting oonsequence of Ru~ll's paradox is that it makes no aense
to suppoee there is a "set of all elements." If there were such a "universal set" - -

Universal set Hay U - then we could speak of

{z I z E U and z is not a member of z}

and we would again have Ru~U's paradox. We would then be forced to give up
abstraction altogether, and that operation is far too useful to drop.

~. ~



342 THE SET DATA MODEL

Operations on Sets

There are special operations that are commonly performed on seta, such as union
and intersection. You are probably familiar with many of them, but we shall re-
view the most important operations here. In the next sections we discuss some
implementations of these operations.

U nion, Intersection, and Difference

Perhaps the most common ways to combine seta are with the following three oper-
ations:

..."'...
...

7.3

The unían oí two sets S ud T, denoted S U T, is the set containing tbe
elements that are in S or T, or both.

Tbe íntersectíon oí sets S ud T, written S n T, is the set containing the
elements tbat are in both S ud T.

The dífference oí sets S and T, denoted S - T, is the set containing those
elements that are in S but not in T.

1.

2.

3.

.. Example 7.5. Let S be the set {1,2,3} and T the set {3,4,5}. Then

SUT= {l,2,3,4,5},SnT= {3}, and S-T= {1,2}

That is, S U T contains all the elements appearing in eitber S or T. Although 3
appears in both S and T, there is, of course, only one occurrence of 3 in S U T,
because elements cannot appear more tban once in a seto S n T contains only 3,
because no other element appean in botb S and T. Finally, S - T contains 1 and
2, because these appear in S and do not appear in T. Tbe element 3 is not present
in S - T, because although it appears in S, it alBO appears in T. +

When the sets S and T are events in a probability space, the union, intersection,
and difference have a natural meaning. S U T is the event that either S or T (or
both) occurs. S n T is the event that both S and T occur. S - T is the event that
S, but not T occurs. However, if S is the set that is the entire probability space,
then S - T is the event "T does DOt occur ,n that is, the complement of T.

VeDo
It is often helpful to see operations involving seta as pictures called Venn diagroms.
Figure 7.1 is a VeDo diagram showing two seta, S and T, each of which is represented
by an ellipse. The two ellipses divide the plane into tour regions, which we have
numbered 1 to 4.

1. Region 1 representa th~ elementa that are in neither S nor T.
2. Region 2 representa S - T, th~ elements that are in S but not in T.

3. Region 3 representa S n T, th~ elementa that are in both S and T.
4. Region 4 representa T - S, those elementa that are in T but not in S.

5. Regions 2, 3, and 4 combined reptesent S U T, th~ elementa that are in S or
T, or both.
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Flg. 7.1. Regions rep~ntjng Venn diagrama Cor the buic set operatiooa.

What Is an Algebra?

We mar think that the term "algebra" refers to solving word problems, finding
roots of polynomials, and other matters covered in a high school algebra cou~. To
a mathematician, however, the term algebra refers to any sort of system in which
there are operands aod operaton from which one builds expressions. For an algebra
to be interesting aod useful, it usually has special constants and law6 that allow us
to transform one expression into another "equivalent" expression.

Tbe m~t familiar algebra is that in which operands are integers, reals, or per-
haps complex numbers - or variables representing values from one oí these classes
- aod the operators are the ordinary arithmetic operators: addition, multiplica..
tion, subtraction, and division. The constants O and 1 are special and satisfy laws
like z + O = z. In manipulating arithmetic expressions, we use laws such as the
distributive law, which leta us replace any expression of the form a x 6 + a x c by
an equivalent expression a x (6+ c). Notice that by making this transformation, we
reduce the number of arithmetic operations by 1. Often the purpose of algebraic
manipulation of expreMions, such as this one, is to find an equivalent expression
whose evaluation takes leas time than the evaluation of the original.

Throughout this book, we shall meet various kinds of algebras. Section 8.7
introduces relational algebra, a generalisatioD of tbe algebra of seta that we discuss
here. Section 10.5 talb about the algebra oí ~lar ezp~"ions for describing
patterns of character strings. Section 12.8 introduces tbe reader to tbe Booloon
algebra of logic.

While we have suggested that Region 1 in Fig. 7.1 has finite extent, we sbould
remember tbat this region representa everytbing outside S and T. Thus, tbis region .

is not a seto If it were, we could take its un ion witb S aod T to get tbe "univer-
sal set," wbich we know by Russell's paradox does not existo Nevertheless, it is
often convenient to draw as a region the elements tbat are not in any of the seta
represented explicitly in tbe VeDo diagram, as we did in Fig. 7.1.

Aigebraic Laws For U nion, Intersection, and Difference
Mirroring the algebra oí aritbmetic operations such as + and *, one can define an
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algebra of seta in which the operators are union, intersection, and difference and the
operands are seta or variables denoting seta. Once we allow ourselves to build up
complicated expressions like R U «(5 n T)-U), we can ask whether two expressions
are equivalent, that is, whether they always denote the SalDe set regardless of what
seta we substitute for the operands that are variables. By substituting one expres-
sion for an equivalent expression, sometimes we can simplify expressions involving
sets so that they mar be evaluated more efficiently.

In what follows, we shall list the most important algebroíc laws - that is,
statements asserting that one expression is equivalent to another - Cor unjan, in-

tersection, and difference oC sets. The symbol = is used to denote equivalence oC
expresslons.

In many ofthese algebraic laws, there is an analogy between unjan, intersection,
and difference oC sets, on one hand, and addition, multiplication, and subtraction
of integers on the other bando We shall, however, point out those laws that do not
have analogs for ordinary arithmetic.

a) The commutatíve law o/ union: (5 U T) := (T U 5). That is, it does not matter
which of two seta appears first in a unjan. The reason this law halda is simple.
The element :r. is in 5 U T if:r. is in 5 or if :r. is in T, or both. That is exactly
the condition under which :r. is in TU 5.

b) The assocíatíve law o/ uníon: (S U (T U R» = «(5 U T) U R). That is, the
unían of three seta can be written either by first taking the unjan of the first
two or the last two; in either case, the result will be the same. We can justify
this law as we did the commutative law, by arguing that an element is in the
set on the left if and only if it is in the set on the right. The intuitive reason
is that both seta contain exactly those elements tbat are in either 5, T, or R,
or any two or three of them.

The commutative and associative laws of unjan together ten us that we can
take the unjan of a collection of sets in any order. The result will always be the
same set of elements, namely those elements that are in one or more of the sets. The
argument is like the one we presented for addition, which is another commutative
and associative operation, in Section 2.4. There, we showed that all ways to group
a sum led to the same resulto

Equivalent
expressions

c) The commutative law o/ interaection: (S n T) E (T n 8). Intuitively, an
element z is in the seta S n T and T n S under exactly t.he sarne circumstances:
when z is in S and z is in T.

d) The associative law o/ intersection: (S n (T n R) E «S n T) n R). Intu-
itively, z is in either of these seta exactly when z Í8 in all tbree of S, T, and
R. Like addition or union, the intersection oí any collection oí sets mar be
grouped as we choose, and the result will be the same; in particular, it will be
the set oí elements in all the sets.

Distributive law 01 intersection over un ion: Just as we know that multiplication
distributes over addition - that is, a x (6 + c) = a x 6 + a x c - the law

e)

(8 n (T u R) = «8 n T) u (8 n R)

holds for seta. Intuitively, an element % is in each oí these seta exactly when %
is in 8 and also in at least one of T and R. Similarly, by the commutativity oí



+ Example 7.6. LetS= {1,2,3},T= {3,4,5},and R={1,4,6}. Then
Su(TnRt = {1,2,3}U{{3,4,5}n{1,4,6}}

= {1,2,3}U {4}
- 11? ~ A\
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union and interaection, we can diatribute intenectiona from tbe rigbt, as

«T u R) n s) = «T n S) u (R n 8))

Distributive la.., o/ union over intersection: Similarly,

(S U (T n R)) = «S U T) n (S U R))

halda. Botb tbe len and right sides are ~ts that contain an element z exactly
when z is either in S, or is in botb T and R. Notice that tbe analogous law of
arithmetic, wbere union is replaced by addition and intersection by multiplica-
tion, is falseo That is, a+6 x c is generally not equal to (a + 6) x (a + c). Here is
one of several places where the analogy between set operations and arithmetic
operations breaks down. However, as in (e), we can use the commutativity of
unjan to get the equivaJent law

f)

«TnR)US) = «TUS) n(RUS»

=,
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j)Idempotence Idempotence o/ union. An operator is said to be idempotent ir, when applied to
two copies of the salDe value, the result is that value. We 8ee that (5 U 5) = 5.
That is, an element z is in 5 U 5 exactly when it is in 5. Again the analogy
with arithmetic fails, since a + a is generally not equal to a.

k) Idempotence o/ intersection. Similarly, we have (5 n S) = 5.

There are a number of laws relating the empty set to operations besides unjan.
We list them here.

1) (5 - 5) = 0.

m) (0 - S) = 0.

n) (0 n S) == O, and by commutativity of intersection, (S n 0) == ,.
EquivaIeoces by VeDo Diagrams

Figure 7.2 illustrates the distributive law for intersection over union by a VeDo
diagram. This diagram ShOW8 three sets, S, T, and R, which divide the plane into
eight regions, numbered 1 through 8. These regions correspond to the eight possible
relationships (in or out) that an element can have with the three sets.

Pig. '1.2. Venn diagram showing the distributive law oí intersection over union:
8 n (T U R) consists oí regions 3, 5, and 6, as does (8 n T) U (8 n R).

We can use the diagram to help os keep track of the values of varioos sub-
expressions. For instance, T u R is regions 3, 4, 5, 6, 7, and 8. Since 5 is regioDs
2, 3, 5, and 6, it foUows that 5 n (T U R) is regioD8 3, 5, and 6. Similarly, 5 n T is
regions 3 and 6, while 5 n R is regioD8 5 and 6. It foUows that (5 n T) U (5 n R)
is the same regions 3, 5, and 6, provi~g that

DATA MODEL

(sn (T u R»= «S n 7') U (S n R)
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Containment of
sets

Proper 8ubset

+ Example 7.8. The following comparisons are all true:
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In general, we can prove &D equivalence by considering one representative ele-
ment from each region and checking that it is either in the eet described by both
sides of the equivalence or in neither of th~ eets. This method is very cloee to
the truth-table method by which we prove algebraic laws for propositionallogic in
Chapter 12.

Proving Equivalences by Applying Transformations

Another way to prove two expressions equivalent is by turniog one ioto the other
using one or more of the algebraic laws we have already seen. We shall give a more
formal treatment of how expressions are manipulated in Chapter 12, but for the
present, let U8 observe that we can

1. Substitute any expre.ion for any variable in an equivalence, provided that we
substitute for all occurrences of that variable. The equivalence remains true.The equivalence remains true.

2. Substitute, for a 8ubexp~ion E in sorne equivalence, an exp~ion F tbat is
known to be equivalent to E. The equivalence rernains true.

In addition, we can write any of tbe equivalences that
888ume tbat equivalence is true.

as laW8 andwere stated

Example 7.7. We shall prove the equivalence (S - (S u R}) = 8. Let usstart
with law (g), the 888OCiative law for union and difference, which is

(S - (T U R») = «S - T) - R)

We substitute S for each of the two occurrences of T to get a new equivalence:
(S - (S U R}) = «S - S) - R)

By law (1), (S - S) = l. Tbus, we mar 8ubstitute I for (S - S) above to get:

(S - (S U R}) = (8 - R)

Law (m), with R substituted for S says that 1- R = 8. We mar thus substitute 8
for t - R and conclude that (S - (S U R») = l. +

The Subset RelatioDship

There is a family of comparison operators among sets that is analogous to the
comparisons among numbers. H S and T are set.s, we 8&Y that S ~ T if every
member of S is al8O a member oí T. We can exprea this in words several ways: "S
is a subeet of T ,tI "T is a superset of S," .. S is contained in T ,tI or "T contains S."

We say that. S c T, if S ~ T, and there is at least one element of T that. is not
alBO a member of S. Tbe S C T relationship can be read "S is a proper subeet of
T," "T is a proper auperset of S," "S is properly contained in T," or "T properly
contains S."

As witb "I~ tban," we can reverse tbe ID oí tbe compariaon; S J T .directio
synonymous with T C S, and S :2 T is synonymous with T ~ S.
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1. {l,2}~{l,2,3}

2. {l,2}C{l,2,3}

3. {I,2}~{1,2}

Note that a eet is always a subeet of itself but a set is never a proper subeet of itself.
80 that {l. 2} C {l. 2} is falseo +

There are a nurnber of algebraic laws involving the subset operator and the
other operators tbat we have already seen. We list sorne of tbern here.

o) 0 ~ 5 for any set S.

p) If S ~ T. then

i) (SUT):T,
ii) (S n T) : S, and
iii) (5 - T) : 8.

Proving Equivalences by Showing Containments

Two sets S and T are equal if and only if 5 ~ T and T ~ S; tbat is, each is a subset
of the other. For if every elernent in 5 is an element of T and vice versa, tben S
and T have exactly the same rnernbers and tbus are equal. Conversely, if S and T
have ex3(:tly the same mernbers, then surely 5 ~ T and T ~ 5 are true. This rule
is analogous to the arithmetic rule that a = 6 if and only if both a ~ 6 and 6 ~ a
are true.

We can sbow tbe equivalence of two expressions E and F by showing tbat the
set denoted by each is contained in the set denoted by the other. That is, we

1. Consider an arbitrary elernent z in E and prove that it is also in F, and tben

2. Consider an arbitrary elernent z in F and prove that it is also in E.

Note that both proofs are nece8arY in order to prove tbat E = F.

STEP REASON

1) z is in 5 - (T U R) Given
2) z is in 5 Definition oí - ud (1)
3) z is not in TU R Definition oí - aDd (1)
4) z is not in T Definition oí U aDd (3)
5) z is not in R Definition oí U ud (3)
6) z is in 5 - T Definition oí - with (2) and (4)
7) z Í8 in (5 - T) - R Definition oí - with (6) and (5)

Fig.7.3.

.. Example 7.9. Let U8 prove t,he 88JCÍat,ive law for union and dift'erence,

ProoC of one haIf of the assodative law for union and difference.



+ Example 7.10. Aa another exUDple, Jet U8 prove part of (P), the ruJe that if
S ~ T, then S U T = T. We begin by aMuming that % is in S U T. We know by
the definition of union that either

+ Example 7.11. Let. S = {1,2,3}. Then

P(S) = {8,{1},{2},{3},{1,2},{1,3},{2,3},{1,2.3}}
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(S-(TUR)) = (S-T}-R)

We stalt by aMUming tbat % is in tbe exp~ion on tbe left. Tbe eequence of steps
is sbown in Fig. 7.3. Note tbat in steps (4) and (5), we ~ tbe definition of union
backwards. Tbat is, (3) tells us that z is not in T U R. If % were in T, (3) would
be wrong, and 80 we can conclude tbat % is not in T. Similarly, z is not in R.

STEP REASON
1) z. Í8 in (5 - T) - R Gi~
2) z. Í8 in 5 - T Definition oí - aod (1)
3) z. Í8 not in R Definition oí - and (1)
4) z. Í8 in 5 Definition oí - and (2)
5) z. Í8 not in T Definition of - aod (2)
6) z. Í8 not in Tu R Definition of U with (3) and (5)
7) z. Í8 in 5 - (T U R) Definition oí - with (4) and (6)

Second haIf of tbe proof of tbe a80ciative law for Wlion and difference.Fig.7.4.

We are not done; we must now start by aMuming that % is in (5 - 71- R and
show that it is in 5 - (T U R). The steps are shown in Fig. 7.4. +

1. zisinSor

2. zisinT.

In case (1), since S f: T is 888umed, we know LhaL z ia in T. In case (2), we
immediat.ely see thaL z is in T. Thus, in either case z is in T, and we have complete<!
the first. hall oí the proof, the statement that (S U T) f: T.

Now let us a.ume that z is in T. Then z is in S U T by the definition oí
unjan. Thus, T f: (S U T), which is the second hall oí the proof. We conclude that
ifSf:Tthen (SuT):T. +

Tbe Power Set oí a Set

If S is any ~t, tbe 1»1IJer .el oí S is tbe ~t oí subeets oí S. We shall use P(S) to
denote tbe power ~t oí S, altbougb tbe notation 2s is alBO used.
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That is, P(S) is a set with eight membersj each member is itselí a seto The empty
set is in P(S), since surely 0 ~ S. The singletons - seta with one member oí S,
namely, {1}, {2}, and {3} - are in P(S). Likewise, the three seta with two oí the
three members oí S are in P(S), and S itselí is a member oí P(S).

As another example, P(') = {0} since 8 ~ S, but íor no set S besides the
empty set is S ~ 0. Note that {0}, the set containing the empty set, is not the
same as the empty seto In particular, the íormer has a member, namely 0, while
the empty set has no members. +

The Size of Power Sets
If S has n members, then P(S) has 2n members. In Example 7.11 we saw that a
set oí three members has a power set oí ~ = 8 members. Also, 20 = 1, and we saw
that the empty set, which contains zero elements, has a power set oí one elemento

Let S = {al,a2,...,an}, where al,a2,...,an are any n elements. We shall
now prove by induction on n that P(S) has 2n members.

BASIS. If n = O, then S is 0. We have already observed that P(0) has one member.
Since 20 = 1, we have proved the basÍ8.

INDUCTION. Suppose that when S = {al, a2,' . ., an}, P(S) has 2n members. Let
an+l be a new element, and let T = S U {an+l}, a set oí n + 1 members. Nowa
subset oí T either does not have or does have an+l as a member. Let us consider

these two cases in turno

l. The subsets oí T that do not include an+l are also subsets oí S, and thereíore
in P(S). By the inductive hypothesis, there are ex~tly 2n such seta.

2. If R is a subset oí T that includes an+l, let Q = R - {an+l}j that is, Q is R
with an+l removed. Then Q is a subset oí S. By the inductive hypothesis,
there are exactly 2n possible seta Q, and each one corresponds to a unique set

R, which is Q U {an+l}'

We conclude that there are exactly 2 x 2n, or 2n+l, subeets oí T, half that are
subsets oí S, and halí that are formed from a subeet oí S by including an+l. Thus,
the inductive step is provedj given that any set S oí n elements has 2n subsets, we
have shown that any set T of n + 1 elements has 2n+1 subsets.

EXERCISES

7.3.1: In Fig. 7.2, we showed two expressions for the set of regions {3, 5, 6}. How-
ever, each of the regions can be represented by expressions involving S, T, and R and
the operators union, intersection, and difference. Write two different exp~ions for

each oí the íollowing:

a) Region 6 alone
b) Regions 2 and 4 together
c) Regions 2,4, and 8 together

7.3.2: Use Venn diagrams to show the following algebraic laws. For each sub-
expression involved in the equivalence, indicate the set of regioD8 it represents.

Singleton set
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a) (SU (Tn R)) = «(S U T) n (SU R))
'b) «(SU T) - R) = «(S - R) U (T - R»)

c) (S - (T U R») = «(S - T) - R)

7.3.3: Sbow each of the equivalences from Exerclse 7.3.2 by sbowing containment
of ea side in the otber.

7.3.4: Assuming 5 ~ T, prove tbe following by showjng that each sjde of the
equivalence ia a 8Ubeet of tbe otber:

a) (5nT) = 5
b) (5 - T) = 0

7.3.5*: loto how muy regjons does a VeDo djagram with n sets divjde the plane,
assuming that no set is a 8ubset of any other? Suppose that of tbe n sets there js
one tbat ia a 8ubeet of one otber, but tbere are 00 other cootainments. Tben some
regions would be empty. For example, in Fig. 7.1, if 5 ~ T, tben regjon 2 would be
empty, because there is no element tbat is in 5 but not io T. In general, how many
nooempty regjons would tbere be?

7.3.6: Prove tbat if S ~ T, then P(5) ~ P(T).

7.3.7*: lo C we can rep~nt a eet S wb~ members are sets by a Ijnked list
whose elements are the beaders for liats; ea 8Uch list represents a set tbat is one
of the members of 5. Write a C program tbat takes a list of elements representing
a set (i.e., a list in which all tbe elements are distinct) and returns the power set of
tbe given seto Wbat is the running time of your program? Hint: Use the inductive
proof tbat there are 2" members io tbe power set of a set of n elements to devise
a recursive algorjtbm that creates tbe power seto If you are clever, you can use tbe
same list as part of several sets, to avoid copying the liats that represent members
of tbe power set, tbus saving both time and space.

7.3.8: Show that

a) P(S) U P(T) ~ P(5 U T)
b) P(5 n T) ~ P(S) n P(T)

Are either (a) or (b) true if containment ia replaced byeqwvalence?

7.3.9: What is P{P{P{I»)?

7.3.10.: If we apply tbe power-eet operator n times, starting witb 8, bow many
members does tbe resulting eet bave? For an example, Exercise 7.3.9 is the case
n=3.

We have already eeen, in Section 6.4, how to implement tbe dictionary operations
insert, delete, and lookup using a linked-list data structure. We also observed
there tbat tbe expected running time of tb~ operations ia O(n) if tbe aet has n
elements. This running time is not as good as tbe O(log n) average time taken
for the dictionary operations using a balanced binary searcb tree data structure,
as in Section 5.8. On tbe otber band, as we ahall eee in Section 7.6, a lioked-list
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representation of dictionaries plays an eaential role in the hash-table data structure
for dictionaries, which is generally faster than the binary search tree.

Union, Intersection, and Difference

The basic set operations such as unjan can profit from the use of linked lists as a
data structure, although the proper techniques are somewhat different from what
we use for the dictionary operations. In particular, 8Orting the lists significantly
improvess tbe running time for unjan, intersection, and difference. As we saw
in Section 6.4, 8Orting makes only a small improvement in the running time of

dictionary operations.
To begin, let us see what problems arise when we represent sets by unsorted

lists. In this case, we must compare each element of each set with each element of
tbe other. Tbus, to take tbe unjan, intersection, or difl'erence of sets of size n and
m requires O(mn) time. For example, to create a list U that represents the unjan
of two sets S and T, we may start by copying the list for S ORto the initially empty
list U. Then we examine each element of T and see whether it is in S. If not, we
add the element to U. The idea is sketched in Fig. 7-5.

(1) copy S to U;
(2) for (each z in T)
(3) if (!lookup(z,S})
(4) insert(z,U);

Fig. T.a. P8e\.Iocode 8ketd1 of the algorithm for taking the union
of seu represented by UDIOrted lista.

Suppoee S hu n members and T has m members. The operation in line (1),
copying S to U, can easily be accomplished in O(n} time. Tbe lookup of line (3)
takes O(n} time. We only execute the insertion of line (4) if we know from tiRe (3)
that z is not in S. Since z can only appear once on the list for T, we know tbat z is
not yet in U. Tberefore, it is safe to place z at tbe front of U'slist, and line (4) can
be accomplisbed in 0(1) time. Tbe lar-loop of liDes (2) tbrougb (4) is iterated m
times, and its body takes time O(n). Tbus, tbe time for lin5 (2) to (4) is O(mn),
wbich dominates tbe O(n) for line (1).

There are similar algoritbms for intersection and difference, each taking O( mn)
time. We leave tbese algoritbms for the reader to designo

Union, Intersection, and Difference Using Sorted Lists

We can perform unions, intersections, and set differences mucb faster when the lists
representing tbe ~ts are 8Orted. In fact, we sball see tbat it pays to 8Ort tbe lists
before peñorming these operations, even if the lists are not initially sorted. For
example, consider the computation of S U T, wbere S and T are represented by
8Orted lists. Tbe process is similar to tbe merge algoritbm of Section 2.8. ORe
difference is tbat when tbere is a tic for small5t between tbe elements currently at
tbe fronts of tbe two lista, we make only one copy of tbe element, ratber tban two
copies as we must for merge. Tbe other difl'erence is tbat we cannot simpar remove
elements from the lists for S and T for the unjan, since we sbould not destroy Sor

""",,--' ~
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T while creating their unían. Instead, we must make copies of all elementa to form
the union.

We 888ume that the types LIST and CELL are defined 88 before, by the macro

DefCell(int. CELL, LIST);

The function .etUnion is shown in Fig. 7.6. It makes use of an auxiliary function
assemble(z,L,M) that creates a new cell at line (1), places element z in that
cell at line (2), and calla .etUnion at line (3) to take the union of the lista L
and M. Then aas_ble retorna a cell for z followed by the list that resulta from
applying .etUnion to L and M. Note that the functions a.._ble and .etUnion
are mutually recursive; each calla the other.

Function .etUnion selects the least element from ita two given sorted lists and
passes to ble the ch<*n element and the remainders of the two lista. There
are six cases for .etUnion, depending on whether or not one of ita lista is BULL, and
if not, which of the two elements at the heads of the lista precedes the other.

l. If both lists are BULL, .etUnion simpiy returns NULL, ending the recursion.
This case is lines (5) and (6) of Fig. 7.6.

2. If L is NULL and M is not, then at liDes (7) and (8) we assemble the unían by
taking the first element from M, foUowed by tbe "union" of the IUIJ. list witb
the tail of M. Note that, in tbis case, succeMive calla to .etUnion result in M
being copied.

3. If M is NULL but L is not, then at liDes (9) and (lO) we do the opposite,
assembling the aoswer from the first element of L and the tail of L.

4. If the first elementa of L and M are the &ame, then at liDes (11) and (12) we
assemble the answer (rom one copy o( this element, referred to 88 L->el.ent,
and the tails of L and M.

5. If the first element of L precedes that of M, then at lines (13) and (14) we
assemble the answer from thi. smallest element, the tail oí L, and the entire
list M.

6. Symmetrically, at lines (15) and (16), if M has the smallest element, then we
assemble the answer from that element, the entire list L, and the tail of M.

+ Example 7.12. Suppoee S is {1,3,6} and T is {5,3}. Tbe sorted lista rep-
resenting these seta are L = (1,3,6) and M = (3,5). We call setUnion(L, M) to
take the union. Since the first element oí L, which is 1, precedes the first element
of M, which is 3, case (5) applies, and we aaemble the answer írom 1, tbe tail
of L, which we shall call L¡ = (3,6), and M. Fundion a..emble(I,L¡,M) calla
3etUnion(L¡, M) at line (3), and the result is the list with first element 1 and tail
equal to whatever the union is.

This call to setUnion is case (4), where the two leading elementa are equal;
both are 3 here. Thus, we assemble the unían from one copy of element 3 and the
taila of the lista L¡ and M. These taila are L2' consisting o( only the element 6, and
M¡, consisting oí only the element 5. The next call is set Union(L2 , M¡), which is an
instance ofcase (6). We thus add 5 to the union and call.dUnion(L2,BULL). That
is case (3), generating 6 for the uniOD and calling .dUnion(IULL,IULL). Here, we

~'T' - - .~ "-:-~- ~---"'--'.'
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LIST setUnion(LIST L. LIST M);

LIST &ssemble(int x. LIST L. LIST M);

/* assemble produces a list _hose head eleaent is x and

_hose tail is the union of lista L and M */

LIST asseable(int x. LIST L. LIST M)

{
LIST first;

first = (LIST) malloc(sizeof(struct CBLL»;

first->element = x;
first->next = setUnion(L. M);

return tirat;

(1)
(2)
(3)
(4)

LIST aetUnion(LIST L, LIST M)

{

(5
(6
(7
(8
(9

(10

11
12
13
14
15
16

}

have case (1), and the recursion ends. The result oí the initial call to setUnion is
the list (1,3,5,6). Figure 7.7 shows in detail the sequence oí calla and retorna made
on this example data. ..

Notice that the list generated by .etUnion always comes out in sorted order.
We can see why the algorithm works, by observing that whichever case applies, each
element in lists L or M is either copied to the output, by becoming the first param-
eter in a call to as._ble, or remains on the lists that are passed as parameters in
the recursive call to .etUniOD.

Ruooiog Time of U oion
Ir we call .etUDioD on sets with n and m elements, respectively, then the time taken

if (L = NULL t.t M == RULL)
return RULL;

else if (L == NULL) /* M cannot be RULL here */
return &ssemble(M->eleaent. NULL. M->next);

e18. if (M == NULL) /* L cannot be NULL h.re */
return &ss88ble(L->element. L->next. NULL);

/* if .. reach here. neither L nor M can be NULL */
else if (L->eleaent == M->element)

retnrn as888ble(L->eleaent. L->next. M->next);
e18e if (L->eleaent < M->eleaent)

retnrn a8888ble(L->eleaent. L->next. M);
else /* here. M->element < L->eleaent */

r.tnrn &ssemble(M->eleaent. L. M->next);

Fig. 7.6. union oí seta represented by sorted lists.Computing tbe



call.etUnion(l,3,6), (3,5))
call a..emble( 1, (3,6), (3,5))

call.etUnion(3,6),(3,5))
call assemble(3, (6), (5))

call .etUnion(6), (5))
call a.semble(5, (6),IULL)

call.etUnion(6),IULL)
call a..emble(6,RULL,IULL)

call setUnion(NULL, NULL)
retum IULL

retum (6)
retum (6)

retum (5,6)
retum (5,6)

retum (3,5,6)
retum (3,5,6)

retum (1,3,5,6)
return (1,3,5,6)

Fig. 7.7. Sequence of calla aod retUJ'DI for Example 7.12.

Big-Oh for Functioos of More Thao ORe Variable

As we pointed out in Section 6.9, the notion of big-ob, wbich we defined only for
functions of one variable, can be applied naturally to functions of more than one
variable. We say tbat l(zl,..., z,) is O(g(ZI" . ., z,)) if tbere are constants c
and al,...,a, such tbat wbenever Zi ;?: ai for all i = l,...,k, it is tbe case tbat
l(zl"'" z,) .$ cg(Zl," .,z,). In particular, note that even tbougb m+n is greater
than mn when one of m and n is O and tbe otber is greater tban O, we can still 8&Y
that m + n is O(mn), by choosing constanta c, al, and a2 all equal to l.

by ..tUnion is O(m+n). To ~ wby, note tbat calla to aa.~l. spend 0(1) time
creating a cell for tbe output list and tben calling ..tUnion on the remaining lists.
Tbus, tbe calls to u._bl. in Fig. 7.6 can be tbougbt of as coeting 0(1) time plus
tbe time for a call to ..tUnion on lists tbe 8Um of wh~ lengtbs is either ORe l~
tban tbat of L and M, or in ~ (4), two I~. Furtber, all tbe work in ..tUnion,
exclusive of the call to aa._bl., takes 0(1) time.

It folloW8 tbat when ..tUnion is called on lists of totallengtb m+n, it will result
in at m~ m + n recursive calla to setUniol1 and an equal number to u..bl..
Eacb tak~ 0(1) time, exclusive of tbe time taken by tbe recursive callo Tbus, tbe
time to take tbe union is O(m + n), tbat is, proportional to tbe sum of tbe siz~ of
tbe Rts.

Tbis time is leM tban tbat of the O( mn) time needed to take tbe union of Rts
represented by unsorted lists. In fact, if the lists for our seta are not eorted, we
can 80ft them in O( n log n + m log m) time, and tben take the union of tbe eorted
lista. Since n lag n dominates n and m lag m dominates m, we can expreM tbe total
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cost of sorting and taking the union as O( n log n + m log m). That expression can
be greater than O(mn), but is less whenever n and m are close in value - that is,
whenever the sets are approximately the same size. Thus, it usually makes sense to
sort before taking the union.

Intersection and Difference
The idea in the algorithm for union outlined in Fig. 7.6 works for intersections and
differences of sets as well: when the sets are represented by sorted lists, intersection
and difference are aIso performed in linear time. For intersection, we want to copy
an element to the output only if it appears on both lists, as in case (4). Ir either list
is NULL, we cannot have any elements in the intersection, and so cases (1), (2), and
(3) can be replaced by a step that returns ROLL. In case (4), we copy tbe element at
tbe heads of the lists to the iotersection. lo cases (5) and (6), where the heads oí
the lists are differeot, the smaller cannot appear 00 both lists, and so we do not add
anythiog to the intersection but pop the smaller off its list and take the intersectioo
oí the remainders.

To see why that makes sense, suppose, for example, that a is at the head oí
list L, that b is at the head oí list M, and that a < b. Then a cannot appear on
tbe sorted list M, and so we can rule out tbe possibility that a is on both lists.
However, b can appear on list L somewbere after a, so that we mar still be able
to use b from M. Thus, we need to take tbe intersection oí the tail of L with the
entire list M. Conversely, if b were less than a, we would take tbe intersection of L
with the tail of M. C code to compute the intersection is sbown in Fig. 7.8. It is
alBo necessary to modify &aseable to call intersection instead oí setUnion. We
leave this change as well as a program to compute the difference of sorted lists as
exercises.

LIST intersection(LIST L.

{
if (L = lUu. 11 M = NULL)

return 1Uu.;
else it (L->element == M->element)

return &ssemble(L->el..ent. L->next. M->next);
el se it (L->element < M->element)

return intersection(L->next. M);
e18e /. here. M->eleaent < L->ele.ent ./

return intersection(L. M->next);

}

Fig. 7.8. Computing the intenection of seta 1~I~ted by aorted lista.
A new vemon of a88eable is required.

EXERCISES

LIST 11)
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1.4.3: The functioD8 u._ble and .etUnion from Fig. 7.6 leave the lista wh~
union they take intact; that is, they make copies of elementa rather than use tbe
cens of tbe given lista tbemaelves. Can you simplify tbe program by allowing it to
destroy tbe given lista as it takes their union?

1.4.4.: Prove by induction on the sum oftbe lengtbs ofthe lista given as parameters
tbat ..tUnion from Fig. 7.6 returns tbe union of tbe given lisis.

1.4.5.: Tbe symmetric difference of two seta 8 and T is (8 - T) U (T - 8), that
is, the elementa tbat are in exactly one of 8 and T. Write a program to take tbe
symmetric difference of two seta tbat are rep~nted by sorted lista. Your program
should make one pass through the lista, like Fig. 7.6, rather than call routines for
unjan and difference.

1.4.6.: We analyzed tbe program of Fig. 7.6 informally by arguing that if the total
of tbe lengtba of tbe lista was n, tbere were O(n) calls to .etUnion and &.seable
and each call took 0(1) time plus whatever time tbe recursive call took. We can
formalize this argument by letting Tu(n) be tbe running time for setUnion and
T A (n) be the running time of asseable on lista of total lengtb n. Write recursive
roles defining Tu and TA in tenns of each otber. Subetitute t.o eliminate TAl and
set up a conventional recunence for Tu. Solve tbat recurrence. Does it show tbat
setUnion takes O(n) time?

Frequently, the sets we encounter are each subeets of BOrne small set U, which we
shaU refer to as the "universal set." 1 For example, a hand of cards is a subset of tbe

set of all 52 cards. When the aets with which we are concerned are each subsets of
sorne srnall set U, tbere is a representation of aets that is much more efficient than
the list representation discussed in the previous eectioo. We order the elernents of U
in sorne way BO that each element of U can be a880ciated with a unique "position,"
which is an ioteger frorn O up to n - 1, where n is the ournber of elemeots in U.

Theo, given a set S that is cootained in U, we can represent S by a charoc-
temtic vector of O's and 1 's, 8uch that for each elemeot z of U, if z is in S, the
position correspooding to z has a 1, and if z is not in S, then that position has a O.

Example 7.13. Let U be the set ofcarda. We may arder the carda any way we
ch~, but one reasonable scheme is to arder them by suits: clubs, then diamonds,
then hearls, then spad~. Then, within a suit, ft arder the carda ace, 2, 3,. . .,10,
jack, queen, king. For instance, the position of the ace of clubs is O, the king of
clubs is 12, the ace of diamonds is 13, and the jack of spad~ is 49. A royal flush in
hearts is represente<! by the characteristic vedor

00000000000000000000000000 1 00000000 1111 0000000000000

I Oí COUI'8e U cannot be a true uniyenaJ Rt, 01" -* of aU seta, whidl - arsued does not exiat
becau8e of Ruaell'. paradox.
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The first 1, in position 26, the ace of heartsj and the other four 1 's, in
positions 35 through 38, represent 10, jack, queen, and king of hearts.

Tbe set of all clubs is represented by

1111111111111000000000000000000000000000000000000000

and the set of all picture cards is represented by

0000000000111000000000011100000000001110000000000111

..

Array Implementation oí Sets

We can represent characteristic vectors íor subsets oí a universal set oí n elements
using Boolean arrays oí the íollowing type:

typedef BOOLEAN USET[n];

The type BOOLEAN is as described in Section 1.6. To insert the element corresponding
to position i into a set S declared to be oí type USET, we have only to execute

S[i] = TRUE;

Similarly, to delete the element corresponding to position i from S, we do

S[i] = FALSE;

If we want to look up this element, we have only to return the value S(11, which
tells us whether the ith element is present in S or noto

Note that each of the dictionary operations insert, delete, and lookup thus
takes 0(1) time, when sets are represented by characteristic vectors. The only
disadvantage to this technique is that all sets must be subsets of some universal set
U. Moreover, the universal set must be smallj otherwise, the length of the arrays
becomes 80 large that we cannot store them conveniently. In fact, since we shall
normally have to initialize all elements of the array for a set S to TRUE or FALSE,
the initialization of any subset of U (even 0) must take time proportional to the
size of U. If U had a large number of elements, the time to initialize a set could
dominate the cost of all other operations.

To forro the union of two sets that are subsets of a common universal set of
n elements, and that are represented by characteristic vectors S and T, we define
another characteristic vector R to be the bitwise DR of the characteristic vectors S
and T:

R[i] = S[i] 11 T[i], for O .s i < n

Similarly, we can make R represent the intersection of S and T by taking the bitwise
AND of S and T:

R[i] = S[i] U T[i], for O.s i < n

Finally, we can make R represent the set difference S - T as follows:

R[i] = S[i] U IT[i]. for O.s i < n
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The arrays representing characteristic vectors and the Boolean operations on them
can be implemented using the bitwiae operators oí C ií we define the type BOOLBO
appropriately. However, the code is machine specific, and 80 we shall not preaent
any details here. A portable (but more space coD8uming) implementation oí char-
acteristic vectors can be accomplished with arrays oí int's oí the appropriate size,
and this is the definition of BOOLEd that we have assumed.

Example 7.14. Let U8 consider ~ts oí apple varieties. Our univenal set will
consist of tbe six varieties listed in Fig. 7.9; tbe order oí their listing indicates their
position in characteristic vectors.

Fig. 7.9. Cbaracteri8tics of some apple varieties.

The set of red apples is represented by the characteristic vector

Red = 101110

and the set of early apples is representOO by

Early = 011100

Thus, the set of apples that are either red or early, that is, Red U Early, is repre-
seoted by the characteristic vector 111110. Note that this vector has a 1 in thc»e
positions where either the vector for Red, tbat is, 101110, or tbe vector for Early,
that is, 011100, or botb, have a 1.

We can find the characteristic vector for Red n Early, the set oí apples that
are both red and early, by placing a 1 in th~ poeitioD8 where both 101110 and
011100 have 1. The resultiog vector is 001100, representing tbe set of apples
{Gravenstein, Jonathan}. Tbe set of apples that are red but not early, that is,

Red - Early

is represented by tbe vector 100010. Tbe Iet is {Delicious, McIntosh}. +

Notice tbat tbe time to períorm union, intersection, and difl'erence using cbar-
act.erist.ic vectors is proponional to tbe lengtb of the vectors. That length is not
directly related to the size of the sets, but is equal to the size of the universal seto
If the sets have a reasonable fraction of the elements in the universal set, then the
time for union, intersection, and difl'erence is proportional to the sizes of the sets
involved. That is better than the O(n log n) time for M>rted Ü8t.s, and much better
than the O(n2) time for unsorted lists. However, the drawback of characteristic



360 THE SET DATA MODEL

vectors is that, should the seta be much smaller than the universal set, the running
time of these operatioDs can be far greater than the sizes of the sets involved.

EXERCISES

T .5.1: Give the characteristic vecton of the following seta oí carda. For convenience,
you can use O" to represent k consecutive O'a and 1" for k consecutive l's.

a) The cards found in a pinochle deck

b) The red cards

c) The one-eyed jacb and the suicide king

1.5.2: Using bitwiae operators, write C programs to compute tbe (a) union and (b)
difference oí two sets oí cards, tbe first represented by words al and a2, the aecond
represented by 61 ud 62.

1.5.3-: Suppoee we wanted to represent a bag (multiset) wbose elements were
contained in sorne small universal set U. How could we generalize the cbaracteristic-
vector method oí representat.ion to bags? Sbow bow to perform (a) in_ert, (b)
delete, and (c) lookup on bags repreeented this way. Note that bag lookup(z)
retorna the number oí times z appears in the hago

..."'... 7.6 Hashing
...

The characteristic-vector representation of dictionaries, when it can be used, allows
us to access directly the place where an element is represented, that is, to access the
position in the array that is indexed by the value of the elemento However, as we
mentioned, we cannot allow our universal set to be toa large, or the array will be toa
long to lit in the available memory of the computer o Even ir it did lit, the time to
initialize the array would be prohibitive. For example, suppose we wanted to store
a real dictionary of words in the English language, and aIso suppose we were willing
to ignore words longer than 10 letters. We would still have 2610 + 269 + o o o + 26
possible words, or ayer 1014 wordso Each of these possible words would require a
position in the arrayo

At any time, however, there are only about a million words in the English
language, 80 that only one out of 100 million of the array entries would be TaURo
Perhape we could collapee the arfar, 80 that many pO8ible words could share an
entry. For example, suppose we aaigned the first 100 million possible words to the
first cell of the array, the next 100 mili ion possibilities to the second cell, and 80 on,
up to the millionth cello There are two problems with this arrangement:

1. It is no longer enough just to put TaUR in a rell, because we won 't know which
ofthe 100 mili ion possible words are actually p~nt in the dictionary, or irán
fact more than one word in any one group is presento
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2. If, for example, tbe first 100 million pO8ible words include aIl tbe sbort words,
tben we would expect many more tban tbe average number of words from tbe
dictionary to fall into tbis group of possible words. Note tbat our arrangement
bu u many ceUs of tbe array as tbere are words in tbe dictionary, and 80 we
expect tbe average celI to rep~t oRe word; but surely tbere are in Englisb
many tbousands of words in tbe first group, wbich would include all tbe words
of up to five letters, and 8Ome of tbe six-letter words.

To solve problem (1), we need to list, in each cell of tbe array, all tbe words
in its group tbat are p~t in tbe dictionary. Tbat is, tbe array cell becomes
tbe beader of a linked list witb tb~ words. To sol ve problem (2), we need 10
be careful bow we assign potential words to groups. We must distribute elements
among groups 80 tbat it is unlikely (althougb Rever impossible) that there will be
many elements in a single group. Note that if tbere are a large number of elements
in a group, and we repreaent groupe by linked lista, tben lookup will be very slow
for members of a large group.

The Hash Table Data Structure
We have now evolved from the characteristic vector - a valuable data structure that
is of limited use - to a structure called a ha.sh table tbat is useful for any dictionary

wbatsoever, and for many other purpCMles as well.2 The speed of the hasb table for
the dictionary operations can be made O( 1) on the average, independent of the size
oí the diction&ry, and independent of the size of the universal set from which the
dictionary is drawn. A picture oí a hash table appears in Fig. 7.10. However, we
show the list for only one group, that to wbich r. belongs.

headera

b
lJ i '!

.

h
~ . h(~)

B-l

-"f~I:~

Fig. 7.10.

2 Althoup in 8ÍtuatioD8 where a dJar8CteIi8tic vedor is feaaible, - _Id normally prefer
that repreeentation oftr any other.

Felix Calderon
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There is a hash function that takes ao element % as argument and produces ao
integer value between O and B - 1, where B is the number of buckets in the hash
table. The value h(%) is the bucket in which we place the element %. Thus, the
buckets correspond to the "groups" of words that we talked about in the preceding
informal discussion, and the hash function is used to decide to which bucket a given
element belongs.

The appropriate hash function to use depends on the type of the elements. For

example,

1. If elements are integers, we could let h( %) be % ~ B, that is, the remainder
when % is divided by B. That number is always in the required range, O to
B-l.

2. If the elements are character strings, we can take ao element % = ala2.. .a".
where each ~ is a character, and compute y = al + a2 +... + ak. since a char
in C is a small integer. We then have an integer y that is the sum of the integer
equivalents of al\ the characters in the string %. If we divide y by B and take
the remainder, we have a bucket number in the raoge O to B - 1.

What is importaot is that the hash function "hashes" the elemento That is, h wildly
mixes up the buckets into which elements fall, so they tend to fan in approximately
equal numbers into al\ the buckets. This equitable distribution must occur even for
a fairly regular pattern of elements, such as consecutive integers or character strings
that differ in only one position.

Each bucket consists of a linked list wherein are stored all the elements of the
set that are sent by the hash function to that bucket. To find an element x, we
compute h( x), wroch gives us a bucket number. If % is anywhere, it is in that bucket,
so that we mar search for x by running down the list for that bucket. In effect, the
hash table al\ows us to use the (slow) list representation for sets, but, by dividing
the set into B buckets, al\ows us to search lists that are only 1/ B as long as the size
of the set, on the average. If we make B roughly as large as the set, then buckets
will average only one element, and we can find elements in ao average ofO(l) time,
just as for the characteristic-vector representation of sets.

Bucket

Hash function

Example 7.15. Suppose we wisb to atore a set oí cbaracter strings oí up to
32 characters, where each string is terminated by tbe null character. We sball use
tbe basb íunction outlined in (2) above, witb B = 5, tbat is, a five-bucket bash
table. To compute tbe basb value oí each element, we sum tbe integer values oí tbe
characters in eacb string, up to but not including tbe null character. Tbe following
declarations give us tbe desired types.

(1) ~efine B 6
(2) typedef char ETYPE[32];
(3) DefCell(ETYPE. CELL. LIST);
(4) typedef LIST HASHTABLE[B];

Line (1) defines tbe constant B to be tbe number ofbuckets, 5. Line (2) defines
tbe type ETYPE to be arrays oí 32 characters. Line (3) is our usual definition oí cells
and linked lists, but bere tbe element ty:pe is ETYPE, tbat is, 32-<:baracter arrays.
Line (4) defines a basbtable to be an array oí B lista. Ií we tben declare

+
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HASHT OLE header.

the array header. is oí the
hash table.

to contain tbe bucket beaders Cor ourappropriate type

int h(ETYPE x)
{

int i, su.;

su. = o;
tor (i . o; xCi]

su. += x[i];
retum 8ua X B;

'\0'; i++)

}

FIg.7.11. A hash functioo that 8UID8 the integer equivalents of dJaracten,
assuming ETYPE Í8 an alTaY of maracten.

Now, we must define the hash function h. The code for this function is shown
in Fig. 7.11. The integer equivalent of each of tbe characters of the string .r is
summed in tbe variable su. Tbe last step computes and retums as tbe value of
tbe bash function h the remainder of tbis sum when it is divided by tbe number of
buckets B.

Let us consider some examples of words and the buckets into which tbe function
h puta tbem. We shall enter into tbe bash table the seven words3

anyone liYed in a prettJ ho. toVD

In arder to compute h(aDJone), we need to understand the integer values of char-
acters. In tbe usual ASCII code for charaders, the lower~ letters bave integer
values starting at 97 for a (that's 1100001 in binary), 98 for b, and so on, up to
122 for z. Tbe upper-case letters correspond to integers that are 32 less than their
lower-case equivalents - that is, from 65 for A (1000001 in binary) to 90 for Z.

Thus, tbe integer equivalents for the charaders in aDJone are 97,110,121,111,
110, 101. The sum of theae is 650. Wben we divide by B, wbicb is 5, we get tbe
remainder O. Tbus, aDJone belongs in bucket O. The seven words of our example
are a.igned, by tbe hash function oí Fig. 7.11, to the buckets indicated in Fig. 7.12.

We see tbat tbree oí tbe seven words bave been a.igned to one bucket, number
O. Two words are a.igned to bucket 2, and one each to buckets 1 and 4. Tbat is
somewbat less even a distribution tban would be typical, but witb a small number oí
words and bucketa, we should expect anomalies. As the number of words becomes
large, they will tend to distribute themselves among the five buckets approximately
evenly. The basb table, &Íter insertion oftbese eeven words, is shown in Fig. 7.13. +

Implementing the Dictionary Operations by a Hash Table

To ineert, delete, or looK up an element .r in a dictionary that is represented by a
basb table, tbere is a simple tbree-step proceM:

s The worda ace IroIO a poem 01 the aarne name by e. e. cumminp. The poem d- 't set any
eMie1" to decode. The next line ia "with up 80 ftoatin& many bella down."
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l. Compute the proper bucket, which is h(z).

2. Use the array of header pointers to find the list of elements (or the bucket
numbered h(z).

3. Perform the operation on this list, just as i( the list represented the entire seto

The algorithms in Section 6.4 can be used for the list operations after suitable mod-
ifications (or the fact that elements here are character strings while in Section 6.4
elements were integers. As an example, we show the complete function (or inserting
an element into a hasb table in Fig. 7.14. You can develop similar functions for
delete and lookup as an exercise.

To understand Fig. 7.14, it helps to notice that the function bucketInsert is
similar to the function insert Crom Fig. 6.5. At line (1) we test to see whether we
have reached the end o( the listo I( we have, then we create a new cell at line (2).
However, at line (3), instead of storing an integer into the newly created cell, we
use tbe function strcpy from tbe standard header lile string.h to copy the string
z into the element field o( the cell.

Also, at line (5), to test i( z has not yet been found on the list, we use function
strcap from string. h. That (unction returns O if and only if z and tbe element in
the current cell are equal. Thus, we continue clown the list as long as tbe value of
the comparison is nonzero, tbat is, as long as the current element is not z.

The function insert here consists o( a single line, in wbich we call buck-

Worda,Fig. 7.12. their values, and their buckets.

~

o
1

2

3

4

Fig.7.13. Hash table holding seven elements



... Example 7.16. SUppOBe we wish to delete the element in from the hash table
of Fig. 7.13, assuming the hash function deacribed in Example 7.15. The delete
operation is carried out eMentially like the function in..rt of Fig. 7.14. We compute
h(in), which is O. We thus go to the header for bucket number O. The ~d cell
on the list for this bucket holds in, and we delete that cell. Tbe detailed C program
is left as an exercise. +
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linclude <8tring.h>

yoid bucketIn.ert (ETYPE x. LIST .pL)
{

(1) if «.pL) :2 IUU) {
(2) (.pL) = (LIST) aalloc(.izeof(8truct CELL»;

(3) .trcpy«.pL)->eleaent. x);
(4) (.pL)->next = RULL;

}
(5) el.e if (8trc8p«.pL)->el..ent. x» /. x and ele.ent

are differeut ./
(6) bucketIn.ert(x, a«.pL)->next»;

}

yoid in8ert(ETYPE x, HASHTABLE H)
{

(7) bucketIn8ert(x. a(H[h(x)]»;
}

Fig. 7.14. Inserting an dement joto a hash table.

et In8.rt alter first finding the element of the &fray that ia tbe header for tbe
appropriate bucket, h(z). We assume that the hash function h ia defined elsewhere.
Also recall that the type HASHTABLE means that H is an &fray of pointers to cells
(i.e., an array of lists).

Running Time of Hash Table Operations
As we can see by examining Fig. 7.14, tbe time taken by the function inserl to find
the beader of the appropriate bucket is 0(1), BMuming that tbe time to compute
h(z) is a constant independent of tbe number of elementa stored in the huh table.4
To this constant we must add on the average an additional O(nl B) time, if n is
tbe number of elements in the bub table &ud B is the number of buckets. Tbe
reason is that bucketlnserl will take time proportional to the leogth of tbe list, and
that length, on the average, must be the total number of elements divided by the
number of buckets, or nI B.

An interesting coosequence is that if we make B approximately equal to the
number of elements in the set - tbat is, n and B are cloee - then nI B is about 1

4 Tbú would be the ~ for the h_h fundion oí Fig. 7.11, or mc»t other ~ functiona
eocountered in pnctice. The time for computin¡ the bucket number may depend on the type
oí the element - longer árinp may require tbe .ummation oí moce integen. for example -

but the time i. not dependent on the number of elementa .tored.



366 THE SET DATA MODEL

and the dictionary operations on a hash table take 0(1) time each, on the average,
just as when we use a characteristic-vector representation. If we try to do better
by making B much larger than n, so that most buckets are empty, it still takes
us 0(1) time to find the bucket header, and so the running time does not improve
significantly once B becomes larger than n.

We must also consider that in some circumstances it mar not be possible ta
keep B clase to n all the time. If the set is growing rapidly, then n increases while
B remains fixed, so that ultimately ni B becomes large. It is possible to restructure
the hash table by picking a larger value for B and then inserting each of the elements
into the new table. It takes O(n) time to da so, but that time is no greater than
the O( n) time that must be spent inserting the n elements into the hash table in
the first place. (Note that n insertians, at 0(1) average time per insertian, require
O(n) time in all.)

Restructuring
hash tables

EXERCISES

7.6.1: Continue filling the hash table of Fig. 7.13 with the words with up so
floating many bella down.

7.6.2.: Comment on how effective the following hash functions would be at dividing
typical sets of English words into buckets of roughly equal aire:

a) Use B = 10, and let h(x) be the remainder when the length of the word x is
divided by 10.

b) Use B = 128, and let h(x) be the integer value of the last character of x.

c) Use B = 10. Take the sum of the values of the characters in x. Square the
result, and take the remainder when divided by 10.

7.6.3: Write C programs for performing (a) delete and (b) lookup in a hash table,
using the same assumptions as for the code in Fig. 7.14.

+ + + 7.7 Relations and l4\1nctions

+

While we have generally assumed that elements of sets are atomic, in practice it is
often useful to give elements some structure. For example, in the previous section we
talked about elements that were character strings of length 32. Another important
structure for elements is fixed-Iength lists, whicll are similar to C structures. Lists
used as set elements will be called tuples, and each list element is called a component
of the tuple.

'l\¡ple,

The number of components a tuple has is caUro its arity. For example, (a, b)
is a tuple of arity 2; its first component is a and its second component is b. A tuple
of arity k is algo caUro a k-tuple.

A set of elements, each of which is a tuple of the salDe arity, - say, k - is

called a relation. Tbe arity of tbis relation is k. A tuple or relation of arity 1 is
unary. H the arity is 2, it is binary, and in general, if the arlty is k, then the tuple
or relation is k-ary.

Arity:
binary

unary,

A
c



...

+
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Example 7.17. The relation R = {(1,2), (1,3), (2,2)} is a relation oí arity
2, or a binary relation. Its members are (1,2), (1,3), and (2,2), each oí which is a
tuple oí arity 2. +

In this section, we shall consider primarily binary relations. There are also
many important applications oí nonbinary relations, especially in representing and
manipulating tabular data (as in relational databases). We shall discuss this topic
extenaively in Chapter 8.

ProductsCartesian

Before studying binary relationa fonnally, we need to define anotber operator on
seu. Let A and B be two seu. Tben tbe product of A and B, denoted A x B, is
defined as the set of pairs in which tbe first component is ch~n from A and tbe
second component from B. That is,

AxB={(a,h)la E Aandh E B}

The product is eometimes called tbe Carle$ian product, after the French mathe-
matician René Descartes.

Example 7.18. Recall that Z is the conventional symbol íor the set oí all
integers. Thus, Z X Z stands íor the set oí pairs oí integers.

As another example, ií A is the two-dement set {l, 2} and B is the three-
element set {a, 6, c}, then A x B is the six-element set

{(l,a), (1,6), (l,c), (2,a), (2,6), (2,c)}

Note that the product ofseta is aptly named, because ií A and B are finite seta,
then the number oí elementa in A x B is the product oí the number oí elements in
A and the number oí elementa in B. +

Product of More Than Two SetsCartesian

Unlike the arithmetic product, the Cartesian product d~ not have the common
properties of commutativity or 888OCiativity. It is easy to find examples where

AxB~BxA

disproving commutativity. The aMOCiative law does not even make sense, becauae
(AxB)xC would bave as members pairs like «a, 6),c), whilemembersof Ax(BxC)
would be pairs of tbe forrn (a, (6, c)).

Since we sball need on several occasions to talk about eets of tuples witb more
tban two components, we need to extend tbe product notation to a k-way producto
We let Al x A2 X ... X Ak, stand for the prrJduct ofsets Al, A2"" ,Ak" that is, the
setofk-tuples(al,a2,...,ak,)suchthatal E Al,a2 E A2,...,andak, E Ak,.
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Example 7.19. Z x Z x Z representa the set oí triples oí integers (i,j, k) -
it contains, for example, the triple (1,2,3). This three-way product should not be
coníused with (Z x Z) x Z, which representa pairs like ((1,2),3), or Z x (Z x Z),

+

which representa pairs like (1, (2, 3)).
On the other hand, note that all three product expressions can be represented

by structures consisting oí three integer fields. The distinction is in how one inter-
prets the structures oí this type. Thus, we often feel free to "confuse" parenthesized
and unparenthesized product expressions. Similarly, the three C type declarations

struct {int ti; int t2; int t3;};
struct {struct {int ti; int t2;}; int t3;};

struct {int ti; struct {int t2; int t3;};};

would all be stored in a Slffi
dift'er. +

Binary Relations
A binary relation R is a set of pairs that is a 8ubset of the product of two sets A
and B. If a relation R is a subset of A x B, we say that R is from A fo B. We call
A the domain and B tbe mnge of tbe relatioo.
R is a relatioo on A or "00 tbe dornaio" A.

Domain, range

... Example 7.20. The arithmetic relation < 00 integers is a subset of Z x Z,
consistiog of those pairs (a, b) such tbat a is less tban b. Tbus, the symbol < may
be regarded as the oame of the set

{(a,b) I (a,b) E Z x Z, and a is less than b}

We tben use a < b as a shorthand for "(a, b) E <," or "(a, b) is a member of the
relation <." The other arithmetic relations on integers, such as > or ~, can be
defined siroilarly, as can the aritbmetic coroparisons on real numbers.

For another example, consider the relation R from Example 7.17. Its domain
and range are uncertain. We know that 1 and 2 must be in the domain, because
these integers appear as first components of tuples in R. Similarly, we know that
the range of R roust include 2 and 3. However, we could regard R as a relation froro
{1,2} to {2, 3}, or as a relation from Z to Z, as two examples among an infinityof
choices. ...

Infix Notation for Relations
As we suggested in Example 7.20, it is common to use an infix notation for binary
relations, 80 that a relation like <, which is really a set of pairs, can be written
between the components of pairs in the relation. That is wby we coromonly find
expressions like 1 < 2 and 4 ~ 4, rather tban tbe more pedantic "(1,2) E <" or
"(4,4) E ~."

Example 7.21. Tbe salDe notation can be used Cor arbitrary binary relatioDS.
For instance, tbe relation R from Example 7.17 can be written as tbe tbree "(&cts"
lR2, lR3, and 2R2. ...

..

iJar way - only the notation Cor accessing fields would

If B is the SalDe as A, we say that



Current

domain, range

Declared

domain, range

... Example 1.22. The graph Cor the relation R Croro Example 7.17 is shown in
Fig. 7.15. It has nodes Cor the elements 1,2, and 3. Since lR2, there is an arc Crom
node 1 to node 2. Since lR3, there is an aI"C Croro 1 to 3, and since 2R2, there is an
aI"C Crom node 2 to itselC. There are no other arca, becauae there are no other pairs
in R. ...
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Declared and Current Domains and Ranges
The second part of Example 7.20 underacores the point that we cannot ten the
domain or range of a relation just by looking at it. Surely the set of elements
appearing in first components must be a subeet of the domain, and the set of
elements that occur in second components must be a 8ubeet of the range. However,
there could be other elements in the domain or range.

The difl'erence is not important when a relation does not change. However,
we shall see in Sections 7.8 and 7.9, and also in Chapter 8, that relations whoee
values change are very important. For example, we rnight speak of a relation whose
domain is the students in a cla., and wh<Me range is integers, representing total
scores on homework. Before the cla. starts, there are no pairs in this relation.
After the first assignrnent is graded, there is one pair for each student. As time
goes on, students drop the cla. or are added to the cla., and scores increase.

We could define the domain o( this relation to be the set of all students reg-
istered at the university and the range to be the set of integers. Surely, at aoy
time, the value of the relation is a subeet of the Cartesian product of tbese two sets.
On the other haod, at any time, the relation has a current domain and a current
ronge, which are the sets of elements appeariog in first and second cornponents,
respectively, of the pairs in the relation. When we need to make a distinction, we
can can the domain and range the declared domain and range. The current dornajo
and range win always be a subeet of tbe declared domain and range, respectively.

Graphs for Bioary Relatioos

We can represent a relation R whose domain is A and wh~ range is B by a graph.
We draw a nade for each element that is in A and/or B. If aRb, then we draw an
arrow ("arc") (rom a to b. (General graphs are discussed in more detail in Chapter

9.)

Flg. 7.16. Grapb for tbe reIation {(1.2), (1.3), (2,2)}.
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Functions

Suppose a relation R, from domain A to range B, has the property that for every
member a of A there is at most one element b in B such that aRb. Then R is said
to be a partial function from domain A to mnge B.

If for every member a of A there is exactly one element b in B such that aRb,
then R is said to be a total function from A to B. The difference between a partial
function and a total function is that a partial function can be undefined on some
elements of its domain; for example, for some a in A, there may be no b in B such
that aRb. We shall use the term "function" to refer to the more general notion of
a partial function, but whenever the distinction between a partial function and a
total function is important, we shall use the word "partial."

There a common notation used to describe functions. We often write R(a) = b
if b is the unique element such that aRb.

Partia! function

Total function

Example 7.23. Let 5 be the total function from Z to Z given by

{(a,b) lb = a2}

that is, the set of pairs of integers whose second component is the square of the
first component. Then 5 has such members as (3,9), (-4,16), and (O, O). We can
express the fact that 5 is the squaring function by writing 5(3) = 9, 5(-4) = 16,
and 5(0) = O. .

.

Notice that the set-theoretic notion of a function is not much different from the
notion of a function that we encountered in C. That is, suppose 8 is a C function
declared 88

int .(int a)
{

return a*a;
}

that takes an integer and retums its square. We usually think of s(a) as being the
same function as S( a), although the Corroer is a way to compute squares and the
latter only defines the operation of squaring abstractly. Also note that in practice
s(a) is always a partial function, since there are many values of a for which s(a)
will not retum an integer because of the finiteness of computer arithmetic.

C has functions that take more than one parameter. A C function f that takes
two integer parameters a and b, retuming an integer, is a function from Z x Z to
Z. Similarly, if the two parameters are of types that make them belong to sets A
and B, respectively, and f retums a member of type C, then f is a function from
A x B to C. More generally, if f takes k parameters - say, from sets Al, A2' . . ., Ak,
respectively - and retums a member of set B, then we say that f is a function
from Al x A2 X ... X Ak to B.

For example, we can regard the function lookup(x,L) from Section 6.4 as a
function from Z x L to {TROE, FALSE}. Here, L is the set of linked lists of integers.

Formally, a function from domain Al x ... X Ak to range B is a set of pairs of

the forro ((al,.. .,ak),b), where each a.- is in set Ai and bis in B. Notice that the
first element of the pair is itself a k-tuple. For example, the function lookup(x,L)
discussed above can be thought of as the set of pairs (( z, L), t), where z is an



The Many Notations for Functions

A function F from, say, A x B to C is technically a subset of (A x B) x C. A typical
pair in the function F would thU8 have the form (a,6), c), where a, 6, and c are
members of A, B, and C, respectively. Using the special notation for functions, we
can write F(a,6) = c.

We can aOO view F as a relation from A x B to C, since every function is a
relation. Using the inftx notation for relations, the fact that «a, b), c) is in F could
a1so be written (a, b)Fc.

When we extend the Cartesian product to more than two sets, we mar wish to
remove parentheses from product, expressions. Tbus, we might identify (A x B) x C
with t,he technicalIy inequivalent expression A x B xC. In that case, a typical
member of F could be written (a, b, c). If we stored F as a set of such triples,
we would have to remember that the first two components togetber make up t,be
domain element and the third component is the range elemento

ioteger, Lisa list of iotegers, and t is either TRUE or FALSE, depending 00 whether
z is or is not on the list, L. We can think of a function, whether written in C or
as formally defined in set theory, as a box that takes a value from the domain set
and produces a value from the rauge set, as suggested in Fig. 7.16 for the function
lookup.

Surjection

Injection
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(z, L) --i~~J- t

8. A function a8Oclata elements from the domain
. - -Fig. 7.16.

One-to-One Correspondences
Let F be a partía! funct.ion frorn domain A to range B with the following properties:

l. For every element a in A, tbere is an element b in B such that F(a) = b.
2. For every b in B, tbere is sorne a in A such tbat F(a) = b.
3. For no b in B are tbere two elements al ud a2 in A sucb tbat F(al) and F(a2)

are botb b.

Tben F is Raid to be a one-to-one coM'espondence from A to B. Tbe term bijection
is also used for a one-to-one correspondence.

Property (1) says tbat F is a total function from A to B. Property (2) is the
condition of being onto: F is a total function frorn A onto B. Some rnatbematicians
use tbe term surjection for a total function tbat i8 onto.

Properties (2) and (3) together say that F bebaves like a total function from
B to A. A total function with property (3) is sometirnes called an injection.

A one-to-one correspondence is basically a total function in both directions, but
it i8 important to observe that whetber F i8 a one-to-one correspondence dependa
not only on the pairs in F, but on the declared domain ud ruge. For example, we
could talce any one-to-one correspondence from A to B and change the domain by
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adding to Asome new element e not mentioned in F.
correspondence from A U {e} to B.

Example 7.24. The squaring function S from Z to Z of Example 7.23 is not
a one-to-one correspondence. It does satisfy property (1), since for every integer i
there is some integer, namely, i2, such that S(i) = i2. However, it fails to satisfy
(2), since there are some 6's in Z - in particular all the negative integers - that

are not S(a) for any a. S algo fails to satisfy (3), since there are many examples
of two distinct a's for which 5(a) equals the same b. For instance, 5(3) = 9 and
5(-3) = 9.

For an example of a one-to-one correspondence, consider the total function P
from Z to Z defined by P( a) = a + l. That is, P adds 1 to any integer. For instance,
P(5) = 6, and P(-5) = -4. An alternative way to look at the situation is that P
consista of the tuples

{..., (-2,-1), (-1,0), (0,1), (1,2),...}

or that it has the graph of Fig. 7.17.
We claim that Pis a one-to-one correspondence from integers to integers. First,

it is a partial function, since when we add 1 to an integer a we get the unique integer
a+ l. It satisfies property (1), since for every integer a, there is some integer a+ 1,
which is P(a). Property (2) is algo satisfied, since for every integer b there is some
integer, namely, b - 1, such that P(b - 1) = b. Finally, property (3) is satisfied,
because for an integer b there cannot be two distinct integers such that when you
add 1 to either, the result is 6. ...

..

---"Ev---"Ev---""(~)--"(~) (~~

Fig.7.17.

A one-to-one correspondence from A to B is a way of establishing a unique
association between the elemeots of A and B. For example, if we clap our banda
together, the left and right thumbs touch, the left and right index fiogers touch, aod
so oo. We can think of this associatioo betweeo the set of fiogers 00 the left haod
and the fiogers on the right hand as a one-to-one correspondence F, defined by
F("left thumb") = "right thumb", F("left index finger") = "right index finger",
aod so oo. We could similarly think of the association as the ioverse function, from
the right hand to the left. In general, a one-to-one correspoodence from A to B
can be ioverted by switchiog the arder of components in its pairs, to become a
one-to-one correspondence from B to A.

A consequence of the existence of this ooe-to-one correspondeoce between haods
is that the number of fingers on each hand is the same. That seems a natural and
iotuitive notion; two sets have the same number of elemeots exactly when there is
a one-to-ooe correspoodence from ooe set to the other. However, we shall see in
Section 7.11 that when sets are infinite, there are some surprisiog conclusions we
are forced to draw from this definition of "same number of elements."

F would not be a one-to-one

Graph for the relation that is the function P(o) =0+1.
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EXERCIS ES

1.1.1: Give an example of sets A and B for which A x B is not the sarne 88 B x A.

1.1.2: Let R be the relation defined by aRb, bRc, cRd, aRc, and bRd.

a) Draw the graph of R.
b) Is R a function?
c) Name two possible dornains for R; name two possible ranges.
d) What is the srnallest set S such that R is a relation on S (i.e., the dornajo and

the range can both be S)?

1.1.3: Let T be a tree and Jet S be the set of nodes of T. Let R be the "child-
parent" relation; that is, cRp if and only if c is a child of p. Answer the following,
and justify your answers:

a) Is R a partial function, nornatter what tree T is?
b) Is R a total function from S to S no rnatter what T is?
c) Can Rever be a one-to-one correspondence (i.e., for sorne tree T)?
d) What does the graph for R look like?

7.1.4: Let R be the relation on the set of integers {1, 2, . . ., lO} defined by aRb if a
and b are distinct and have a common divisor other than 1. For example, 2R4 and
6R9, but not 2R3.

a) Draw the graph for R.
b) Is R a function? Why or why not?

1.7.5*: Although we observed that S = (A x B) x C and T = A x (B x C) are
not the same set, we can show that they are "essentially the same" by exhibiting a
natural one-to-one correspondence between them. For each ((a, b), c) in S, Jet

F(((a,b),c») = (a,(b,c))

Show that F is a one-to-one correspondence from S to T.

7.1.6: What do the three statements F(10) = 20, 10F20, and (10,20) E F have
in cornrnon?

Inverse relation 7.7.7*: The inverse of a relation R is the set of pairs (b, a) such that (a, b) is in R.

a) Explain how to get the graph of the inverse of R from the graph for R.
b) If R is a total function, is the inverse of R necessarily a function? What if R

is a one-to-one correspondence?

7.7.8: Show that a relation is a one-to-one correspondence if and only if it is a total
function and its inverse is also a total function.

+:... 7.8 Implementing Functions as Data

In a prograrnming language, functions are usually impJemented by code, but when
their dornain is small, they can be implemented using techniques quite similar to
the ones we used for sets. In this section we shall discuss the use of linked lists,
characteristic vectors, and hash tables to implement finite functions.

-',. $;;;:,,~. ="""",=,,,'_-::::.~~:
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Operations 00 Fuoctioos

Tbe operations we most commonly perforro on functions are similar to tb~ for
dictionaries. Suppose F is a function from domain set A to range set B. Then we

may

1. lnsert a new pair (a, b), sucb that F(a) = b. The only nuance is that, since
F must be a function, should tbere already be a pair (a,c) for any c, this pair
must be replaced by (a, b).

2. Delete the value associated with F(a). Mere, we need to give only tbe domain
value a. If tbere is any b such tbat F(a) = b, tbe pair (a, b) is removed from
the seto If there is no such pair, then no change is made.

3. Lookup the value associated with F(a)j that is, given domain value a, we return
the value b such that F(a) = b. If there is no such pair (a, b) in the set, then
we return some special value warning that F(a) is undefined.

Example 7.25. Suppose F consists of tbe pairs {(3,9), (-4,16), (O, O)}; that
is, F(3) = 9; F( -4) = 16, and F(O) = O. Tben lookup(3) returns 9, and lookup(2)
returns a value indicating tbat no value is defined for F(2). If F is tbe "squaring"
function, tbe value -1 might be used to indicate a missing value, since -1 is not
the true square of any integer.

Tbe operation delete(3) removes tbe pair (3,9), while delete(2) has no effect.
H we execute insert(5,25), the pair (5,25) is added to tbe set F, or equivalently,
we now bave F(5) = 25. If we execute insert(3, 10), tbe old pair (3,9) is removed
from F, and the new pair (3, 10) is added to F, 80 tbat now F(3) = 10. ...

.
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Linked-List Representation of Functions

A Cunction, being a set oC pairs, can be stored in a linked list just like any other seto
It is useCul to define cells with three fields, one Cor the domain value, one Cor the
range value, and one Cor a next-cell pointer. For example, we could define cells as

typedet struct CELL .LIST;
struct CELL {

DTYPE doaain;
RTYPE range;
LIST next;

};

where DTYPE is the type for domain elements and RTYPE is the type for range
elements. Then a function is represented by a pointer to (the first cell oí) a linked
listo

The function in Fig. 7.18 performs the operation insert(a, 6, L), assurning that
DTYPE aod RTYPE are both arrays of 32 characters. We search for a celI contaioiog
a in the domain field. If fouod, we set its range field to b. If we reach the eod of
the list, we create a new celI and store (a, b) therein. Otherwise, we test whether
the celI has dornain elernent a. If so, we change the range value to b, and we are
done. If the dornaio has a value other than a, then we recursively iosert into the
tail of the listo

typedef char DTYPE [32]. RTYPE [32] ;

void insert(DTYPE a. RTYPE b. LIST *pL)
{

if «.pL) == IULL) {/* at end of list */
(.pL) = (LIST) aalloc(sizeof(struct CELL»;

strcpy«.pL)->doaain. a);
strcpy«*pL)->range. b);
(~L)->next = NULL;

else if (!strcap(a. (*pL)->doaain» /* a = doaain element;
change F(a) */

strcpy«*pL)->range. b);
e1se /* domain eleaent is not a */

insert(a. b. a«*pL)->next»;
};

Fig. 7.18. Inserting a new fact joto a function represented as a linked listo

If the functioo F has n pairs, theo insert takes O( n) time 00 the average.
Likewise, the aoalogous delete aod lookup fuoctions for a fuoctioo represeoted as a
lioked list require O(n) time 00 the average.
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Vector Representation of Functions

Suppose the declared dornain is the integers o through DNU M - 1, or it can be

regarded 88 such, perhaps by being an enurneration type. Then we can use a
generalization of a characteristic vector to represent functions. Define a type FUIlCT
for the characteristic vector 88

typedef RTYPE FUIlCT[DNUM];

Here it is essential that either the function be total or that RTYPE contain a value
that we can interpret 88 "no value."

Example 7.26. Suppose we want to store information about apples, like the
harvest information of Fig. 7.9, but we now want to give the actual month of harvest,
rather than the binary choice early /late. We can associate an integer constant with
each element in the domain and range by defining the enumeration types

enum APPLES {Delicioua, GrannySaith, Jonathan, "clntosh,
Gravenstein, Pippin};

enum "ONTHS {Unknovn, Jan, Feb, Mar, Apr, "ay, Jun, Jul, Aug,
Sep, Oct, Nov, Dec};

This declaration associates O with the identifier Delicioua, 1 with GrannySaith,
and so oo. It also associates O with Unknovn, 1 with Jan, and so oo. The identifier
Unknovn indicates that the harvest month is not known. We can now declare an
array

int Harvest[6];

with the intention that the array Harvest representa the set of pairs in Fig. 7.19.
Then the array Harvest appears as in Fig. 7.20, where, for example, the entry
Harvest [Delicious] = Oct means Harvest [O] = 10. ..

..

Hash-Table Representation of Functions
We can store the pairs belonging to a function in a hash table. The crucial point
is that we apply the hash function only to the domain element to determine the
bucket of the pair. The cells in the linked lists forming the buckets have one field
for the domain element, another for the corresponding range element, and a third
to link one cell to the next on the listo An example should make the technique élear.

APPLE ~ MoNTH

Delicious Oct
Granny Smitb Aug
Jonathan Sep
McIntosh Oct
Gravenstein Sep
Pippin Nov

Fig. 7.19. Harvest months of apples.



+ Example 7.27. Let us use the same data about apples that appeared in Exam-
pIe 7.26, except now we shall use the actual names rather than integers to represent
the domain. To represent the function HarTest, we shall use a hash table with
five buckets. We shall define APPLES to be 32-character arrays, while MOIITHS is an
enumeration as in Example 7.26. The buckets are linked lists with field variety
for a domain element of type APPLES, field harvested for a range element of type
int (a month), and a link field n.x~ to the next element of the listo

We shall use a hash function h similar to that shown in Fig. 7.11 of Section
7.6. Of course, h is applied to domain elements only - that is, to character strings
of length 32, consisting of the name of an apple variety.

Now, we can define the type HASHTABLE as an arfar of B LIST's. B is the
number of buckets, which we have taken to be 5. All these declarations appear in
the beginning of Fig. 7.22. We mar then declare a hash table Harvest to represent
the desired function.
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Oct

.0.

Delicioua

GrannySai th

Jonathan

McIntoah

GraveDstein

Pippin

Fig. 7.20. The array Harvest.

~

Harvest

o

1

~"'

3

4

and their harvest months stored in a hash table.Fig. 7.21. Apples

After inserting the six varieties listed in Fig. 7.19, the arrangement of cells
within buckets Í8 shown in Fig. 7.21. For example, the word Oelicious yields the
sum 929 if we add up the integer values oí the nine characters. Since tbe remainder
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when 929 is divided by 5 is 4, the Delicious apple belongs in bucket 4. The cell
for Delicious has tbat string in tbe variety field, the montb Dct in tbe harveated
field, and a pointer to the next cell of tbe bucket. ..

#include <string.h>

Idef ine B 5

typedef char APPLES [32) ;
enum MONTRS {Unknown, Jan, Feb, Mar,

Sep, Oct, Nov, Dec};
typedef struct CELL .LIST;
struct CELL {

APPLES variety;
int harvested;
LIST next;

};
typedef LIST HASHTABLE[B);

int lookupBucket(APPLES a, LIS! L)
{

}

int lookup(APPLES a. HASHTABLE H)
{

)

Operations on Functions Represented by a Hash Table

Each of the operations insert, delete, and lookup start with a domain value that we
hash to find a bucket. To insert the pair (a, b), we find the bucket h(a) and search
its listo The action is then the same as the function to insert a function pair into a
list, given in Fig. 7.18.

To execute delete(a), we find bucket h(a), search for a cell with domain value a,
and delete that cell from the list, when and if it is found. The lookup(a) operation
is executed by again hashing a and searching the bucket h(a) for a cell with domain
value a. If such a cell is found, tbe associated range value is retumed.

For example, the function lookup(a. H) is shown in Fig. 7.22. The fuDction
lookupBucket(a. L) ruos dOWD the list L for a bucket and returos the value

haroested(a)

Apr. May, Jun, Jul, Aug,

if (L = NULL)

return Unknovn i

if (!8trcap(a. L->variety» /. found ./

return L->harveatedi

e18e /. a not foundi exaaine tai1 ./

return lookupBucket(a, L->next);

return lookupBucket(a. H(h(a)]);

Fig.7.22. Lookup for a function represented by a hash table.
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Vectors versus Hash Tables

There is a fundamental difference in the way we viewed the information about apples
in Examples 7.26 and 7.27. In the characteristic-vector approach, apple varieties
were a fixed set, which became an enumerated type. There is no way, while a C
program is running, to change the set of apple names, and it is meaningless to
perform a lookup with a name that is not part of our enumerated seto

On the other hand, when we set the same function up as a hash table, we treated
the apple names as character strings, rather than members of an enumerated type.
As a consequence, it is possible to modify the set of names while the program is
running - Bar, in response to some input data about new apple varieties. It makes
sense for a lookup to be performed for a variety not in the hash table, and we had
to make provisions, by the addition of a "month" Unknown, for the possibility that
we would look up a variety that was not mentioned in our table. Thus, the hash
table offers increased flexibility over the characteristic vector, at some cost in speed.

that is, the month in which apple variety a is harvested. If the month is undefined,
it returns the value Unknovn.

Efficiency of Operations on Functions

The times required for the operations on functions for the three representations
we have discussed here are the same as for the operations of the same llames on
dictionaries. That is, if the function consists of n pairs, then the linked-list represen-
tation requires O(n) time per operation on the average. The characteristic-vector
approach requires ooly 0(1) time peroperatioo, but, as for dictiooaries, it can be
used only if the domain type is of limited size. The hash table with B buckets offers
average time per operation of O( nI B). If it is possibJe to make B cJose to n, then
0(1) time per operation, 00 the average, can be achieved.

EXERCISES

7.8.1: Write functions that perform (a) delete and (b) lookup on functions repre-
sented by linked lists, analogous to the insert function of Fig. 7.18.

7.8.2: Write functions that perform (a) insert, (b) delete, and (c) lookup on a
function represented by a vector, tbat is, an array of RTYPE's indexed by integers
representing DTYPE's.

7.8.3: Write functions that perform (a) insert and (b) delete on functions repre-
sented by hash tables, analogou8 to the lookup function of Fig. 7.22.

7.8.4: A binary search tree can alBO be used to represent functions as data. Define
appropriate data structures for a binary search tree to hold the apple information in
Fig. 7.19, and implement (a) insert, (b) delete, and (c) lookup using these structures.

7.8.5: Design an information retrieval system to keep track of information about
at bats and hits for basebaIl players. Your system should accept triples of the form

Ruth 6 2
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to indicate that Ruth in 5 at bata got 2 hita. The entry for Ruth should be updated
appropriately. You should al80 be able to query the number of at bata and bita
for any player. Implement your system 80 that the functions insert and lookup will
work on anY data structure as long as they use the proper subroutines and types.

..:.. 7.9 Implementing Binary

The implementation of binary relations differs in some details from the implemen-
tation of functions. Recall that both binary relations and functions are sets of pairs,
but a function has for each domain element a at most one pair of the form (a,b)
for any b. In contrast, a binary relation can have any number of range elements
associated with a given domain element a.

In this section, we shall first consider the meaning of insertion, deletion, and
lookup for binary relations. Then we see how the three implementations we have
been using - linked lists, characteristic vectors, and hash tables - generalize to

binary relations. In Chapter 8, we shall disc~ implementation of relations with
more than two components. Frequently, data structures for such relations are built
from the structures for functions and binary relations.

Operatioos 00 Bioary Relatioos

When we insert a pair (a,6) joto a binary relation R, we do not have to concero
ourselves with whether or not there already is a pair (a, c) in R, for sorne c # 6, as
we do when we insert (a,6) into a function. The reason, of course, is that there is
no lirnit on the number of pairs in R that can have the dornain value a. Thus, we
shall sirnply insert the pair (a,6) into R as we would insert an elernent into any seto

Likewise, deletion of a pair (a,6) frorn a relation is similar to deletion of an
elernent frorn a set: we look for the pair and rernove it if it is presento

The lookup operation can be defined in several ways. For example, we could
take a pair (a,6) and ask whether this pair is in R. However, ifwe interpret lookup
thus, along with the insert and delete operations we just defined, a relation behaves
like any dictionary. The fact that the elernents being operated upon are pairs, rather
than atornic, is a rninor detailj it just affects the type of elernents in the dictionary.

However, it is often useful to define lookup to take a dornain elernent a and
returo all the range elernents b such that (a,6) is in the binary relation R. This
interpretation of lookup gives us an abstract data type that is sornewhat different
írorn the dictionary, and it has certain uses that are distinct frorn those oí the
dictionary ADT.

Example 7.28. Most varieties of plums require one of several other specific
varieties for pollination; witbout the appropriate "pollinizer ," tbe tree cannot bear
fruit. A few varieties are "self-fertile": they can serve as their own pollinizer. Figure
7.23 shows a binary relation on the set of plum varieties. A pair (a, b) in this relation
means that variety b is a pollinizer for variet,y a.

Inserting a pair joto t,his table corresponds t,o asserting that one variet,y is a
pollinizer for anot,her. For example, if a new variety is developed, we migbt enter
joto the relat,ion facts about which variet,ies pollinize tbe new variet,y, and which it

.

Relations
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V ARJETV POLLINIZER

Beauty Santa Rosa
Santa Rosa Santa Rosa
Burbank Beauty
Burbank Santa Rosa
Eldorado Santa Rosa
Eldorado Wickson
Wickson Santa Rosa
Wickson Beauty

Fig. 7.23. Pollimzers for certain plum vaneties.

More General Operations on Relations

We may want more information than the three operations insert, delete, and lookup
can provide when applied to the plum varieties of Example 7.28. For example, we
may want to ask "What varieties does Santa Rosa pollinate?" or "Does Eldorado
pollinate Beauty?" Some data structures, such as a linked list, allow us to answer
questions like these as fast as we can pedorro the three basic dictionary operations,
if for no other reason than that linked lists are not very eflicient for any of these
operations.

A hash table based on domain elements does not help answer questions in which
we are given a range element and must find all the associated domain elements -
for instance, "What varieties does Santa Rosa pollinate?" We could, of course,
base the hash function on range elements, but then we could not answer easily
questions like "What pollinates Burbank?" We could base the hash function on a
combination of the domain and range val ues , but then we couldn't answer either
type of query efliciently; we could only answer easily questions like "Does Eldorado
pollinate Beauty?"

There are ways to get questions of all these types answered efficiently. We shall
have to wait, however, until the next chapter, on the relational model, to learn the
techniques.

can pollinize. Deletion of a pair corresponds to a retraction of the assertion that
one variety can pollinize another.

The lookup operation we defined takes a variety a as argument, looks in the
first column for all pairs having the value a, and returns the set of associated range
values. That is, we ask, "What varieties can pollinize variety a?" This question
seems to be the one we are most likely to ask about the information in this table,
because when we plant a plum tree, we must make BUfe that, if it is not self-fertile,
then there is a pollinizer nearby. For instance, if we invoke lookup(Burbank), we
expect the answer {Beauty, Santa Rosa}. +

Linked-List Implementation ol Binary Relations

We can link the pairs of a relation in a list if we like. The cells of this list consist



382 THE SET DATA MODEL

oc a domain element, a range element, and a pointer to the next cell, just like
the cells Cor fundions. lnsertion and deletion are carried out &8 Cor ordinary eets,
&8 discu88ed in Section 6.4. The only nuance is that equality oC set members is
determined by comparing both the field holding the domain element and the field
holding the range elemento

Lookup is a somewhat different operation from the operations of the sarne narne
we have encountered previously. We must go down the list, looking Cor celas with
a particular domain value a, and we must assemble a list oC the aMOCiated range
values. An example will show the mechanics oC the lookup operation 00 linked lists.

+ Example 7.29. Suppose we want to implement the plum relation of Example
7.28 as a linked listo We could define the type PVARIETY as a character string of
length 32; a.nd cells, whose type we shall call RCELL (relation cell). can be defined
by a structure:

typedef char PVARIETY[32];
typedef .truct RCELL .RLIST;
.truct RCELL {

PVARIETY yarietJ;
PVARIBTY pollinizer;
RLIST next;

};

We also need a cell containing one plum variety and a pointer to the next cell, in
order to build a list oí the pollinizers oí a given variety, and thus to answer a lookup
query. This type we sball call PCELL, and we define

tYped8f .truct PCELL .PLIST;
atruct PCELL {

PVARIETY pollinizer;
PLIST next;

};

We can then define lookup by the function in Fig. 7.24.
Tbe function lookup takes a domain element a and a pointer to the first cell oí a

linked list of pairs as argumenta. We pedorro the lookup(a) operation on a relation
R by calling lookup(a,L) , wbere Lisa pointer to the first cell on tbe linked list
representing relation R. Lines (1) and (2) are simple. If the list is empty, we return
IULL, since surely there are no pairs witb first component a in an empty listo

Tbe hard case occurs wben a is íound in tbe domain field, called variety, in
tbe first cell oí tbe listo Tbis case is detected at line (3) and bandled by liDes (4)
tbrough (7). We create at line (4) a new cell of type PCELL, which becomes the
first cell on the list oí PCELL 's that we shall return. Line (5) copies tbe a880ciated
range vaJue into this new cell. Tben at line (6) we call1ookup recunively on tbe
tail oí the list L. The retum value írom this call, which is a pointer to the first cell
on the resulting list (WLL if the list is empty), becomes the n8xt field of tbe cell
we created at line (4). Then at line (7) we return a pointer to the newly created
cell, which holds one range value and is linked to cella holding otber range vaJues
for domain value a, if any existo

The last case occurs when the desired domain vaJue a is not found in the first
cell of the list L. Then we just call1ookup on the tail oí the list, at line (8), and



.

SEC.7.9 IMPLEMENTING BINARY RELATIONS 383

PLIST lookup(PVARIETY a. RLIST L)

{
PLIST P;

(1) if (L = 1lULL)

(2) return 1lULL;

(3) else if (!strcap(L->variety. a» /* L->variety == a./ {
(4) P = (PLIST) aalloc(sizeof(8truct PCELL»;

(5) strcpy(P->polliDizer. L->pollinizer);
(6) P->next = lookup(a. L->next);

(1) return P;

}
e18e /* a not the domain value of current pair */

(8) return lookup(a. L->next);
}

Fig. 7.24. Lookup in a binary relation represented by a linked listo

return whatever that call returns. ...

A Characteristic- Vector Approach

For sets and for functions, we saw that we could create an array indexed by elernents
oí a "universal" set and place appropriate values in the array. For sets, the appro-
priate array values are TRUE and FALSE, and for functions they are those values that
can appear in the range, plus (usually) a special value that rneans "none."

For binary relations, we can index an array by mernbers of a small declared
dornajo, just as we did for functions. However, we cannot use a single value as an
array elernent, becauae a relation can have any nurnber oí range values for a given
dornain value. The best we can do is to use as an array elernent the header of a
linked list that contains all the range values associated with a given dornajo value.

Example 7.30. Let us redo the plum example using this organization. As was
pointed out in the last section, when we use a characteristic-vector style, we must
fix the set of values, in the domain at least; there is no such constraint for linked-list
or hash-table representations. Thus, we must redeclare the PVARIETY type to be an
enumerated type:

enua PVARIETY {Beauty, SantaRosa, Burbank, Eldorado, Wickson};

We can continue to use the PCELL type for lists of varieties, as defined in Example
7.29. Then we mar define the array

PLIST Pollinizers[5];

That is, the arfar representing the relation of Fig. 7.23 is indexed by the varieties
mentioned in that figure, and the value associated with each variety is a pointer
to the first cell on its list of pollinizers. Figure 7.25 shows the pairs of Fig. 7.23
represented in this way. +
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Beauty

SantaRosa

Burbank

Eldorado

Wickson

Fig. 7.25.

lnsertion and deletion of pairs is performed by going to the appropriate array
element and thence to the linked listo At that point, insertion in or deletion from
the list is performed normally. For example, if we determined that Wickson cannot
adequately pollinate Eldorado, we could execute the operation

delete(Eldomdo, Wickson)

The header of the list for Eldorado is found in Pollinizers [El dorado] , and from
there we go down the list until we find a cell holding Wickaon and delete it.

Lookup is trivialj we have only to return the pointer found in the appropriate
arrayentry. For example, to answer the query lookup(Burbank, Pollinizera) ,
we simply return the list Pollinizera [Burbank] .

Hash-Table Implementation al Binary Relations
We may store a given binary relation R in a hash table, using a hash function that
depends only on the first component oí a pair. Tbat is, tbe pair (a, b) will be placed
in bucket h(a), where h is the bash function. Note that tbis arrangement is exactly
the same as that for a functionj the only difference is that for a binary relation a
bucket may contain more tban one pair with a given value a as tbe first component,
whereas for a function, it could never contain more than one such pair.

To insert tbe pair (a, b), we compute h(a) and examine the bucket with that
number to be sure that (a, b) is not already there. If it is not, we append (a, b) to
the end of the list for that bucket. To delete (a, b), we go to the bucket h(a), search
for this pair, and remove it from the list if it is there.

To execute lookup(a), we again find the bucket h(a) and go down tbe list for
this bucket, collecting all the b's that appear in cells with first component a. Tbe
lookup function of Fig. 7.24, which we wrote for a linked list, applies equally well to
the list that forms one bucket of a bash table.

Running Time of Operations on a Binary Relation
The peñormance of the tbree representations for binary relations is not much dif-
ferent from the peñormance of the same structures on functions or dictionaries.
Consider first the list representation. While we have not written the functions for
insert and delete, we should be able to visualize that these functions will run clown
the entire list, searching for the target pair, and stop upon finding it. 00 a list of

Poll inuera



+ Example 7.31. Suppose there is arelation of 1000 pairs, distributed among 100
domain values. Then the typical dornain value has 10 ~iated range values; that
is, m = 10. If we use 1000 buckets - that is, B = 1000 - then m is greater than

nI B, which is 1, and we expect the average bucket that we might actually search
(because its number is h(a) for some domain value a that appears in the relation)
to have about 10 pairs. In fact, it will have 00 the average slightly more, because by
coincidence, the same bucket could be h(a1) and h(a2) for different domain values
al and a2. If we choose B = 100, then m = nI B = 10, and we would again expect
each bucket we might search to have about 10 elements. As just mentiooed, the
actual number is slightly more because of coiocidences, where two or more domain
values hash to the same bucket. +
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length n, this search takes O( n) average time, since we must scan the entire list if
the pair is not found and, on the average, half the list if it is found.

For lookup, an examination of Fig. 7.24 should convince us that this function
takes 0(1) time plus a recursive call on the tail oc a listo We thus make n calls if
the list is of length n, for a total time of O(n).

Now consider the generalized characteristic vector. The operation lookup( a) is
easiest. We go to the array element indexed by a, and there we find OUt answer, a
list of all the b's such that (a, b) is in the relation. We don't even have to examine the
elements or copy them. Thus, lookup takes 0(1) time when characteristic vectors
are used.

On the other hand, ínsert and delete are less simple. To insert (a, b), we can
go to the array element indexed by a easily enough, but we must search the entire
list to make sute that (a, b) is not already there.5 That requires an amount oí
time proportional to the average length of a list, that is, to the average number oí
range values associated with a given domain value. We shall call this parameter m.
Another way to look at m is that it is n, the total number oí pairs in the relation,
divided by the number oc difFerent domain values. Ir we assume that any list is as
likely to be searched as any other, then we require O(m) time on the average to
perform an ínsert or a delete.

Finally, let us consider the hash table. Ir there are n pairs in OUt relation and
B buckets, we expect there to be an average oc n/ B pairs per bucket. However,
the parameter m must be figured in as well. Ir there are n/m difFerent domain
values, then at most n/m buckets can be nonempty, since the bucket Cor a pair is
determined only by the domain value. Thus, m is a lower bound on the average size
oí a bucket, regardless oí B. Since n/Bis alBO a lower bound, the time to perform
one ofthe three operations is O(max(m,n/B»).

EXERCISES

tbat takes a
a list of tbe

1.9.1: Using the data types from Example 7.29, write a function
pollinizer value b and a list of variety-pollinizer pairs, and returns
varieties that are pollinized by b.

5 We could insert the pair without regard for whether it is already present, but that would
have both the advantages and disadvantages of the list representation discussed in Section
6.4, where we allowed duplicates.
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.

"Dictionary Operations" on Functions and Relations
A set of pairs might be thought of as a set, as a function, or as a relation. For each
ofthese cases, we have defined opera.tions insert, delete, and lookup suita.bly. These
operations differ in formo Most of the time, the operation takes both the dornajo
and range element of the pair. However, sometimes only the domain element is
used as an argumento The table below summarizes the differences in the use of

these three operations.

Set of Pairs Function Relation

Iosert Domain and Range Domain and Range Domain and Range
De1ete Domain and Range Dornain on1y Domain and Range
Lookup Domain and Range Domain only Domain only

7.9.2: Write (a) insert and (b) delete routines for variety-pollinizer pairs using the

assumptions of Example 7.29.

7.9.3: Write (a) insert, (b) delete, and (c) lookup functions for a relation repre-
sented by the vector data structure of Example 7.30. When inserting, do not forget
to check for an identical pair already in the relation.

7.9.4: Design a hash-table data structure to represent the pollinizer relation that
forms the primary example ofthis section. Write functions for the operations insert,
delete, and lookup.

7.9.5*: Prove that tbe function lookup of Fig. 7.24 works correctly, by showing
by induction on the length of list L tbat lookup retums a list of all the elements b
such that the pair (a, b) is on the list L.

7.9.6*: Design a data structure tbat allows 0(1) average time to perform each of
the operations insert, delete, lookup, and inverseLookup. The latter operation
takes a range element and finds the associated domain elements.

7.9.7: In tbis section and tbe previous, we defined some new abstract data types
tbat had operations we called insert, delete, and lookup. However, tbese operations
were defined slightly differently from tbe operations of the same name on dictio-
naries. Make a table for the ADT's DICTIONARY, FUNCTION (as discussed in
Section 7.8), and RELATION (as discussed in tbis section) and indicate the possi-
ble abstract implementations and tbe data structures tbat support them. For each,
indicate the running time of each operation.

..".. 7.10 Some Special
..

In this section we shall consider some of the special properties that certain useful
binary relations have. We begin by defining some basic properties: transitivity,
reflexivity, symmetry, and antisymmetry. These are combined to forro common
types of binary relations: partial orders, total orders, and equivalence relations.

Properties of Binary Relations
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Transitivity
Let R be a binary relation on the domain D. We say that the relation R is tmnsitive
if whenever aRb and bRc are true, aRc is also true. Figure 7.26 illustrates the
transitivity property as it appears in the graph of a relation. Whenever the dotted
arrows from a to b and from b to c appear in the diagram, for some particular a, b,
and c, then the salid arrow from a to c must algo be in the diagram. It is important
to remember that transitivity, like the other properties to be defined in this section,
pertains to the relation as a whole. It is not enough that the property be satisfied
for three particular domain elements; it must be satisfied for all triples a, b, and c
in the declared domain D.

0~~~:~~~~~)
Fig. 7.26. Transitivity condition reqwres that if both the arcs aRb and bRc

are present in the graph of a relation, then so is tbe arc aRco

Example 7.32. Consider the relatioo < 00 Z, the set oí integers. That is, <
is the set oí pairs oí integers (a, b) 8uch that a is less than b. The relation < is
transitive, because if a < b and b < c, we know tbat a < c. Similarly, the relations
.5:, >, and ~ on integers are transitive. These íour comparison relations are likewise
transitive on the set of real numbers.

However, consider the relation I on the iotegers (or the reals íor that matter).
This relation is not transitive. For instance, let a and c botb be 3, and Jet b be 5.
Then a I b and b I c are botb true. If the relation were transitive, we would have
a I c. But that says 3 I 3, which is wrong. We conclude that I is not transitive.

For another example oí a transitive relation, consider ~, the subset relation.
We might like to consider the relation as being the set oí all pairs oí sets (S, T)
such that S ~ T, but to imagine that there is such a set would lead os to Russell's
paradox again. However, suppose we have a "universal" set U. We can let ~u be
the set oí pairs oí sets

{(S,T) I s ~ T and T ~ U}

Then ~u is a relatioo 00 P(U), the power set of U, and we can think of ~u as the
subset relation.

For instance, Jet U = {l, 2}. Then ~{1,2} consists ofthe nine (S, T)-pairs shown
in Fig. 7.27. Thus, ~u contains exactly those pairs such that the first component
is a subset (not necessarily proper) of the second component and both are subsets
of {1,2}.

It is easy to check that ~u is transitive, no matter what the universal set U
is. If A ~ B and B ~ C, then it must be that A ~ C. The reason is that for every
z in A, we know that z is in B, because A ~ B. Since z is in B, we know that z
is in C, becaU8e B ~ C.
A~C. .

Thus, every element of A is an element of C. Therefore,
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Reflexivity
Some binary relations R have the property that for every element a in the declared
domain, R has the pair (a, a); that is, aRa. If so, we say that R is refte.J:ive. Figure
7.28 suggests that the graph of a refiexive relation has a loop on every element of
its declared domain. The graph mar have other arrows in addition to the loops.
However, it is not sufficient that there be loops for the elements of the current
domain; there must be one for each element of the declared dornajo.

Fig.7.28.

Example 7.33. The relation ~ on the reals is reftexive. For each real nurnber
a, we have a ~ a. Sirnilarly, ~ is reftexive, and both these relatioDS are also reftexive
on the integers. However, < and > are not reftexive, since a < a and a > a are each
false for at least one value of a; in fact, they are both false for all a.

The subset relatioDS ~u defined in Example 7.32 are alBO reftexive, since A S;;; A
for any set A. However, the sirnilarly defined relatioDS Cu that contain the pair
(S, T) if T S;;; U and S C T - that is, S is a proper subset of T - are not reftexive.

The reason is that A c A is false for sorne A (in fact, for al1 A). ..

+

Symmetry and Antisymmetry

Let R be a binary relation. As defined in Exercise 7.7.7, the inverse of R is the
set of pairs of R with the components reversed. That is, the inverse of R, denoted
R-l, is

Inverse relation

S T

. .

.. {1}

. {2}
e {),2}

{l] {l}
{l} {.l.2}
{2} 42t
{2} {l,2}

{1,2} {l,2}

Flg. 7.27. The pairs in the relation ~ { 1 ,2} .

88 8
A reOexive relation R has s:& Cor every s: in its declared domain.
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{(b,a) I (a,b) E R}

For example, > is the ioverse of <, since a > b exactly when b < a. Likewise, ~ is
the inverse of $.

í;~ ~'~ ~
\..~ ;; )

~

Fig. 7.29. Syrnrnetry requires that ir aRb, then bRa as well.

We say that R is $ymmetric if it is its own inverse. That is, R is symmetric ir,
whenever aRb, we also have bRa. Figure 7.29 suggests what symmetry looks like
in the graph of a relation. Wheoever the forward arc is present, the backward arc
must also be presento

We say that R is antisymmetric if aRb and bRa are both true only when
a = b. Note that it is oot oecessary that aRa be true for aoy particular a in
ao antisymmetric relation. However, ao antisymmetric relation can be reflexive.
Figure 7.30 shows how the antisymmetry coodition relates to graphs of relatioos.

n~o
optionalnever

Fig. 7.30. Ao antisymmetric relatioo cannot have a cycle involving two
elemeots, but loops 00 a single element are permitted.

Example 7.34. The relatioD $ on integers or reals is antisymmetric, because
if a $ b and b $ a, it must be that a = b. The relation < is alBO antisymmetric,
because under no circumstances are a < b and b < a both true. Similarly, ~ and
> are antisymmetric, as are the subset relations ~u that we discussed in Example
7.32.

However, note that $ is not symmetric. For example, 3 $ 5, but 5 $ 3 is
falseo Likewise, Done of the other relations mentioned in the previous paragraph is
symmetric.

An example of a symmetric relation is I on the integers. That is, if a I b,
then surely b I a. +
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Pitfalls in Property Deftnitions
As we have pointed out, the definition of a property is a general condition, one that
applies to all elements of the dornajo. For example, in order for a relation Ron
declared dornain D to be reflexive, we need to have aRa for every a E D. It is not
sufficient for aRa to be true for one a, nor does it make sense to say that a relation
is reflexive for sorne elernents and not others. Ir there is even one a in D for which
aRa is false, then R is not reflexive. (Thus, reflex.ivity rnay depend on the dornain,
as well as on the relation R.)

Also, a condition like transitivity - "ir aRb and bRc then aRc" - is of the forrn

"ir A then B." Rernember that we can satisfy such a statement either by rnaking
B true or by rnaking A falseo Thus, for a given triple a, b, and c, the transitivity
condition is satisfied whenever aRb is false, or whenever bRc is false, or whenever
aRc is true. As an extreme example, the empty relation is transitive, syrnrnetric,
and antisymrnetric, because the "if" condition is never satisfied. However, the
ernpty relation is not reflexive, unless the declared dornain is 0.

Partial Orders and Total Orders

A partial omer is a transitive and antisyrnrnetric binary relation. A relation is said
to be a total arder if in addition to being transitive and antisymrnetric, it makes
every pair of elernents in tbe domain comparoble. That is to say, if R is a total
order, and if a and b are any two elements in its domain, then either aRb or bRa
is true. Note that every total order is reflex.ive, because we may let a and b be the
same element, whereupon the comparability requirement tells us that aRa.

Comparable
elements

.. Example 7.35. The aritbmetic comparisons :$ and ~ on integers or reals are
total orders and therefore are alBO partial orders. Notice tbat for any a and b, either
a :$ b or b :$ a, but both are true exactly when a = b.

The comparisons < and > are partial orders but not total orders. While tbey
are antisymmetric, they are not reflexive; that is, Deither a < a Dor a > a is true.

The subset relations ~u and Cu on 2u for some universal set U are partial
orders. We already observed that they are transitive and antisymmetric. These
relatioDs are not total orders, bowever, as long as U has at least two members, since
then there are incomparable elements. For example, let U = {1,2}. Then {l} and
{2} are subeets of U, but neither is a subset oí the other. ..

One can view a total order R as a linear sequence of elements, as suggested in
Fig. 7.31, where whenever aRb for distinct elernents a and b, a appears to the left
of b along the line. For example, if R is $ on the integers, then the elernents along
the line would be ..., -2, -1,0, 1,2,... . If R is $ on the reals, then the points
correspond to the points &long the re&lline, as if the line were an infinite ruler; the
real number z is found z units to the right of the O mark if z is nonnegative, and
-z units to the left of the zero rnark if z is negative.

If R is a partial order but not a total order, we can also draw the elements of
the domain in such a way that if aRb, then a is to the left of b. However, because
there mar be sorne incomparable elernents, we cannot necessarily draw the elements



+ Example 7.36. Figure 7.32 represents the partial arder ~{1.2.3}' We have
Reduced graph drawn the relation as a reduced graph, in which we have omitted arcs that can be

inferred by transitivity. That is, S ~{1,2.3} T if either

l. S= T,
2. There is 3D arc from S to T, or

3. There is a path of two or more arcs leading from S to T.

For example, we know that 0 ~{1.2.3} {1,3}, because of the path from 8 to {l} to
{1,3}. +

... Example 7.37. A relation like .s: on integers is not an equivalence relation.
Although it is transitive and reflexive, it is not symmetric. If a .s: b, we do not have
b .s: a, except ií a = b.

For an example that is an equivalence relation, let R consist oí th~ pairs oí
integers (a, b) such that a - b is an integer multiple oí 3. For example 3R9, since
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I I I I
al a2 a" ~

Flg.7.31. Pictm-e Gf a total order onal, a2,03,... ,a".

in one line so that the relation R means "to the left."

0

Fig. 7.32. Reduced graph for the partía! order ~(I,2")'

Equivalence Relations

An equivalence relation is a binary relation that is reflexive, symmetric, and transi-
tive. This kind of relation is quite different from the partial orders and total orders
we have met in our previous examples. In fact, a partial arder can never be an
equivalence relation, except in the trivial cases that the declared domain is empty,
or there is only one element a in the declared domain and the relation is {(a,a)}.
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3 - 9 = -6 = 3 x (-2). Also, 5R(-4), lince 5 - (-4) = 9 = 3 x 3. However, (1,2)
is not in R (or we can say "1R2 is false"), since 1- 2 = -1, which is not an integer
rnultiple of 3. We can dernonstrate that R is an equivalence relation, as follows:

1. R is reftexive, since aRa for any integer a, because a - a is zero, which is a
rnultiple of 3.

2. R is syrnrnetric. If a - 6 is a rnultiple of 3 - say, 3c for sorne integer c - then
6 - a is -3c and is therefore also an integer rnultiple of 3.

3. R is transitive. Suppose aRb and 6Rc. That is, a - 6 is a rnultiple of 3, say, 3d;
and 6 - c is a rnultiple of 3, say, 3e. Then

a - c = (a - 6) + (6 - c) = 3d + 3e = 3(d + e)

and so a - c is also a rnultiple of 3. Thus, aRb and 6Rc irnply aRc, which rneans
that R is transitive.

For another exarnple, let S be the set of cities of the world, and let T be the
relation defined by aT6 if a and 6 are connected by roads, that is, if it is p<aible
to drive by cal frorn a to b. Tbus, tbe pair (Toronto, New York) is in T, but

(Honolulu, Anchorage)

is noto We clairn that T is an equivalence relation.
T is reftexive, since trivially every city is connected to itself. T is syrnmetric

because if a is connected to 6, tben 6 is connected to a. T is transitive because if
a is connected to 6 and 6 is connected to c, then a is connected to c; we can travel
frorn a to c via 6, if no sborter route exists. +

Equivalence Classes

Another way to view an equivalence relation is tbat it partitions its domain into
equivalence classes. If R is an equivalence relation on a domain D, tben we can
divide D into equivalence classes 80 tbat

l. Each domain element is in exactly one equivalence class.

2. If aRb, tben a and b are in the same equivalence class.

3. If aRb is false, then a and b are in different equivalence classes.

Example 7.38. Consider the relation R oí Example 7.37, where aRb when
a - b is a multiple oí 3. One equivalence class is the set oí integers that are exactly

divisible by 3, that is, those that leave a remainder oí O when divided by 3. This
class is {. . . , -3, O, 3, 6, . . .}. A second is the set oí integers that leave a remainder oí
1 when divided by 3, that is, {. . ., -2, 1,4,7,. . .}. The last class is the set oíinteger8
that leave a remainder oí 2 when divided by 3. This class is {. . ., -1, 2, 5, 8,.. .}.
The classes partition the set oí integers joto three disjoint seta, as suggested by Fig.
7.33.

Notice that when two integers leave the same remainder when divided by 3,
then their difference is evenly divided by 3. For instance, 14 = 3 x 4 + 2 and
5 = 3 x 1 + 2. Thus, 14 - 5 = 3 x 4 - 3 x 1 + 2 - 2 = 3 x 3. We therefore know that
14R5. On the other hand, iítwo integers leave different remainders when divided by

..
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Fig. 7.33. Eqwvaleoce classes for the relatioo 00 the integers:
"Differeoce is divisible by 3."

3, their difference surely is not evenly divisible by 3.
classes, like 5 and 7, are not related by R. ...

Tbus, integers from different

To construct the equivalence classes for an equivalence relation R, let class(a)
be the set of elements b such that aRb. For example, if OUt equivalence relation is
the one we called R in Example 7.37, then class(4) is the set of integers that leave
a remainder of 1 when divided by 3; that is class(4) = {..., -2,1,4,7,.. .}.

Notice that if we let a vary ayer each of the elements of the domain, we typically
get the same class many times. In fact, when aRb, then class(a) = class(b). To
see why, suppose that c is in class(a). Then aRc, by definition of class. Since we
are given that aRb, by symrnetry it follows that bRa. By transitivity, bRa and aRc
imply bRc. But bRc says that c is in class(h). Tbus, every element in class(a) is in
class(b). Since the same argument tells us that, as long as aRb, every element in
class(b) is also in class(a), we conclude that class(a) and class(b) are identical.

However, if class(a) is not the same as class(b), then these classes can have
no element in common. Suppose otherwise. Then there must be BOrne c in both
dass(a) and class(b). By our previous assumption, we know that aRc and bRc.
By syrnmetry, cRb. By transitivity, aRc and cRb imply aRb. But we just showed
that whenever aRb is true, class(a) and class(b) are the same. Since we assumed
these classes were not the same, we have a contradiction. Therefore, the assumed c
in the intersection of class(a) and class(b) cannot existo

There is one more obeervation we need to make: every domain element is in
BOrne equivalence class. In particular, a is always in class(a), because reftexivity
tells us aRa.

We can now conclude that an equivalence relation divides its domain into equiv-
alence classes that are disjoint and that place each element into exactly one class.
Example 7.38 illustrated this phenomenon.

Closures of Relations

A COmmOD operatioD on relatioDS is to take a relatioD that does DOt have sorne
property and add as few pairs as possible to create a relation that does have that
property. Tbe resulting
original relation.

of tberelation is called clo$ure (Cor that property)
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Example 7.39. We discussed reduced graphs in connection with Fig. 7.32.
Although we were representing a transitive relation, ~{1.2.3}, we drew arcs corre-
sponding to only a subset of the pairs in the relation. We can reconstruct the entire
relation by applying the transitive law to infer new pairs, until no new pairs can
be inferred. For example, we see that there are arce corresponding to the pairs
({1},{1,3}) and ({1,3},{1,2,3}), and so the transitive law tells us that the pair
({l}, {1,2,3}) must also be in the relation. Then this pair, together with the pair
(0,{1}) tells us that (0,{1,2,3}) is in the relation. To these we must add the "re-
flexive" paila (8,8), for each set 8 tbat is a subset of {1,2,3}. In this manner, we
can reconstruct all tbe pairs in the relation ~{1,2.3}' ...

Transitive
closure

+

Another useful closure operation is topological sorting, where we take a partí al
arder and add tuples until it becomes a total order. While the transitive closure
of a binary relation is uníque, there are frequently several total orders that contain
a given partial order. We shall learn in Chapter 9 of a surprisingly efficient algo-
rithm for topological sorting. For the moment, let us consider an example where
topological sortíng ís useful.

Topological
sorting

Example 7.40. It is common to represent a sequence of tasks that must be per-
formed in a manufacturing process by a set of "precedences" that must be obeyed.
For a simple example, you must put on your left sock before your left shoe, and
your right sock before your right shoe. However, there are no other precedences
that must be obeyed. We can represent these precedences by a set consisting of
the two pairs (leftsock,leftshoe) and (rightsock,rightshoe). This set is a partial

order.
We can extend this relation to six different total orders. One is the total order

in which we dress the left foot first; this relation is a set that contains the ten pairs

(le f tsock, le f tsock ) (le f tsock, le f t6hoe ) (le f tsock, rightsock) (le f tsock I rightshoe )
(leftshoe,leftshoe) (leftshoe, right6ock) (leftshoe, rightshoe)
(rightsock, rightsock) (rightsock, rightahoe)
(rightshoe,right6hoe)

We can think of this total order 88 the linear arrangement

leftsock -+ leftshoe -+ rightsock -+ rightshoe

There is the analogous procedure where we dress the right foot first.
There are four other possible total orders consistent with the original partial

order, where we first put on the socks and then the shoes. These are represented
by the linear arrangements

leftsock -+ rightsock -+ leftshoe -+ rightshoe
leftsock -+ rightsock -+ rightshoe -+ leftshoe
rightsock -+ leftsock -+ leftshoe -+ rightshoe
rightsock -+ leftsock -+ rightshoe -+ leftshoe

+

A third form of closure is to find the smallest equivalence relation containing a
given relation. For example, a road map represents a relation consisting of pairs of
cities connected by road segments having no intermediate cities. To determine the

.
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roM-connected cities, we can apply reflexivity, transitivity, and symmetry to infer
those pairs of cities that are connected by some sequence of these elementary roMs.

Connected This form of closure is called finding the "connected components" in a graph, and
components an efficient algorithm for the problem will be discussed in Chapter 9.

EXERCISES
1

7 1.10.1: Give an example of a relation that is reflexive for one declared domain but

not reflexive for another declared domain. Remember that for D to be a possible
domain for a relation R, D must include every element that appears in a pair of R
but it mar also include more elements.

1.10.2**: How many pairs are there in the relation ~{1.2.3}? In general, how many
pairs are there in ~u, if U has n elements? Hint: Try to guess the fun::tion from a
few cases like the two-element case (Fig. 7.27) where there are 9 pairs. Then prove
your guess correct by induction.

1.10.3: Consider the binary relation Ron the domain of four-letter strings defined
by sRt if t is formed from the string B by cycling its characters one position left.
That is, abcdRbcda, where a, b, c, and d are individualletters. Determine whether
R is (a) reflexive, (b) symmetric, (c) transitive, (d) a partial arder, and/or (e) an
equivalence relation. Give a brief argument why, or a counterexample, in each case.

7.10.4: Consider the dornajo of four-letter strings in Exercise 7.10.3. Let S be
the binary relation consisting of R applied O or more times. Thus, abcdSabcd,
abcdSbcda, abcdScdab, and abcdSdabc. Put another way, a string is related by Sto
any of its rotations. Answer the five questions from Exercise 7.10.3 for the relation
S. Again, give justification in each case.

1.10.5*: What is wrong with the following "proo!"?

(Non) Theorem: Ifbinary relation R is symmetric and transitive, then R is reflexive.

(Non)Proof: Let z be some member of the domain of R. Pick y such that zRy. By
symmetry, yRz:. By transitivity, zRy and yRz: imply zRz:. Since z is an arbitrary
member of R's domain, we have shown that -rRz: for every element in the domain
of R, which "proves" that R is reftexive.

1.10.6: Give examples of relations with declared domain {t, 2, 3} that are.
a) Reftexive and transitive, but not symmetric
b) Reflexive and symmetric, but not transitive
c) Symmetric and transitive, but not reflexive
d) Symmetric and antisymmetric
e) Reflexive, transitive, and a total function
f) Antisymmetric and a one-to-one correspondence

1.10.7*: How many arcs are saved ifwe use the reduced graph for the relation ~u,
where U has n elements, rather than the full graph?

7.10.8: Are (a) ~u and (b) Cu either partial orders or total orders when U has
one element? What if U has zero elements?

-~'. ,
~""cO

Felix Calderon
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7.10.9*: Sbow by induction on n, starting at n = 1, tbat if there is a sequence of
n pairs ClO&1,Cl1&2,.. .,an-1Ran, and if R is a transitive relation, tben CloRan.
That ia, show that if tbere is any path in tbe grapb of a transitive relation, then
there is an arc frorn the beginning of the path to the end.

7.10.10: Find the smallest equivaJence relation containing the pairs (a,6), (a, c),
(d, e), and (6, n.

7.10.11: Let R be the relation on the set of integers such tbat aRb if a and b
are distinct and have a cornrnon divisor other than l. Determine whetber R is (a)
reflexive, (b) syrnrnetric, (c) transitive, (d) a partial arder, and/or (e) an equivalence
relation.

7.10.12: Repeat Exercise 7.10.11 for tbe relation RT on tbe nades of a particular
tree T defined by aRT6 if and only if a is an ancestor of 6 in tree T. However, unlike
Exercise 7.10.11, your possible answers are "yes," "no," or "it dependa on what tree
T . "

18.

7.10.13: Repeat Exercise 7.10.12 for relation S-r on tbe nades ora particular tree
T defined by aST6 if and only if a is to the left of 6 in tree T.

+++ 7.11 Infinite Sets
+

AlI of the sets that one would implement in a computer program are finite, or
limited, in extentj one could not store them in a computer's memory if they were
noto Many seta in mathematics, such as the integen or reaIs, are infinite in extent.
These remarks seem intuitively clear, but what distinguishes a finite set from an
infinite one?

The distinction between finite and infinite is rather surprising. A finite set is
one that does not have tbe same number of elements as any of its proper subsets.
Recall from Section 7.7 tbat we said we could use the existence of a one-to-one
correspondence between two sets to establish that that they are equipotent, that is,
they have the sarne number of memben.

If we take a finite set such &8 S = {1, 2, 3, 4} and any proper subset of it, such
as T = {1, 2, 3}, there is no way to find a one-to-one corre8pondence between the
two sets. For example, we could map 4 of Sto 3 of T, 3 of Sto 2 of T, and 2 of S
to 1 of T, but then we would have no member of T to a880citte witb 1 of S. Any
other attempt to build a one-to-one correspondence from S to T must likewise fail.

Your intuition might suggest that the same should hold for any set whatsoever:
how could a set have the same number of elements as a set formed by throwing away
ORe or more of its elements? Consider the natural numben (nonnegative integen)
N and the proper subset of N íormed by throwing away O; call it N - {O}, or
{1, 2, 3,.. .}. Then consider the one-to-one correspondence F from N to N - {O}
defined by F(O) = 1, F(l) = 2, and, in general, F(i) = i + l.

Surprisingly, F is a one-to-one correspondence from N to N - {O}. For eacb
i in N, tbere is at m~t ORe j such tbat F(i) = j, so F is a function. In fact,
there is exactly one sucb j, namely i + 1, so tbat condition (1) in the definition
ofone-to-one correspondence (see Section 7.7) is 8at.isfied. Por every j in N - {O}
there is some i such that F(i) = j, namely, i = j - l. Tbus condition (2) in the
definition oí one-to-one corr~pondence is satisfied. Finally, tbere cannot be two

Equipotent sets
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Inftnite Hotels

To help you appreciate that there are as many numbers from O up as from 1 up,
imagine a hotel with an infinite number of rooms, numbered O, 1,2, and 80 on; for
any integer, there is a room witb tbat integer as room number. At a certain time,
there is a guest in each room. A kangaroo comes to tbe front desk and asks for
a room. The desk clerk saya, "We don 't see many kangaroos around here." Wait
- that's another story. Actually, the desk clerk makes room for the kangaroo as
follows. He moves the guest in room O to room 1, the guest in room 1 to room 2,
and 80 on. All tbe old guests still have a room, and now room O is vacant, and the
kangaroo goes there. The reason this "trick" works is that there are truly tbe same
number oí rooms numbered írom 1 up as are numbered from O up.

distinct numbers i1 and i2 in N Buch that F(i1) and F(i2) are both j, because then
i1 + 1 and i2 + 1 would both be j, írom which we would conclude that i1 = i2. We

are íorced to conclude that F is a one-to-one correspondence between N and its
proper subset N - {O}.

Formal Deftnition oí Inftnite Sets
The definition accepted by mathematicians oí an infinite set is one that has a one-
to-one correspondence between itselí and at least one of its proper subsets. There
are more extreme examples oí how an infinite set and a proper Bubset can have a
one-to-one correspondence between them.

Example 7.41. The set oí natural numbers and the set oí even natural numbers
are equipotent. Let F(i) = 2i. Then F is a one-to-one correspondence that mapa O
to O, 1 to 2, 2 to 4, 3 to 6, and in general, every natural number to a unique natural
number, its double.

Similarly, Z and N are the same sizej that is, there are as many nonnegative
and negative integers as nonnegative integers. Let F(i) = 2i íor all i ~ O, and let
F(i) = -2i - 1 íor i < o. Then O goes to O, 1 to 2, -1 to 1,2 to 4, -2 to 3, and so
oo. Every integer is sent to a uBique nonnegative integer, with tbe negative integers
going to odd numbers and the nonnegative integers to even numbers.

Even more surprising, the set oí pairs oí natural numbers is equinumerous with
N itselí. To see how the one-to-one correspondence is constructed, consider Fig.
7.34, which shows the pairs in N x N arranged in an infinite square. We order the
pairs according to their sum, and among pairs oí equal sum, by order oí their first
components. This order begins (O, O), (0,1), (1, O), (0,2), (1,1), (2, O), (0,3), (1,2),
and so on, as suggested by Fig. 7.34.

Now, every pair has a place in the order. The reason is that íor any pair (i, j),
there are only a finite number oí pairs with a smaller sum, and a finite number
with the same sum and a smaller value oí i. In íact, we can calculate the position
oí the pair (i,j) in the orderj it is (i + j)(i + j + 1)/2 + i. That is, OUt one-
to-one correspondence associates the pair (i,j) with the unique natural number
(i + j)(i + j + 1)/2 + i.

Notice tbat we have to be careful how we order pairs. Had we ordered them
by rows in Fig. 7.34, we would never get to the pairs on the second or higher rows,
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Every Set Is Either Finite or Inftnite

At first glance, it might appear that there are things that are not quite finite and not
quite infinite. For example, when we talked about linked li8t.8, we put no limit on
the length of a linked listo Yet whenever a linked list is created during the execution
of a program, it has a finite length. Thus, we can make the following distinctions:

l. Every linked list is finite in length; that is, it has a finite number of cells.

2. The length of a linked list may be anY nonnegative integer, and the set of
possible lengths of linked lists is infinite.

because there are an iofioite oumber oí pairs 00 each row.
columna would not work. ...

The formal definition of infinite sets is interesting, but that definition may not
meet our intuition of what infinite sets are. For example, one might expect that
an infinite set was one that, for every integer n, contained at least n elements.
Fortunately, this property can be proved for every set that the formal definition
telJs us is infinite. The proof is 3D example of induction.

STATEMENT S(n):

BASIS. Let n = O. Surely . ~ l.

INDUCTION. A.ume S(n) for some n ?: o. We shall prove tbat 1 has a subeet
with n + 1 elements. By the inductive hypoth5is, 1 has a subeet T with n elements.
By the formal definition of an infinite set, there is a proper subeet J C 1 and a 1-1
corr5pondence / from 1 to J. Let a be an element in 1 - J j surely a exists because
J is a proper subeet.

Consider R, the imoge of T under /, that is, if T = {61,..., 6" }, then R =
{/(61),. .., /(6,,)}. Since / is 1-1, each of /(61),..., /(6,,) are different, so R is of
size n. Since / is írom 1 to J, each oí the /(6.)'s is in Jj that. is, R ~ J. Thus, a
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Fig. 7.34..

Similarly, ordering by

set, then 1 has a 8Ubeet with n elements.Ir J is a.n infinite



SEC.7.11 INFINITE SETS 399

Cardinality of Seta

We defined two seta S ud T to be equipotent (equa.! in size) if there is a one-to-one
correspondence from S to T. Equipotence is an equiva.!ence relation on any set of
sets, and we leave this point as an exercise. The equivalence claM to which a set S
belongs is said to be the cardinalityof S. For example, the empty set belongs to an
equivalence claM by itself; we can identify this class with cardinality O. The claM
containing the set {a}, where a is any element, is cardina.!ity 1, the claM containing
the set {a, b} is cardinality 2, and so on.

The claM containing N is "the cardinality of the integers," usually given the
Countable set, name aleph-zero, and a set in this class is said to be countable. The set of real
aleph-zero numbers belongs to another equivalence claM, often called the continuum. There

are, in fact, an infinite number of dift'erent infinite cardinalities.

cannot be in R. It follows that R U {a} is a subset of 1 with n + 1 elements, proving
S(n + 1).

Countable and U ncountable Sets

From Example 7.41, we might think that all infinite sets are equipotent. We've seen
that Z, the set of integers, and N, the set of nonnegative integers, are the same
size, as are some infinite subseta of these that intuitively "seem" smaller than N.
Since we saw in Example 7.41 that the pairs of natural numbers are equinumerous
with N, it follows that the nonnegative rational numbers are equinumerous with the
natural numbers, since a rational is just a pair of natural numbers, its numerator
and denominator. Likewise, the (nonnegative and negative) rationals can be shown
to be just as numerous as the integers, ud therefore as the natural numbers.

Any set S for which there is a one-to-one correspondence from S to N is said
to be countable. The use of the term "countable" makes sense, because S must have
an element corresponding to O, u element corresponding to 1, and so on, so that we
can "count" the members oíS. From what wejust said, the integers, the rationa.!s,
the even numbers, and the set of pairs of natural numbers are a.!l countable sets.
There are many other countable sets, and we leave the discovery of the appropriate
one-to-one correspondences as exercises.

However, there are infinite sets that are not countable. In particular, tbe real
numbers are not countable. In fact, we sball show tbat there are more real numbers
between O and 1 than there are natural numbers. Tbe crux of tbe argument is that
the real numbers between O and 1 can eacb be represented by a decimal fraction
of infinite length. We shall number tbe positioDS to tbe rigbt of the decimal point
O, 1, and so on. If the reals between O and 1 are countable, tben we can number
them, ro, rl, ud so on. We can then arrange the reals in an infinite square table,
as suggested by Fig. 7.35. In our hypotheticallisting of the real numbers between
O and 1, 'K/10 is assigned to row zero, 5/9 is assigned to rowone, 5/8 is assigned to
row two, 4/33 is assigned to row three, and so oo.

However, we can prove that Fig. 7.35 does not really represent a listing of a.!l
Diagonalization the reals in the range O to l. Our proaf is of a type known as a diagonalization,

wbere we use the diagona.! of the table to create a value that cannot be in the list
of reals. We create a new rea.! number r with decima.! representation .aOala2'" .

" .""c .
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Fig. 7.35. Hypotbetical table of real numbers, assuming that the reals are countable.

The value of the ith digit, as", depends on that of the ith diagonal digit, that is, 00
the value found at the ith positioo of the ith real. If this value is O through 4, we
let Os" = 8. If the value at the ith diagonal position is 5 through 9, then as" = 1.

Example 7.42. Given the part of the table suggested by Fig. 7.35, our real
number r begins .8118 . . . . To see why, note that the value at position O oí real O is
3, and 80 ao = 8. The value at position 1 oí real 1 is 5, and 80 al = 1. Continuing,
the value at position 2 oí real 2 is 5 and the value at position 3 of real 3 is 2, and
so the next two digits are 18. +

..

We claim that r does not appear anywhere in the hypotheticallist of reals, even
though we suPposed that all real numbers from O to 1 were in the listo Suppose r
were rj, the real number associated with row j. Consider the difference d between
r and rj. We know that °j, the digit in position j of the decimal expansion of r,
was specifically chosen to differ by at least 4 and at most 8 from the digit in the jth
position of rj. Thus, the contribution to d from the jth position is between 4/lOí+l
and 8/lOí+l.

The contribution to d from all positions after the jth is no more than l/lOí+l,
since that would be the difference if one of r and rj had all 0'8 there and the other
had all 9'8. Hence, the contribution to d from all positions j and greater is between
3/lOí+l and 9/lOí+l.

Finally, in positions before the jth, r and rj are either the same, in which case
the contribution to d úom the first j - 1 positions is O, or r and rj differ by at least
l/lOí. In either case, we see that d cannot be O. Thus, r and rj cannot be the same
real number.

We conclude tbat r does not appear in the list of real numbers. Tbus, our
hypothetical one-to-one correspondence from the nonnegative integers to the reals
between O and 1 is not one to one. We have shown there is at least one real number

that range, namely r, that is not associated with any integer.10

EXERCISES

1.11.1: Show that equipotence is an equivalence relation. Hint: The hard part
is transitivity, sbowing that if there is a one-to-one correspondence j from S to
T, and a one-to-one correspondence 9 from T to R, then there is a one-to-one
correspondence from S to R. This fundían is the composition of j and g, that is,
the function that sends each element z in Sto g(j(z») in R.

Composition of
functions

o
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7.11.2: In the ordering of pairs in Fig. 7.34, what pair is aseigned number 1007

7.11.3.: Show that the following sets are countable (have a one-to-one correspon-
dence between them and the natural numbers):

a) The set of perfect squares
b) The set oftriples (i,j,k) ofnatural numbers
c) The set of powers of 2
d) The set of finite sets of natural numbers

7.11.4..: Show that P(N), the power set of the natural numbers, has the same
cardinality as the reals - that is, there is a one-to-one correspondence from P(N)
to the reals between O and 1. Note that this conclusion does not contradict Exercise
7 .11.3(d), because here we are talking about finite and infinite sets of integers, while
there we counted only finite sets. Hint: The following construction almost works,
but needs to be fixed. Consider the characteristic vector for any set of natural
numbers. This vector is an infinite sequence of O's and 1 's. For example, {O, 1} has
the characteristic vector 1100. . . , and the set of odd numbers has the characteristic
vector 010101 . . . . If we put a decimal point in front of a characteristic vector, we
have a binary fraction between O and 1, which represents a real number. Thus, every
set is sent to a real in the range O to 1, and every real number in that range can
be associated with a set, by tuming its binary representation into a characteristic
vector. The reason this association is not a one-to-one correspondence is that certain
reals have two binary representations. For example, .11000... and .10111... both
represent the real number 3/4. However, these sequences as characteristic vectors
represent different sets; the first is {O, 1} and the second is the set of all integers
except 1. You can modify this construction to define a one-to-one correspondence.

7.11.5..: Show that there is a one-to-one correspondence from paila of reals in the
range O to 1 to reals in that range. Hint: It is not possible to imitate the table of
Fig. 7.34 directly. However, we mar take a pair of reals, Bar, (r,s), and combine
the infinite decimal fractions for r and 8 to make a unique new real number t. This
number will not be related to r and s by any simple arithmetic expression, but from
t, we can recover r and 8 uniquely. The reader must discover a way to construct
the decimal expansion of t from the expansions of r and 8.

7.11.6**: Show that whenever a set S contains subsets of all integer sizesO, 1,... ,
then it is an infinite set according to the formal definition of "infinite" i that is, S
has a one-to-one correspondence with one of its proper subsets.

You should take away the following points from Chapter 7:

.. The concept of a set is fundamental to both mathematics and computer science.

.. The common operations on sets such 88 unjan, intersection, and difference can
be visualized in terms of Veno diagrams.

+ Algebraic laws can be used to manipulate and simplify expressions involving
operationssets and 00 sets.
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Linked lista, characteristic vectors, and huh tables provide three basic ways to
represent eeta. Linked lista offer the greatest flexibility for most set operations
but are not always the most efficient. Characteriatic vectors provide the great-
est speed for certain set operations but can be used only when the universa.l set
is ama}}. Hash tables are often the method of choice, providing both economy
of representation and speed of access.

(Binary) relations are sets of pairs. A function is a relation in which there is
at most one tuple with a given first component.

A one-to-one correspondence between two sets is a function that associates a
unique element of the second set with each element of the first, and vire versa.

.

...

...

...

...

...

...

...

There are a number O( significant properties O( binary relatioDS: reflexivity,
transitivity, symmetry, and asymmetry are among the most important.

Partial orders, total orders, and equivalence relatioD8 are important special
cases o( binary relations.

Infinite seta are those sets that have a one-to-one cor~poDdence with one of
their proper 8ubsets.

Some infinite sets are "countable," that is, they have a one-to-one cor~pon-
dence witb the integers. Other infinite sets, such as the reata, are not countable.

The data structures and operations defined on sets and relations in this chapter
will be used in many difl'erent ways in the remainder of this book.
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CHAPTER

....

..".... 5.1 What This Chapter Is About

5

The 1l-ee
Data Model

There are many situations in which infornlation has a hierarchical or ncsted struc-
tole like that found in family trees or organization charts. The abstraction that
modele hierarchical structure is called a t~ and this data rnodel is among the m~t
fundamental in computer science. It is the model that underlies several program-
ming languages, iocludiog Lisp.

Trees of various types appear in many of the chapters of this book. For in-
stance, in Section 1.3 we saw how directories and files in sorne computer systems
are organized ioto a tree structure. In Section 2.8 we used trees to show how lists
are split recursively and tben recombioed in tbe merge sort algorithrn. lo Section
3.7 we used trees to illustrate how simple statements in a program can be combined
to fornl progressively more complex statements.

The following them~ forro the major topics of thia chapter:

. The terms and concept8 related to t~ (Section 5.2).

. The basic data structures used to rep~nt t~ in programs (Section 5.3).

. Recuraive algoritbms that. operate on the nodes of a tree (Section 5.4).

. A method Cor making inductive proofs about trees, calle<! structural induction,
where we proceed from small trees to progressively larger ones (Section 5.5).

. The binary tree, which is a variant of a tree in which nodes have two "slot8"
Cor children (Section 5.6).

. The binary ~arch tree, a data structure for m&Íntaining a ~t of elemen~ from
which in8ertioDS and deletions are made (Sections 5.7 and 5.8).

223
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... The priority queue, which is a set to which elements can be added, but from
which only the maximum element can be deleted at any one time. An efficient
data structure, called a partially ordered tree, is introduced for implementing
priority queues, and an O(nlogn) algorithm, called heapsort, for sorting n
elements is derived using a balanced partially ordered tree data structure, called
a heap (Sections 5.9 and 5.10).

+: + 5.2 Basic Terminology

Nodes and

edges

Root

Trees are sets oí points, called node8, and liDes, called edge8. An edge connects two
distinct nades. To be a tree, a collection oí nades and edges must satisfy certain
properties; Figo 501 is an example oí a tree.

lo In a tree, one nade is distinguished and called the root. The root oí a tree is
generally drawn at the topo In Figo 5.1, the root is ni.

20 Every nade c other than the root is connected by an edge to 8Orne one other
nade p called the parent oí Co We also call c a child oí p. We draw the parent
oí a node above that node. For example, in Fig. 5.1, n¡ is the parent oí n2, n3,
and n4, while n2 is the parent oí ns and n6. Said another way, n2, n3, and n4
are children oí n¡, while ns and n6 are children oí n2o

3. A tree is connected in the sense that if we start at any nade n other than the
root, rnove to the parent of n, to the parent oí the parent of n, and 80 on, we
eventually reach the root of the treeo For instance, starting at n7, we move to
its parent, n4, and íroro there to n4 '8 parent, which is the root, n¡o

Parent and
child

AIl nades are
connected to
the root

An Equivalent

It is alBO possible to define
structs larger trees out oí smaller ones.

BASIS. A single nade n is a tree. We say tbat n is tbe root of tbis one-node tree.

INDUCTION. Let r be a new node and let T¡! T2!. .., TIr be one or more trees witb
roots CI, C2, . . ., C¡" ~pectively. We require that no nade appear more than once in
the Ti 's; and of course r, being a "new" node, cannot appear in any of these trees.
We form a new tree T from r and TI, T2'... ,T¡, as follows:

DATA MODEL

Fig. 5.1. 'free with leven nodes.

ol TreesRecursive Deftnition

trees recursively with an inductive definition that con-

Pa
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Path length
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a) Make r the root of tree T.

b) Add an edge from r to ead1 of CI, C2,.", c." thereby making each of these
nodes a child of tbe root r. Another way to view tbia step is that we have
made r tbe parent of each of the roots of the trees TI, T2,... ,Tk.

Example 5.1. We can use this recursive definition to construct tbe tree in Fig.
5.1. This construction aIso verifies that the structure in Fig. 5.1 ia a tree. The nodes
RS and R6 are each trees tbemselves by the basis rule, which says that a single node
can be considered a tree. Then we can apply the inductive rule to create a new
tree witb R2 as tbe root r, and tbe tree TI, consisting oí R5 alone, and the tree T2,
consisting of R6 alone, as children oí tbis new root. Tbe nodes CI and C2 are RS and
R6, respectively, sÍDce tbese are tbe roots of tbe tft)e8 TI a.nd T2. As a result, we
can conclude tbat the structure

A
is a tree; its root is n2.

Similarly, n7 alone is a tree by tbe basis, and by the inductive rule, the structure

~
9

is a tree; its root ia R4.
Node Ra by itself is a tree. Finally, if we take the node Rl as r, and R2, R3, and

R4 as the roots of the three trees just mentioned, we create the structure in Fig.
5.1, verifying that it indeed is a tree. ..

Paths, Ancestors, and Descendants

The parent-child relationship can be extended naturally to ancestors and descen-
danta. Informally, the ancestors of a node are found by following the unique path
from the node to ita parent, to ita parent 's parent, and 80 oo. Strictly speaking,
a node is also its own ancestor. The descendant relationship is the invene of the
ancestor relationship, just as the parent and child relationships are inverses of each
other. That is, node d is a deecendant of node a ir and only if a is an ancestor of d.

More formally, suppoee mi, m2, . . ., m. is a sequence of nodes in a tree such
that mi is the parent of m2, which is the parent of m3, and 80 on, down to mk-i,
which is the parent of mk. Then mi, m2, . . . I mk is called a path from mi to mk in
the tree. The length of the path is k - 1, one leM than the number of nades on the
path. Note that a path may consist of a single node (if k = 1), in which case the
length of tbe patb ia O.
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5.2. In Fig. 5.1, n¡. n2. n6 is a path of length 2 froro the root n¡ to+ Example
the nade n6i n¡ is a path oí

If mI, m2, . . ., m/c is a patb in a tree, node mI is called an ancestor of m/c and
node m/c a descendant of mI. If tbe patb is of lengtb 1 or more, tben mI is called a
proper ancestor of m/c and m/c a proper descendant of mI. Again, remember tbat
tbe case of a patb of lengtb O is possible, in which case the patb lets us conclude
that mI is an ancestor of itself and a descendant of itself, although not a proper
ancestor or descendant. Tbe root is an ancestor of every node in a tree and every
node is a descendant of the root.

Proper ancestor
and descendant

Example 5.3. In Fig. 5.1, all seven nades are descendants of nI, and nI is an
ancestor of all nades. Also, all nades but nI itself are proper descendants of ni,
and nI is a proper ancestor of all nades in the tree but itself. The ancestors of n5
are ns, n2, and nI. The descendants of n4 are n4 and n7. +

...

Nodes that have the same parent are sometimes called siblings. For example,
in Fig. 5.1, nodes n2, n3, and n4 are siblings, and n5 and n6 are siblings.

Subtrees
In a tree T, a node n, together with all oí its proper descendants, if any, is called
a subtree of T. Node n is the root oí this subtree. Notice that a subtree satisfies
the three conditions for being a tree: it has a root, all other nodes in the subtree
have a. unique parent in the subtree, and by following parents from any node in the
subtree, we eventually reach the root of the subtree.

Sibling

+ Example 5.4. Referring again to Fig. 5.1, node ns by itself is a subtree, since
n3 has no descendants other than itself. As another example, nades n2, n&, and n6
form a subtree, with root n2, since these nades are exactly the descendants of n2.
However, the two nades n2 and n6 by themselves do not form a subtree without
node n&. Finally, the entire tree of Fig. 5.1 is a subtree of itself, with root nI. +

Leaves and Interior N odes

A leal is a node oí a tree that has no children. An interior nade is a node that
has one or more children. Thus, every node oí a tree is either a leaf or an interior
node, but not both. The root oí a tree is normally an interior node, but ií the tree
consista oí only one node, then that node is both the root and a leaf.

.. Example 5.5. In Fig. 5.1, the leaves are R5. R6, R3. ud R7. The nooes R¡, R2.
and n4 are interior. ..

Height and
In a tree, the height of a node n is the length
The height o/ the tree is the height of the root.
the length of the path from the root to n.

LeveI

leogth zero froro ni to itself. ...

Depth
of a
The

path Croro n to a leaf.
or level, of a node n is



+

+ Example 5.7. In Fig. 5.1, the nodes of the subtree rooted at n2 - that is, n2,
n5. and n. - are all to the left of the nades of the subtrees rooted at n3 and n4-

Thus. n2. n5, and n. are all to the left of n3, n4. and n7. +

.
I
...

d
s
e
e

e
6
!.
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~t

Ir

-e
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+ Example 5.8. Since no leaf can be an ancestor of another leaf, it follows that
all leaves can be ordered "Croro the left." For instance, the order of the le~ves in
Fig. 5.1 is n5, n6, n3, n7. ..

f.
is
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Example 5.6. In Fig. 5.1, node "1 has height 2, "2 has beight 1, and leaf"3
has heigbt O. In fact, aoy lea! has height o. Tbe tree in Fig. 5.1 has height 2. The
depth Of"1 is O, tbe deptb of "2 is 1, and the depth Of"5 is 2. +

Ordered Trees

Optionally, we can assign a left-to-rigbt arder to tbe children of any node. For
example, tbe arder of tbe cbildren Oí"1 in Fig. 5.1 is "2 leftm~t, then "3, tben "4.
This left-to-rigbt ordering can be extended to arder aIl the nodes in a tree. If m
and " are siblings and m is to the left of", then all of m's descendants are to tbe
left of aIl of "'8 descendants.

In a tree, take any two nodes .r and y neither of which is an ancestor of tbe
otber. As a consequence of the definition of "to tbe left," one of .r and y will be
to the left of the other. To tell which, follow the patbs from .r and y toward tbe
root. At some point, perhaps at the root, perhaps lower, the paths will meet at
some Bode z as suggested by Fig. 5.2. The paths from .r and y reach z from two
dift'erent nodes m and n, respectively; it is possible that m = .r andjor n = y, but
it must be that m # n, or else tbe paths would have converged somewhere below z.

~~

Fig. 6.2. Node z: is to the left of node 11.

Suppoee m Í8 to the left of n. Then sinre Z' is in the subtree rooted at m and
y is in the subtree rooted at n, it follow8 that Z' is to the left of y. Similarly, if m
were to the right of n, then Z' would be to the right of y.
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Labeled 'li-ees

A labeled tree is a tree in which a label or value is associated with each nad,
tree. We can think of the label as the information associated with a givel
The label can be something as simple, such as a single integer, or complex,
the text of an entire documento We can change the label of a nade, but we
change the name of a nade.

Ir the name of a nade is not important, we can represent a nade by it
However, the label does not always provide a unique name for a nade, since
nades may have the same label. Thus, many times we shall draw a nade wil
its label and its name. The following paragraphs illustrate the concept of a
tree and offer some samples.

Expression 'li-ees - An Important Class oí 'li-ees

Arithmetic expressions are representable by labeled trees, and it is often quil
fui to visualize expressions as trees. In fact, express ion trees, as they are son
called, specify the association of an expression 's operands and its operatc
uniform way, regardless of whether the association is required by the placel
parentheses in the expression or by the precedence and associativity rules
operators involved.

Let us recall the discussion of expressions in Section 2.6, especially E
2.17, where we gave a recursive definition of expressions involving the usua
metic operators. By analogy with the recursive definition of expressions,
recursively define the corresponding labeled tree. The general idea is th¡
time we form a larger expression by applying an operator to smaller exprl
we create a new nade, labeled by that operator. The new nade becomes the
the tree for the large expresion, and its children are the roots of the trees
smaller expresions.

For instance, we can define the labeled
the binary operators +, -, x, and /, and the

BASIS. A single
2.6) is an expression, and its tree is a single nade, labeled by that operando

&

trees for arithmetic expressioI
unary operator -, as follows.

an integer, or a real, as in :atomic operand (e.g'I a

0

~ ¿
(a) (El + &) (b) (-El)

Expre88ÍOl1 trees fOl" (El +~) and (-El).Fig. 5.3.
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INDUCTION. IC El and E2 are expreMiona repreaented by trees TI and T2, re-
spectively, tben tbe expreMion (El + E2) is represented by tbe tree oC Fig. 5.3(a),
wbose root is labeled +. Tbis root has two cbildren, which are tbe roots oC TI and
T2, respectively, in that order. Similarly, the expre8ions (El - E2), (El x E2),

and (EIIE2) have expr~ion trees with roots labeled -, x, and l. respectively,
and subtrees TI and T2. Finally, we mar apply tbe unary minus operator to one
expression, El. We introduce a root labeled -, and its one child is tbe root oCTI;
the tree COl (-El) is shown in Fig. 5.3(b).

Example 5.9. lo Example 2.17 we diacussed tbe recursive constructioo of a
sequence of six expressioos from the basis and inductive roles. These expressions,
listed in Fig. 2.16, were

i) . iv) (-(z + 10»)
ii) 10 17) Y

iii) (z+10) vi) (y X (-(z+10)))

Expressions (i), (ii), aod (v) are single operaods, aod 80 the basis rule tells us tbat
the trees of Fig. 5.4(a), (b), and (e), respectively, represent these expressions. Note
tbat each of these trees oonaists of a single node 10 wbich we have given a name-
nl, n2, and ns, respectively - aod a label, which is tbe operand in the circle.

0"1 @n2 ~3
~1 @n2

(b) For 10. (c) For (z + 10).(a) For z.

G)n5

"2

(f) Por (, )( (-(~ + 10))).(d) For (-(z + 10)). (e) For y.

Fig. 5.4. of exPJ'e88ion trees.

Expression (iii) is formed by applying the oper&tor + to the operandsz and
10, and 80 we see in Fig. 5.4(c) the tree for this expression, with root labeled +,
and the roots of the trees in Fig. 5.4(&) and (b) as its children. Expression (iv) is



230 THE TREE DATA MODEL

Cormed by applying unary - to expre88Íon (iii), 80 that the tree rOl (-(z + 10»),
shown in Fig. 5.4(d), has root labeled - above the tree rOl (z + 10). Finally, the

tree rOl the expression (y x (-(z + 10»)), shown in Fig. 5.4(C), has a root labeled

x, whose children are the roots oCthe trees ofFig. 5.4(e) and (d), in that order. ...

EXERCISES

5.2.1: In Fig. 5.5 Vfe see a tree.
phrases:

a) The root of the tree
b) The leaves of the tree
c) The interior nodes of the tree
d) The siblings of node 6
e) The subtree with root 5
f) The ancestors of node 10
g) The descendants of node 10
h) The nodes to the left oí node 10
i) The nodes to the right oí node 10
j) The longest path in the tree
k) The height oí node 3
1) The depth of node 13
m) The height of the tree

5.2.2: Can a leaf in a tree ever have any (a) descendants? (b) proper descendants?

5.2.3: Prove that in a tree no leaf can be an ancestor oí another leaf.

Fig. 5.5. Thee for Exercise 5.2.1.

Tell what is deacribed by each of the following



5.2.5: Suppose we bave a grapb consisting of four nades, r, a, 6, and c. Nade r is
an isolated nade and has no edges connecting it. Tbe remaining tbree nades forro
a cycle; tbat is, we bave an edge connecting a and 6, an edge connecting 6 and c,
and an edge connecting c and a. Wby is tbis grapb no~ a ~ree?

5.2.6: In many kinds of trees, tbere is a significant distinction between tbe interior
nades a.nd the leaves (or ratber tbe Ia.bels of these two kinds of nades). For example,
in an expreMion tree, tbe interior nades repreaent operators, and tbe leaves repreaent
atomic operands. Give tbe distinction between interior nades and leaves for each of
the íollowing kinds of trees:

a) Trees representing directory structures, as in Section 1.3
b) Trees representing the splitting and merging of lists for merge sort, as in Section

2.8
c) Trees representing the structure of a function, as in Section 3.7

5.2.7: Give expreMion trees for the following expressions. Note tbat, as is cus-
tomary with expressions, we bave omitted redundan~ parentbeses. You must first
restore ~be proper pairs of parentbeses, using tbe customary rules for precedence
and associativity oí operators.

a) (z + 1) x (z - y + 4)
b) 1 + 2+3+4 + 5+6
c) 9 x 8 + 7 x 6 + 5

5.2.8: Show that if z and y are two distinct nades in an ordered tree, then exactly
one of tbe following conditions must hold:

a) z is a proper ancestor oí y
b) z is a proper descendant of y
c) z is to tbe left of y
d) z is to tbe rigbt oí y

++++ 5.3 Data Structures for Trees
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5.2.4*: Prove that the two definitions of trees in tbis eection are equivalent. Hint:
To show that a tree according the nonrecursive definition is a tree according the
recursive definition, use induction on the number of nades in the tree. In the
opposite direction, use induction on the number of rounds used in the recursive
definition.

Many data structures can be used to represent trees. Which one we should use
depends on the particular operations we want to perform. As a simple example, if
all we ever want to do is to locate the parenta of nodes, then we can represent each
Bode by a structure consisting of a label plus a pointer to the structure representing
the parent of that node.

As a general rule, the nodes of a tree can be represented by structures in which
the fields link the nodes together in a manner similar to the way in which the nodes
are connected in the abetrad tree; the tree itaelf can be represented by a pointer to
the root's structure. Thus, when we talk about representing trees, we are primarily
interested in how the nodes are represented.
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One distinction in representations concerns where the structures for the nod
"live" in the memory of the computer. In C, we can create the space for stru
tures for nades by using the function malloc from the standard library stdlib.
in which case nades "float" in memory and are accessible only through pointer
Alternatively, we can create an array of structures and use elements of the array 1

~

In C this data structure can be represented by the type declaration

typedef struct NODE *pNODE;

struct NODE {

int info;

pNODE children[BF];
};

Here, the field info represents the information that constitutes the label of a no;
and BF is the constant defined to be the branching factor. We shall see maJ
variants of this declaration throughout this chapter.

In this and most other data structures for trees, we represent a tree by a point
to the root node. Thus, pNODE algo serves as the type of a tree. We could, in fa<
use the type TREE in place of pNODE, and we shall adopt that convention when ,
talk about binary trees starting in Section 5.6. However, for the moment, we sh~
use the llame pNODE for the type "pointer to node," since in some data structure
pointers to nodes are used for other purposes besides representing trees.

The array-of-pointers representation allows us to access the ith child of al
node in 0(1) time. This representation, however, is very wasteful of space WhE
only a few nodes in the tree have many children. In this case, most of the pointe
in the arravR will h~ NtJLI~

Po I Pl 1 I . . . I 1
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Trie

As another example, Suppoee we want to determine whether hia is in the seto
We follow the path from the root to n2 to ni, which represents the prefix hi; but
at n5 we find no child corresponding to the letter a. We conclude that hia is not
in the seto Finally, if we search for the word her, we find our way from the root to
nade n7. That nade exists but does not have a l. We therefore conclude that her
is not in the set, althoUgh it is a proper prefix of a word, her8, in the seto
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Try to Remember Trie

Tbe term "trie" comes from tbe middle oí tbe word "retrieval." It was originaUy
intended to be pronounced "tree." Fortunately, common parlance has 8witcbed to
the distinguishing pronunciation "try."

Example 5.10. A tree can be used to represent a collection of words in a way
that makes it quite efficient to check whether a given sequence of characters is a
val id word. In this type of tree, called a tne, each node except the root has an
associated letter. The string of characters rep~nted by a node n is the sequence
of letters along the path from the root to n. Given a set of words, the trie consists
of nodes for exactly th~ strings of characters that are prefixes of some word in
the seto The label of a node consists of the letter represented by the node and
also a Boolean telling whether or not the string from the root to that node forros a
complete word; we shall use for the Boolean the integer 1 if so and O if not.)

For instance, suppose our "dictionary" consists ofthe tour words he, her8, bis,
she. A trie for these words is shown in Fig. 5.7. To determine whether the word he
is in the Et, we start at tbe root "1, move to the child "2 labeled h, and then from
that nade move to its child "4 labeled e. Since these nodes all exist in the tree, and
n4 has 1 as part of its label, we conclude that he is in the seto

and .he.Fig.5.1. Trie for worda be, bers, bis,

I In the previous IeCtion we acted u i( the label - a sinlle vaJue. However, vaJues can be
o( any type, and labels can be structUre8 consistins o( two or more fielda. In this case, the
label hu one field that is a let&« and a aecond tha& ia an inteser that ia either O or 1.
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Nades in a trie bave a branching factor equal to tbe number of dift'erent char-
acters in tbe alpbabet froro wbich the words are fonned. For example, if we do not
distinguish between upper- and lower-caee, and words contain no special characters
such 88 apostropbes, tben we can take the branching factor to be 26. The type of
a nade, including the two label fields, can be define<! 88 in Fig. 5.8. In the array
children, we assume that the letter a is repreaented by index O, the letter b by
index 1, and 80 on.

typedef .truct .ODE .pNODE;

struct NODE {

char letter;
int isVord;
pNODE children(BF];

};

The abstract trie oí Fig. 5.7 can be represented by the data structure oí Fig.
5.9. We represent nades by showing the first two fielde, letter and isVord, along
with th~ elements oí the array children that have non-1ULL pointers. In the
children array, íor each non-RULL element, the letter indexing the array isehown
in the entry above the pointer to the child, but that letter is not actually present
in the structure. Note that the letter field oí the root is irrelevant. +

Fig. 5.8. Defuút.ion af an alphabet.ic t.rie.

Data structure for the trie of VIg. 5.7.Fig. 5.9.
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Leftmost-Child-Right-Sibling Representation of Trees

Using arrays of pointers for nades is not neceaarily space-efficient, because in typical
cases, the great majority of pointers will be NULL. That is certainly the case in Fig.
5.9, where no nade has more than two non-NULL pointers. In fact, if we think about
it, we see that the number of pointers in any trie based on a 26-letter alphabet will
have 26 times as many spaces for pointers as there are nades. Since no nade can
have two parents and the root has no parent at all, it follows that among N nades
there are only N - 1 non-NULL pointers; that is, less than one out of 26 pointers is

useful.
One way to overcome the space inefficiency of the array-of-pointers repreaen-

tation of a tree is to use linked lists to represent the children of nades. The space
occupied by a linked list for a node is proportional to the number of children of that
node. There is, however, a time penalty with this representation; acceaing the ith
child takes O( i) time, becauae we must travene a list of length i - 1 to get to the

ith nade. In comparison, we can get to the ith child in O( 1) time, independent of
i, using an array of pointers to the children.

In the representation of trees called leftmost-child-right-sibling, we put into
each nade a pointer only to its leftmost child; a nade does not have pointers to any
of its other children. To find the second and subeequent children of a nade n, we
create a linked list of those children, with each child c pointing to the child of n
immediately to the right of c. That nade is called the right sibling of c.

Example 5.11. In Fig. 5.1, n3 is the right sibling o( n2. n4 is the right sibling
o( n3. and n4 has no right sibling. We would find the children o( nI by following
its leftmost-child pointer to n2, then the right-sibling pointer to n3. and then the
right-sibling pointer o( ns to n4. There. we would find a IULL right-sibling pointer
and know that nI has no more children.

Figure 5.10 contains a sketch.of the le(tm~t-child-right-sibling representation
for the tree in Fig. 5.1. The downward arrOW8 are the leftm~t-child lino; the
sideways arrows are the right-sibling links. +

~

Leftmost-dilld-right-sibling representation for tbe tree in Fig. 5.1.Fig. 5.10.

representation of a tree, nades can be definedIn a l~
as follows:
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typedef 8truct NUDE .pNODE;
atruct IODE {

int info;

plODE leftao8tChild. rightSibling;
};

The field info holds the label 888OCiated with the nade and it can have any
type. The fields leftao8tChild and rightSibling point to the leftm~t child
and rigbt sibling of the nade in question. Note that while leftao8tChild gives
information about the nade itself, the field rightSibling at a nade is really part
of tbe linked list of children of that nade's parent.

Example 5.12. Let us represent the trie ofFig. 5.7 in the leftmost-child-right-
sibling formo First, the type of nades is

typedet 8truct NODE .pNODE;
.~ruct IODE {

char letter;
int isVord;
pBODE lettao8tChild, righ~Sibling;

};

The first two fields represent information, according to the scheme described in
Example 5.10. The trie of Fig. 5.7 is represented by tbe dat.& structure shown
in Fig. 5.11. Notice that each leaf has a IULL leftmost-child pointer, and each
rigbtmost child has a 8ULL rigbt-sibling pointer.

...

Fig. $.11. Cor tbe trie oí Fig. 5.7.
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As an example of bow one ~ the leftmO8t-child-rigbt-sibling rep~tation,
we see in Fig. 5.12 a function 8eek(let. n) tbat takes a letter let and a pointer
to a Bode n as arguments. It returns a pointer to tbe child of n tbat has let in its
letter field, and it returns NULL if there is no such nade. In tbe while loop of Fig.
5.12, each child of n is examined in turno We reach line (6) if either let is found or
we have examined all tbe children and thus have fallen out of tbe loop. In either
CaBe, c holds the correct value, a pointer to the child holding let if there is one, and
NULL if noto

Notice tbat 8eek takes time proportional to the number of children that must
be examined until we find the child we are looking for, and if we never find it, then
tbe time is proportional to the number of children of nade n. In comparison, using
the array-of-pointers representation of trees, 8eu could simply return the value of
the array element rOl letter let, taking 0(1) time. +

pRDDE .eek(char let. p80DE n)
{

(1) c = n->leftao8tChild;
(2) vhile (c != NULL)
(3) if (c->letter = let)

(4) break;

(1)

~~
(4)

.1..
(5)
(6)

= c->rightSibling;c
return c;

}

Fig. 5.12. Finding the child for a desired letter.

Parent Pointers

Sometimes, it is useful to include in the structure for each node a pointer to the
parent. The root has a NULL parent pointer. For example, tbe structure of Example
5.12 could become

typdef struct BODE .pBODE;

atruct NaDE {
char letter;

int iaVord;

pNODE left8ostChild, rightSibling,
, parent;

With this structure, it becomes possible to determine what word a given node
represents. We repeatedly follow parent pointers until we come to the root, which
we can identify because it alone has the value of parent equal to IULL. The letter
fields encountered along the way spell the word, backward.

EXERCISES

5.3.1:
sibling.

For each node in the tree oí Fig. 5.5, indicate the leftmoet child and rigbt
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Comparison of Tree Representations
We summarize tbe relative merits of tbe array-of-pointers (trie) a.nd tbe leftm~t-
child-rigbt-sibling representations for trees:

+ Tbe array-of-pointers representation oft"ers faster ~ to children, requiring
0(1) time to reach any child, no matter how many children there are.

+ Tbe leftm~t-cbild-rigbt-sibling representation uses le88 space. For instance,
in our running example of the trie of Fig. 5.7, each node cont&Íns 26 pointers
in the arfar representation and two pointers in the leftmost-child-right-sibling
representation.

+ The leftm~t-child-right-sibling representation does not require that there be
a limit on the branching factor of podes. We can represent trees with any
branching factor, without changing the data structure. However, if we U8e the
array-of-pointers representation, once we choose the size ofthe array, we cannot
rep~nt a tree with a larger b~ing factor.

5.3.2: FLepresent the tree of Fig. 5.5

a) As a trie with brandúng factor 3
b) By leftmost-child and right-sibling pointers

How many bytes of memory are required byeach representation?

5.3.3: Consider the following set of singular pe~nal pronouns in English: 1, my,
mine, me, you, your, yours, he, bis, him, she, her, hers. Augment the trie of Fig.
5.7 to include all thirteen of these words.

5.3.4: Suppose that a complete dictionary of En'glish contains 2,000,000 words and
that the number of prefix~ of W'OI'd8 - that ÍB, strings ofletters that can be extended
at the end by zero or more additionalletters to form a word - is 10,000,000.

a) How many nod~ would a trie for thi8 dictionary have?

b) Suppose that we use the structure in Example 5.10 to represent nades. Let
pointers require four byteB, and 8UPpose that the information fields letter
and i.Vord. each take one byte. How many bytes would the trie require?

c) Of the space calculated in part (b), how much Í8 taken up by RULL pointers?

5.3.5: Suppose we represent the diction&ry described in Exercise 5.3.4 by u8ing the
structure of Example 5.12 (a leftmost-cbild-right-sibling representation). Under
the same 888umption8 about space required by pointers and information field8 as in
Exercise 5.3.4(b), how much &pace does the tree for the diction&ry require? What
portion of that space is RULL pointers?

5.3.6: In a tree, a nade c is the lowest common ance.tor of nodes z and !I if c Í8 an
ancestor of both z and 1/, and no proper descendant of c is an ancestor of z and 1/.
Write a program that will find the lowest common ancestor of any pair of nod~ in
a given tree. What is a good data structure for trees in 8uch a program?

Lowest common
ancestor
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The u8eful~ of trees is highlighted by the number of recursive operation8 on trees
that can be written naturally and cleanly. Figure 5.13 suggests the general rorro of a
recursive function F(n) that takes a nade n of a tree as argumento F first performs
IOme stepe (perhape Done), which we repre8ent by action Aa. Then F calls itself
on the first child, CI, of n. During this recursive call, F will "explore" tbe subtree
rooted at CI1 doing whatever it is F does to a tree. When that call returns to the
call at nade n, IOrne other actioo - say Al - is performed. Then F is called 00
the second child of n, resulting in exploratioo of the secood subtree, and lO 00, with
actioos at n alternatiog with calls to F 00 the childreo of n.

.
.-:::;::;;.7 ~--, e, ... e.

~"_i..,~_.,,¡:. T"\. ,¡, ..J..." "~m:
~~ L" . ~,~

,!: c
(a) General form of a t.rft.

F(n)
{

actioD Ao;

F(Cl);
actioD Al;

F(C2);
ac~ioD A2¡

F(c.);
action A/c;

}

(b) General form of ~ve functioo F(n) 00 a trft.

Fig. 5.13. A recunive function on a trft.

Example 5.13. A simple recursion on a tree produces what is known as the
preoroer li8ting oí the node labels oí the tree. Here, action Aa prints the label of the
node, and the other actions do nothing other than some "bookkeeping" operations
that enable us to visit each child of a given Bode. The eft'ect is to print the labels
as we would first meet them ir we started at the root and circumnavigated the
tree, visiting all the nodes in a counterclockwise tour. Note that we print the
label of a node only the first time we visit that Rodeo The circumnavigation is
suggested by the aITOW in Fig. 5.14, and the order in which the nodes are visited is
+0+. -b-c- .d.+. The preorder listing is the sequence ofnode labels +o.-bcd.

Let us suppose that we use a leftmost-child-right-sibling representation of nodes
in an expre8ion tree, with labels consisting oí a single character. The label of an
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interior nade is the arithmetic operator at that nade,
a letter standing for an operando
follows:

typedef .truct RODE .pRODE;
struct RODE {

char nodeLabel;

pRODE left8o8tChild. rightSibling;,
};

Tbe fundían preorder ís sbown in Fig. 5.15. In the explanatíon that folloW8, it is
convenient to tbink of pointers to nades as if they were the nades tbemselvea.

(1)
(2)
(3)
(4)
(5)

Action .. Ao" consists of the following parta of the program in Fig. 5.15:

Printing tbe label of nade n, at line (1),

Initializing c to be the leftm~t child of n, at line (2), ud

Performing tbe fint test for c != ROLL, at line (3).

l.
2.
3.

Fig. 5.14. An exp~ion tree and its circumnavigation.

aod tbe label of a leaf is
Nodes and pointers to nodes can be defined as

.oid preorder(pRODE n)
{

pNODE c; /. a child of node n ./

printf("Xc\n". n->nodeLabel);
c = n->leftaoatChild;

.hile (c ! = RULL) {

preorder(c);
c = c->rightSibling;

}
}

~
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Line (2) initializes a loop in which c becom~ each chi!d of n, in turno Note that if
n is a leal, then c is aMigned the value RULL at line (2).

We go around the while-loop of lin~ (3) to (S) until we ron out of children
of n. For each child, we call the fundion preorder recursively on that child, at
line (4), and then advance to the next child, at line (S). Each of the actions Aj,
for i ~ 1, consists of line (S), which mov~ c through the children of n, and the
test at line (3) to see whether we have exhausted the children. Theae actions are
for bookkeeping only; in comparison, line (1) in action Aa do~ the significant step,
printing t.he label.

The sequence of events for calling preorder on the root of the tree in Fig. S.14
is summarized in Fig. S.16. The character at the left of each line is the label of the
node n at which the call of preorder(n) is currently being executed. Because no
two nod~ have the same label, it is convenient here to use the label of a node as
its name. Notice t.hat t.he characters printed are +0 * -bcd, in that order, which is
the same as the order of circumnavigation. +

call preorder( +)
(+) print +
(+) call preorder(o)
(4) print o
(+) call preorder(.)
(*) print *
( * ) cal! preorder( - )
(-) print -
(-) call preorder(b)
(.) print 6

(-) cal! preorder(c)
(e) print c
(*) call preorder(d) .

(d) print d

Fig. 5.16. Action of recunive fWlction preorder on tree of Fig. 5.14.

+ Example 5.14. Another common way to order the nod~ of the tree, called
Postorder IX>storder, corresponds to circurnnavigat.ing the tree as in Fig. S.14 but listing a

Bode the last time it is visited, rather than the first. For instance, in Fig. S.14, the
postorder listing is ahc - d * +.

To produce a postorder listing of the nod~, the last action does the printing,
and 80 a node's label is printed alter the postorder listing fundion is called on all
of its children, in order from the left. The ot.her actions initialize the loop through
t.he children or move to t.he next child. Note that if a node is a leaf, all we do is list
the label; t.here are no recursive calls.

If we use the repreaentation of Example S.13 for nod~, we can create poetorder
listings by the recursive funct.ion postorder of Fig. S.17. The action of this funct.ion
when called on the root of the tree in Fig. S.14 is shown in Fig. S.18. The same
convention regarding Bode nam~ is used here as in Fig. S.16. +
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void poat
{

pRODE c; /* a child of Dode D */

c = n->leftaostChild;

.hile (c != RULL) {
(1)
(2)
(3)
(4)

(5)

po8torder(c);
c = c->rightSibling;

}
priDtf("~c\nH. n->nodeLabel);

}

callpo8torder(+)
cal} po8torder(a)(+)

(o)
(+)
(.)
(-)
(6)

(-)
(c)

(-)
(.)
(d)
(.)
(+)

print a
callpo8torder(.)

cal1 poatorder( - )
cal) poa~ord.r(6)

print 6
cal) poatorder(c)

print c
print -

cal) poa~ord.r(d)
print d

print *
print +

Fig. 5.18.

+ Example 5.15. Our next example requif5 U8 to perform significant actions
among all oí the recursive calla on subtrees. Suppoee we are given an expression
tree with iotegers as operands, and with binary operators, and we wish to produce
the oumerical value oí the expressioo rep~oted by the t~. We can do ~ by
executing tbe íollowing recursive algoritbm on the expre8ion tree.

BASIS. For a lea! we produce the integer value of the node as the value of the tree.

INDUCTlON. Suppoee we wish to compute the value of the expre8ion formed by
the subtree rooted at some node n. We evaluate the subexpre8ions íor the two
subtrees rooted at the children oí ni these are the values of the operands for the
operator at n. We then apply the operator labeling n to the values of these two
subtrees, and we have the value oí the entire subtree rooted at n.

EvaIuating sn
expression tree

We define a pointer to a

(pIODE n)

Recursive poetorder function.Fig.5.17.

Action of ~ve function poatorder on tree of Fil. 5.1..

&lid a node as follows:
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Preftx and Postftx Expressions
When we list t,he labels of an exp~ion t,ree in preorder, we get, t,he prefiz u-
pression equivalent to the given expression. Similarly, the list oí the labels of an
expression tree in postorder yields tbe equivalent lX>,tfiz ezpre,lÍon. Exp~ions in
the ordinary notation, where binary operators appear between their operands, are
called infiz expreuion,. For instance, the expreMion tree oí Fig. 5.14 has the infix
expression 0+ (6 - c) . d. As we saw in Examples 5.13 and 5.14, the equivalent
prefix expression is +0. -bcd, and tbe equivalent postfix exp~ion is obc - d. +-

An interesting fact about prefix and postfix notations is that, as long as each
operator has a unique number of arguments (e.g., we cannot, use tbe same symbol
for binary and unary minus), then no parentheses are ever needed, yet we can still
unambiguously group operators with their operands.

We can construct an infix expression from a prefix expreMion as follows. In
the prefix expression, we find an operator that is íollowed by tbe required number
of operands, with no embedded operators. In the prefix expression +0. -bcd, for
example, the subexpression -6c is such a string, since the minus sigo, like all oper-
atora in our running example, takes two operands. We replace tbis subexpression
by a new symbol, say z = -6c, and repeat the process of identifying an operator
followed by its operands. In our example, we now work wit,h +0 . zd. At tbis point
we identify tbe subexpression y = *zd and reduce tbe remaining string to +ay.
Now the remaining string is just an instance of an operator and its operands, and
so we convert it to the infix expression o + y.

We mar now r~nstruct tbe remainder of t,he infix expreMion by retracing
these steps. We observe that the subexpressioD y = .zd in infix is z * d, and so we
mar substitute rOl y in o + y to get a + (z . d). Note tbat in general, parenth~
are needed in infix expreSBions, although in tbis case, we can omit them because
of the convention that . takes precedence over + when grouping operands. Tben
we substitute rOl z = -bc the infi~ expression 6 - c, and so our final expression is
a + ((6 - c). d), whicb is the same as that represented by tbe tree oí Fig. 5.14.

For a postfix expression, we can use a similar algorithm. Tbe only difference is
that we look rOl an operator preceded by the requisite number of operands in arder
to d~mpoee a postfix exp~ion.

tJpedet atruct .DOE .p.ODE;

struct BODE {
char op;
int value;
pRDDE lettaoatChild. rightSibling;

};

Tbe field op will hold either the character for an arithmetic operator, or t,he char-
acter i, which stands for "integer" and identifies a node as a leaf. lf tbe Dode is a
leal, then the value field balda the integer represented; Talue is not used at interior

nodes.
This notation allows operators witb any number of arguments, altbough we

sball write code on tbe simplifying aMUmption tbat ala operators are binary. The

code appears in Fig. 5.19.
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int eval(pRODE n)

{
int Yall, Yal2; l. yalu.s of first and s.cond subtr..s .1

if (n->op) == 'í') l. n poiDts to a leaf .1

return n->value;

.ls. {l. n points to an interior Bode .1
Yall = eval(n->left80stChíld);

val2 = eyal(n->lettaostChild->rightSibling);

s.itch (n->op) {
cas. ,+': r.turD vall + val2;
case ,_': return Yal! - val2;

case '. ': return vall . val2;

cas. '/': return val! I val2;

}

(1)
(2)

(3)
(4)
(5)
(6)
(7)
(8)
(9)

}
}

If the node n is a leaf, then the test of line (1) succeeds and we retum the
integer label of t,hat leaf at line (2). If the node is not a leaf, then we evaluate its
left operand at line (3) and its right operand at line (4), storing the results in .&11
and va12, respectively. Note in connection with line (4) that the 8«:Ond child of a
node n is the right sibling of the leftmost child of the Bode n. Lines (5) through (9)
forro a switch statement, in whidl we decide what the operator at n is and apply
the appropriate operation to the values of the left and right operands.

For inatance, consider the expression tree oí Fig. 5.20. We see in Fig. 5.21
the sequence of calls and retorna that are made at each Bode during the eva.luation
of this expression. As before, we have taken advantage oí the fact that JabeJa are
uBique and have named nades by their Jabels. +

+ Example 5.16. Sometimes we need to

an aritbmetic expre88ion.Fig. 5.19.

Fig.5.20. An expression tree with integer operU1d8.

of each nade in adetermine tbe beigbt
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cal) ..&1(+)
call ..&1(5)

return 5
call..&1(.)

can e.&1( -)
call ..&1(10)

return 10
call ..al(3)

retum 3

(+)

(5)

(+)

(.)

(-)

(.18)

(-)

(3)

(-)

(.)

(2)

(.)

(+)

retum 7
call ..&1(2)

retum 2
retum 14

return 19

Fig. 5.21. Actioos of function eyal at each Bode on tree of Fig. 5.20.

tree. The height oí a node can be defined recursively by the íollowing íunction:

BASIS. The heigbt oí a lea! is O.

INDUCTION. The height oí an interior nade is 1 greater than the largest oí tbe

heights of its children.

We can translate this definition into a recursive
of each node into a field height:

BASIS. At a leaf, set the heigbt to O.

that computes the heightprogram

INDUCTlON. At an interior nade, recursively compute the heights of the children,
result joto the height field.find the maximum, add 1, and atore tbe

We 888Ume that nodes are structures ofThis program is shown in Fig. 5.22.
the forro

tJP8d8f 8truCt RonE *paODE;
atruct NaDE {

J.DlO neJ.gDlO¡

pRDDE leftaoatChild. rightSibling;

};

Tbe function coaputeHt takes a pointer to a node as argument &ud computes tbe
heigbt of tbat node in tbe field height. If we call tbis function on the root of a
tree, it will compute the heights of all the nod5 of tbat tree.

At line (1) we initialize the heigbt of n to O. If n is a leaf, we are done, becaU8e
tbe test of line (3) will faíl immediately, &ud 80 the beight of any leaf is computed
f.o be O. Line (2) seta c to be (a pointer to) tbe leftmost child of n. As we go &l:ound
the loop of liDes (3) through (7), c becomes each child of n in turno We recursively
compute the height of c at line (4). As we proceed, the value in n->height will
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"

Still More Defeosive Programming

Several aspects ofthe program in Fig. 5.19 exhibit acarel~ programmingstyle that
we would avoid were it not our aim to illustrate some points conci8ely. Specifically,
we are following pointera without checking first whether they are NULL. Thus, in
line (1), n could be NULL. We really should begin the program by saying

it (n !=.uLL) /* then do line. (1) to (9) */

el.e /* print an error .es.age */

Even if n is not .uLL, in line (3) we might find that its 1.ttao8tChild field is
.uLL, and so we should check whether n->lettao.tChild is.uLL, and ifso, print
an error message and not call eval. Similarly, even if the leftmost child of n exists,
tbat nade might not bave a right sibling, and 80 before line (4) we need to check
that

n->leftao8tChild->rightSibling != IULL

It is alBO tempting to rely on the 888umption that the information contained
in the nades of the tree is correcto For example, if a nade i8 an interior nade, it
is labeled by a binary operator, and we have 888umed it hu two children and the
pointers followed in liDes (3) and (4) cannot possibly be NULL. However, it mar be
possible that the operator l&bel is incorrecto To handle this situation properly, we
should add a default case to the switch statement to detect unanticipated operator
l&bels.

As a general rule, relying on the assumption that inputs to programs will always
be correct is simplistic at best; in reality, "whatever can go wrong, will go wrong."
A program, if it is used more tban once, is bound to see data that is not of tbe
form the programmer envisioned. One cannot be too careful in practice - blindly
following NULL pointers or assuming that input data is always correct are common
programming errara.

(1)
(2)
(3)
(4)
(5)
(6)
(7)

Fig. 5.22. Procedure Lo compute the height oí all tbe nodes of a t~.

be 1 greater than the beight of tbe highest child ~D 80 fal'. but O if we have Dot

yoid coaputeHt(pNODE n)
{

pNODE c;

n->height = o;

c = n->leftmo8tChild;

.hile (c != RUu.) {

coaputeHt(c);
if (c->height >= n->height)

n->height.1+c->height;
c = c->rightSibling;

)
}
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seen any children. Tbus, liDes (5) and (6) allow us to increase tbe beigbt of n if we
find a new child that is bigher than any previous child. Also, for the first child, the
test of line (5) will surely be satisfied, and we set n->height to 1 more tban the
heigbt of the first child. When we fall out oí tbe loop because we have seen all tbe
children, n->heigh~ has been set to 1 more than the maximum height of any of n's
children. +

EXERCISES

5.4.1: Write a recursive program to count the number oí nades in a tree that is
represented by left.m~t-child and right-sibling pointers.

5.4.2: Write a recursive program to find the maximum label of the nades of a tree.
Assume that the tree has integer labels, and that it is represented by leftm~t-child
and right-sibling pointers.

5.4.3: Modify the program in Fig. 5.19 to handle trees containing unary minus
nades.

5.4.4.: Write a recursive program that computes for a tree, represented by leftm~t-
child and rigbt-sibling pointers, the number of left-right pairs, tbat is, pairs of nades
n and m such tbat n is to the left of nade m. For example, in Fig. 5.20, nade 5 is to
the left. of tbe nades labeled *, -, 10,3, and 2; Bode 10 is to tbe left of nades 3 and
2; and nade - is to the left of nade 2. Tbus, tbe answer for tbis tree is eight pairs.
Hint: Let your recursive function return two pieces of information when ca.lled on
a nade n: tbe number of left-right pairs in the 8ubtree rooted at n, and alBO the
number of nodes in the 8ubtree rooted at n.

5.4.5: List the nades of tbe tree in Fig. 5.5 (see tbe Exerciaes for Section 5.2) in
(a) preorder and (b) postorder.

5.4.6: For each of the exp~ion8 .

i) (z + y) * (z + z)
ii) (% - ,) . z + (, - VI» . %

iii) ((((O. z + b) . z + c) . z + d) . z + e) . z + I

do the following:

a) Construct the expre88ioD tree.
b) Find tbe equivalent prefix expreesion.
c) Find tbe equivalent postfix expression.

5.4.7: Convert the expression ab + c. de - / f+ írom postfix to (a) infix and (b)

preftx.

5.4.8: Write a íunction that "circumnavigates" a tree, printing the name oí a nade
each time it is pa88ed.

5.4.9: Wbat are tbe actioos Ao, Al, and 80 fonb, for the postorder function in Fig.
5.17? ("Act.ions" are as iodicated in Fig. 5.13.)
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... 5.5 Structural Induction.
In Cbapters 2 and 3 we saw a number of inductive proofs of propertis of integers.
We would aMume tbat some statement is true about n, or about all integers leas
than or equal to n, and uae tbis inductive bypotbesis to prove tbe same statement
is true about n + 1. A similar but not identical form of proof, called "structural
induction," is useful for proving properties about trees. Structural induction is
analogous to recursive algoritbms on trees, and tbis form of induction is generally
the easiest to use when we wisb to prove sometbing about trees.

Suppose we want to prove tbat a statement S(T) is true for all trees T. For
a basis, we sbow tbat S(T) is true wben T consista of a single nade. For tbe
induction, we suppoee tbat T is a tree witb root r and children Cl, C2,' . . ,C., for
somek?; 1. LetTl,T2,...,T. betbesubtreesofTwb~rootsarecl,c2,...,C.,
respectively, as suggested by Fig. 5.23. Tben tbe inductive step is to ~ume tbat
S(T1), S(T2), ..., S(T.) are all true and prove S(T). If we do so, tben we can
conclude tbat S(T) is true for all trees T. Tbis forro of argument is called strocturol
induction. Notice that a structural induction does not make reference to the exact
number of nod~ in a tree, except to distinguisb tbe basis (one nade) from the
inductive step (more than one nade).

.
~~~-;? ,~ Cl C2 ..,: .' C.

L~!!~:::~ ~~~~~~~ L~!:~~

it (n->op) == 'i') /* n point8 to a leal */
return n->value;

elae {/* n point8 to 8D interior node */
va11 = eval(n->lettaoatChild);
val2 = eval(n->lett80atCbild->rightSibliDg);

switch (n->op) {
caae '+': return val1 + val2;
case '-': return val1 - val2;

case '*': return va11 * val2;
case' / ': re~urn val1 / val2;

(1)
(2)

(3)
(4)
(5)
(6)
(7)
(8)
(g)

)

Fig.5.24.

A tree and its subt.rees.Fig.5.23.

}

The body of the function eyal(n) from Fig. 5.19.



Example 5.17. A structural induction is generally needed to prove the cor-
rectness oí a recursive program that acta on trees. As an example, let U8 reconsider
the function eval oí Fig. 5.19, the body oí which we reproduce as Fig. 5.24. This
íunction is applied to a tree T by being given a pointer to the root oí T as the value
oí ita argument n. It then computes the value oí the expre.ion repreaented by T.
We shall prove by structural induction the following statement:

STATEMENT S(T): The value returned by eval when called on the root oí T
equals the value of the arithmetic expression represented by T.

Example 5.17.+

BASIS. For the basis, T consists of a single node. That is, the argument n is a
(pointer to a) lea!. Since the op field has the value . i' when the node represents

an operand, the test of line (1) in Fig. 5.24 succeeds, and the value oí that operand
is returned at line (2).

INDUCTION. Suppoee the nade n is not a (pointer to a) lea!. Tbe inductive
hypothesis is that S(T) is true for each tree T rooted at one of the children of n.
We must use this reasoning to prove S(T) for tbe tree T rooted at n.

Since our operators are assumed to be binuy, n has two subtrees. By the
inductive hypothesis, the values of vall and val2 computed at liDes (3) and (4)
respectively, are the values ofthe left and right 8ubtrees. Figure 5.25 suggests theae
two subtrees; vall holds the value of Ti and v.12 holds the value of T2.

Fig. 5.25. The can eval(n) returns the sum of the values of TI and T2.

If we examine the switch statement oí lin~ (5) through (9), we see that what-
ever operator appears at the root n is applied to t,he t,wo valu~ vall and val2. For
example, if the root, holds +, as in Fig. 5.25, t,hen at line (5) t,he value returned is
vall + val2, as it, should be for an expression t,hat is the sum of the expressions of
t~ Tl and T2. We have now completed the inductive st.ep.

We conclude that S(T) holds for all expre88ion t~ T, &ud, therefore, the
function 8..a! correctly evaluat.es trees that represent expressions. +

Example 5.18. Now let us consider the function cO8puteHt of Fig. 5.22, the
body ofwhich we reproduce as Fig. 5.26. This function takes as argument a (pointer
to a) nade n and computes the height of n. We shall prove the following statement
by structural induction:

+
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Fig.5.25.

(9), we &ee that what-

sion tbat is tbe suro oí tbe expressions oí
the inductive step.

°"
1.'

I
I ¡

~
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(1)
(2)
(3)
(4)
(5)
(6)
(7)

Fig. S.26.

STATEMENT S(T): When coaputeRt. Í8 called 00 a pointer to the root of tree
T, the correct beight of each nade in T is stored in tbe height field of tbat
nade.

BASIS. If the tree T is & single node n, then at line (2) of Fig. 5.26, c will be given
the value NULL, since n has no children. Thus, the test of line (3) fails immediately,
ud the body of the while-loop is never executed. Since line (1) seta n->height to
O, which is the correct value for a leaf, we conclude that S(T) holda when T has a
single node.

INDUCTION. Now Suppoee n is the root oí a tree T tbat is not a single nade. Tben
n has at least one child. We may assume by the inductive hypothesis that when
coaputeHt(c) is called at line (4), the corred height is installed in the height field
oí each nade in the subtree rooted at c, including c itself. We need to show that
the while-loop oí liDes (3) through (7) correctly eets n->height to 1 more than
the maximum oí the heights oí the children oí n. To do BO, we need to perform
another induction, which is nested "inside" the stru~ural induction, just as one loop
might be nested within another loop in a programo This induction is an "ordinary"
induction, not a structural induction, and its statement is

STATEMENT S'(i): After the loop of liDes (3) Lo (7) has been executed i times,
the value of n->height is 1 more than the largest of the heights of the first
i children of n.

BASIS. The basis is i = l. Since n->height is set to O outside the loop - at line
(1) - and 8urely no height can be l~ than O, the test of line (5) will be satisfied.
Line (6) eets n->height to 1 more than the height of its first child.

INDUCTION. A88ume tbat 5'(i) is true. Tbat is, alter i iterations of tbe loop,
n->height is 1 larger than tbe largest height among the first i cbildren. If tbere is
ao (i + 1 )st child, tben tbe test of line (3) will succeed and we execu te the body an
(i+ l)st time. The test ofline (5) compares the new heigbt with tbe largest oftbe
previous beigbts. If tbe new heigbt, c->height, is less tban 1 plus the largest of
tbe first i heigbts, no change to n->height will be made. Tbat is correct, BÍnce the
maximum height of the first i + 1 children is the same 88 tbe maximum beigbt of the
first i children. However, if tbe new beight is greater tban the previous maximum,

n->height = o;

C = n->lettmoatChild;

vhile (c != RULL) {

coaputeBt(c);
it (c->height >= n->height)

n->height = l+c->height;

c = c->rightSibling;

}

The body of tbe function (n) from Fig. 5.22.
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A Template far Stroct oral Ind octian

The following is ao outline for building corred structural inductioDS.

l. Specify the statement S(T) to be proved, where T is a tree.

2. Prove the basis, that S(T) is true whenever T is a tree with a single nade.

3. Set up the inductive 8tep by letting T be a tree with root r aod k ?; 1 subtrees,
TI, T2. . . ., T.. State that you aMume the inductive hypothesis: that S(Ti) is
true for each of the subtrees Ti, i = 1,2, . . . , k.

4. Prove that S(T) is true under the aasumptions mentioned in (3).

then the test of line (5) will succeed, aod n->beigbt is set to 1 more than the height
of the (i + 1 )st child, which is correcto

We can now return to the structural induction. When the test of line (3) (ails,
we have coDsidered all tbe children o( n. Tbe inner induction, S'(i), tells us that
wben i is the total Dumber of children, n->height is 1 more tban the largest beigbt
o( any child of n. That Í8 tbe correct beight (or n. The inductive hypoth~Í8 S
applied to each o( tbe cbildren o( n tells us tbat the correct beight has been stored
in each of their height fields. Since we just saw tbat n's beigbt has also been
correctly computed, we conclude that all the nodes in T have been assigned their
correct beight.

We have now completed the inductive step of the structural induction, and we
conclude that coaputeRt correctly comput.es the height of each nade of every tree
on which it is called. +

Why Structural Ioduction Works
Tbe explanation for why structural induction is a valid proof method is similar to
the reason ordinary inductions work: if the conclusion were false, there would be
a smallest counterexample, and that counterexample would violate either the basis
or tbe induction. Tbat is, suppose tbere is a statement S(T) for wbich we have
proved the basis and tbe strudural indudion step, Jet there are one or more trees
for which S is falseo Let To be a tree 8Uch that S(To) is false, but let To have as few
nod~ as any tree for which S is false.

There are two~. First, suppoee tbat To consists of a single nade. Then
S(To) is true by the basis, and 80 this case cannot occur.

Tbe only other pc.ibility is that To has more than oRe nade - say, m nods-

and therefore To consists of a root r with ORe or more children. Let the trees rooted
at th~ children be TI, T2," .,Tk,. We claim that Done ofTI' T2,'. .,Tk, can bave
more than m - 1 nod~. For if one - say Ti - did have m or more nod~, tben To,

which consiats of Ti and the root nade r, pc.ibly along with otber subtrees, would
have at least m + 1 nod~. That contradicts our 888umption that To has exadly m
nod~.

Now since each of the subtrees TI, T2"'" Tk, has m - 1 or fewer nod~, we
know that tb~ trees cannot violate S, becauae we ch~ To to be as smallas any



252 THE TREE DATA MODEL

A Relationship between Structural and Ordinary Induction

There is a sen8e in which structural induction really offers nothiog new. Suppoee we
have a statement S(T) about trees that we want to prove by structural ioduction.
We could instead prove

STATEMENT 8'(i): For all trees T of i nodes, S(T) is true.

5'(i) has the Conn of an ordinary inductioo 00 the integer i, witb basis i = l. It can
be proved by complete induction, where we a&8ume 8'(j) Cor all j .$ i, and prove
S' (i + 1). Tbis prooC, however, would look exactly like tbe prooC of S(T), if we let
T stand Cor an arbitrary tree of i + 1 nodes.

tree making S falseo TbU8, we know that S(T1), S(T,),..., S(T~) are a1\ true. The
inductive step, wbich we 88Sume proved, telas U8 that S(To) ia a1ao true. Again we
contradict tbe assumption tbat T o violates S.

We have considered tbe two pO88ible cases, a tree of one node or a tree with
more tban one node, and have found that in eitber case, To cannot be a violation
of S. Tberefore, S has no violations, and S(T) must be true for a1\ trees T.

EXERCISES

5.5.1: Prove by stmctural induction tbat

a) The preorder traversal function of Fig. 5.15 prints the labels of the tree in
preorder.

b) Tbe postorder function in Fig. 5.17lists tbe labels in postorder.

5.5.2*: Suppose tbat a trie with branching factor 6 is repreeented by nades in the
format of Fig. 5.6. Prove by stmctural indudion that if a tree T has n nodes, then
there are 1 + (6 - l)n IULL pointers among its nodes. How many non-1ULL pointers
are there?

5.5.3*: The degree of a node is the number oí children that node has.2 Prove by
structural induction that. in any tree T, the number oí nodes is 1 more than the
sum of the degrees of the nodes.

5.5.4*: Prove by structural induction tbat in any tree T, tbe number of leaves is 1
more tban tbe number of nodes that bave rigbt siblings.

5.5.5*: Prove by structural induction tbat in any tree T rep~nted by the leítm~t-
child-rigbt-sibling data structure, the number oí IULL pointers is 1 more tban the
number oí nodes.

5.5.6*: At tbe beginning oí Section 5.2 we gave recursive and nonrecursive defini-
tions oí trees. Use a structural induction to show that every tree in tbe recursive
sense is a tree in tbe nonrecursive ~nae.

Degree of a

node

2 The brandtinl factor and the delree ~ related concepta, but not the aame.

factor ia the maximum degree of &Oy node in the tree.
The branching



A Fallacious Form oí Tree Induction

It often is tempting to perform inductions on the number of nades of the tree, where
we 88ume a statement for n-nade trees and prove it for (n + 1 )-node trees. This
proaf will be fallacious if we are not very careful.

When doing inductions on integers in Chapter 2, we suggested the proper
metbodology, in wbich we try to prove statement S(n + 1) by using S(n); call tbis
approach "leaning back." Sometimes one migbt be tempted to view this process as
starting with S(n) and proving S(n + 1); call this approach "pushing out." In the
integer case, these are e88entially the sarne idea. However, with trees, we cannot
st.art by &guming the statement for an n-nade tree, add a nade somewbere, and
claim that the result is proved for al) (n + l)-node trees.

For example, consider the claim S(n): "all n-nade trees have a path of lengtb
n-l." It is surely true for the basis, n = 1. In a falee "induction," we might argue:
"Assume an n-nade tree T has a path of length n - 1, say to nade v. Add a child
ti to v. We now have &n (n + l)-node tree with a path of length n, proving the
inductive step."

This argument is, of COulse, f&llacious because it does not prove the result for
all (n+ l)-node trees, just some selected trees. A correct proofdoes not "push out"
from n to n + 1 nades, becauae we do not tbus reach &11 poesible trees. R&ther,
we must "lean back" by starting witb an arbitrary (n + l)-node tree ud carefully
selecting a nade to remove to get an n-nade tree.

5.5.1**; Show the converse of Exercise 5.5.6: every tree in the non~rsive een8e
is a tree in the recursive sense.

Danger:
erroneou8

argllment

..".... 5.6 Binary Thees

This section presents another kind of tree, called a binary free, which is different
from the "ordinary" tree introduced in Section 5.2. In a binary tree, a nade can
have at ~t two cbildren, and rather than counting children from the left, there
are two "slots," one for a left child and the other for a right child. Either or both
slots mar be empty.

Left and right
children

+ Example 5.19. Figure 5.27 SbOW8 two binary trees. Each has node n¡ as root.
The first has n2 as the left child oí the root and no right child. The second has no
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ft '~
é e

Fig. 5.27. The two binary t~ witb two nOOes.

I
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We shall define binary t~ recursively. as

BASIS. The empty tree is a binary tree.

INDUCTlON. If risa node, and TI and T2 are binary tre5, then there is a binary
tree with root r, left subtree Tt, and right subtree T21 as suggested in Fig. 5.28.
That is, the root of Tt is the left child of r, unlea Tt is the empty tree, in which
case r has no left child. Similarly, the root of T2 is the right child of r, unless T2 is
empty, in which case r has no right child.

Binary Tree Terminology
Tbe notions of patbs, ancestors, and descendantB introduced in Section 5.2 aIao ap-
ply to binary trees. Tbat is, left and rigbt children are botb regarded as "cbildren."
A patb is still a eequence of nodes m1, m2,' . ., m" sua tbat nIi+1 is a (left or rigbt)
child ofnli, for i = 1,2,..., k -l. This patb is said to be from mI to m". Tbe case
k = 1 is permitted, wbere tbe patb is just a single Bode.

The two children o( a Bode, if tbey exist, are siblings. A leal is a Bode with
neitber a left nor a rigbt childj equivalently, a lea! is a Bode wboee left and right
subtrees are botb empty. An interior node is a Bode tbat is not a leal.

Patb lengtb, beigbt, and deptb are defined exactly as for ordinary trees. Tbe
length of a patb in a binary tree is 1 leM tban tbe number of nodesj tbat is, tbe
length is the number of parent-child steps along the path. The height of a Bode n is
the lengtb of the longest path from n to a descendant leal. Tbe beight of a binary
tree is the beigbt of its root. Tbe deptb of a Bode n is tbe lengtb of tbe path from
the root to n.

Example 5.20. Figure 5.29 ShOW8 the five shapes that a binary tree of tbree
nodes can have. In ead1 binary tree in Fig. 5.29, n3 is a descendant of nI, and there
is a path from nI to ns. Node n3 is a lea! in each tree, while n2 is a leaf in the
middle tree and an interior node in the other four trees.

The height of n3 is O in each tree, while the height of nI is 2 in &11 but the
middle tree, where the height of nI is l. The heigbt of each t~ is the sarne 88 the
height of ni in that tree. Node n3 Í8 of depth 2 in &11 but the middle tree, where it
is ofdepth 1. +

.

Fig. 5.28. Recuraive COD8tnlction of a binary toree.
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Data Structures for Binary Trees

Tbere is one natural way to represent binary trees. Nodes are represented by records
witb two fields, leftChild and rightChild, point,ing f.o tbe left and rigbt children
of tbe Bode, respectively. A IULL pointer in eitber oí tbese fields indicates tbat tbe
corresponding left. or rigbt 8ubt,ree is missing - tbat, is, t,bat t,bere is no left or rigbt

child, respect,ively.
A binary tree can be represented by a pointer f.o its root. Tbe empty binary tree

is rep~nted naturaUy by IULL. Tbus, tbe following t,ype declarations rep~nt
binary trees:

typedef struct MODE .TREE;
struct NODE {

TREE leftChild. rightChild;

};

Dere, we call tbe t,ype "pointer f.o node" by tbe name TREE, lince t,be m~t common
use for tbis type will be f.o represent trees and 8ubtrees. We can interpret tbe
leftChild and rightChild fields eitber as pointers to tbe children or as tbe left
and rigbt 8ubtrees tbemselveB.
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Tbe Difference Between (Ordinary) Trees and Binary Trees

It is important to understand that while binary treee require os to distinguish
wbetber a child is eitber a left child or a rigbt child, ordina.ry trees require no such
distinction. That is, bina.ry trees are not just trees all of wh<* nades bave two or
fewer children. Not only are tbe two trees in Fig. 5.27 different from each otber,
but tbey bave no relation to tbe ordinary tree consisting of a root and a single child
of tbe root:

I
There is another technical difference. While trees are defined to have at least one
nade, it is convenient to include the empty t~, the tree with no nades, among the
binary trees.

~
@ ~

Fig. 5.29. Tbe five binary treea witb tbree nodes.
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Optionally, we can add to tbe structure for IODE a label field or fields, and/or
we can add a pointer to the parent. Note that the type of the parent pointer is
.XODE, or equivalently TREE.

Recursions on Binary Thees

Tbere are many natural algoritbms on binary t~ tbat can be described ~ursively.
Tbe scheme for ~ursions is more limited than W&8 the scheme of Fig. 5.13 for
ordinary trees, mnce actions can only occur eitber before tbe left subtree is explored,
between the exploration of the subtrees, or alter both have been explored. The
scheme for recursions on binary trees is suggested by Fig. 5.30.

Example 5.21. ExpreMion trees with binary operators can be repreaented by
binary trees. Theee binary trees are special, becauae nodes have either two children
or Done. (Binary trees in general can bave nodes.with one child.) For instance, the
expreMion tree of Fig. 5.14, reproduced bere 88 Fig. 5.31, can be thought of 88 a
binary tree.

+

Fig. ~.31.

Supp~ we use the type

{
actioD Ao;
recursive call 00 left subtree;
actioD Al;
recursive call 00 rigbt subtree;
actioD A2;

}

Template of a recursive algorithm 00 a binary tree.Fig.5.30.

The expreMioD G + (b - c) . d represented by a binary tree.



for nodes and trees. Tben Fig. 5.32 SbOW8 a recursive function that lists the labels
of the nodes of a binary tree T in preorder.

void preorder(TREE t)
{

,., .- l. . _o, ,

Tbe bebavior of tbis function is similar to tbat of tbe fundion of tbe &ame name
in Fig. 5.15 tbat was designed to work on ordinary trees. Tbe significant difference
is tbat wben tbe function of Fig. 5.32 comes to a leaf, it calls itself on the (miMing)
left and rigbt children. These calls retum immediately, because wben t is NULL,
none of the body of tbe function except the test of line (1) is executed. We could
save the extra calla if we replaced lines (3) and (4) of Fig. 5.32 by

(3) 1t (t->lettChild != NULL) preorder(t->lettChild);
(4) 1t (t->rigbtChild != 8ULL) preorder(t->rigbtChild);

However, tbat would not protect U8 against a call to preorder from anotber func-
tion, witb NULL as the argumento Tbus, we would bave to leave tbe test of line (1)
in place for safety. +

EXERCISES

5.6.1: Write a function tbat prints an inorder listing of tbe (labels of tbe) nodes
of a binary tree. AMume tbat tbe nodes are represented by records with left-child
and rigbt-child pointers, as deacribed in tbis eection.

5.6.2: Write a fundion tbat takes a binary expression tree and prints a fully paren-
thesized version of the represented expression. Assume tbe &ame data structure as
in Exercise 5.6.1.

5.6.3*: Repeat Exercise 5.6.2 but print only the needed parentheses, assuming the
usual precedence and a80ciativity of aritbmetic operators.

5.6.4: Write a function tbat produces the beigbt of a binary tree.

5.6.5: Define a node of a binary tree to be a full if it has both a left and a rigbt
child. Prove by structural indudion that the number of full nodes in a binary tree
is 1 fewer tban tbe number of leaves.
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typedef atruct 8ODE .TREB;
atruct BODE {

char nodeLabel;
TREE leftChild, rightChild

};

(1)
(2)
(3)
(4)

(t != RULL) (
printt("Yoc\n". t->nodeLabel)
preorder(t->lettChild)j
preorder(t->rilbtChild)j

if

}

Preorder listing of binary torees.Fig. 5.32.
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Inorder Traversals

In addition to preorder and postorder listings of binary trees, there is another
ordering of nodes that makes sense for binary trees only. An ínorder listing of
the nodes of a binary tree is formed by listing each node after exploring the left
subtree, but before exploring the right subtree (i.e., in the position for action Al
of Fig. 5.30). For example, on the tree of Fig. 5.31, the inorder listing would be
a + b - c . d.

A preorder traversal of a binary tree that represents an expression produces
the prefix form of that expression, and a postorder traversal of the salDe tree pro-
duces the postfix form of the expression. The inorder traversal almost produces the
ordina.ry, or infix, form of an expression, but the parenth~ are missing. That is,
the tree of Fig. 5.31 represents the expre88ion a + (6 - c) . d, which is not the same
as the inorder listing, a + 6 - c . d, but only because the neceMarY parentheses are

missing from the latter.
To be BUfe that needed parentheses are present, we could parenthesize all op-

erators. In this modified inorder traversal, action Aa, the step performed before
exploring the left subtree, checks whether the label of the node is an operator and,
if so, prints . (', a left pacenthesis. Similarly, action A2, performed after exploring

both subtrees, prints a right parenthesis, ')', if tbe label iB an operator. Tbe result,
applied to the binary tree of Fig. 5.31, would be (a + «b - c) . d)), which has the
needed pair of parentheses around b - c, &long with two pairs of parentheses that
are redundant.

5.6.6: Suppose we represent a binary tree by the left-child, right-child record type.
Prove by strudural indudion that the number of IULL pointers is 1 greater thao
the number of nodes.

5.6.7..: Trees can be used to rep~nt recursive calls. ~h node rep~nts a
recursive call of some function F, and its children rep~nt the calle made by F.
In this exercise, we shall consider the recursion for (:;.) given in Section 4.5. baaed
on the recursion (,:'.) = (",::1) + (,:'.--11)' Each call can be represented by a binary
tree. If a node corresponds to the computation of (,:'.), and the basis cases (m = O
and m = n) do not apply, then the left child represents (",:;1) and the left child
rep~nts (,:'.--~). Ir the Bode represents a basis case, then it has neither left nor
right child.

a) Prove by structural induction that a binary tree with root corresponding to
(,:'.) has exactly 2(,:) - 1 nodes.

b) Use (a) to show that the running time of the recursive algorithm for (,:'.) is

O ( (r':a) ). Note that this running time is tberefore &l8O 0(2"), but tbe latter is

a smooth-but-not-tigbt bound.

...:... 5.7 Binary Search 'li-ees

A common activity found in a variety oí computer programa is the m&Íntenance of

r

F
t'



Structural loductions 00 Bioary Trees

A structural induction can be applied to a binary tree as well as to an ordinary
tree. There is, in fact, a somewhat simpler echeme to use, in whidt the basis is an
empty tree. Here is a summary of the technique.

l. Specify the statement S(T) to be proved, where T is a. binary tree.

2. Prove the baais, that S(T) is true if T is the empty tree.

3. Set up the inductive step by letting T be a. tree with root r and subtrees TL and
TR. State that you aMume tbe inductive hypothesis: that S(TL) and S(TR)
are true.

4. Prove that S(T) Í8 true under the aMumptions mentioned in (3).

a set of values from which we wish to

l. Insert elements into the set,
2. Delete elements from the set, and
3. Look up an element to see whether it is currently in the seto

One example is a dictionary of Englisb words, where from time to time we insert a
new word, such as fu, delete a word that has fallen ioto disuse, sucb as aegilop8,
or look up a string of letters to see whether it is a word (as part of a spelling-cbecker
program, for instance).

Because this example is 80 familiar, a set upon which we can execute the
operations insert, delete, and lookup, as defined above, is called a dictionary, no
matter what the set is used for. As anotber example of a dictionary, a professor
might keep a roll of the students in a cla8. Occasionally, a student will be added
to the class (an insert), or will drop the class (a delete), or it will be necessary to
tell whetber a certain student is registered for tbe claM (a lookup).

One good way to implement a dictionary is with a binary search tree, wbich
is a kind of labeled binary tree. We ~ume tbat the l&bels oí nades are ch~n
from a set with a "le8 tban" order, wbich we sball write as <. Examples include
the reals or integers witb tbe usualless tban arder; or character strings, with tbe
lexicograpbic or alpbabetic arder represented by <.

A binary search t~ (BST) is a labeled binary tree in wbich the following
property balda at every node % in the tree: all nodes in tbe left subtree of % have
labels less than tbe label of %, and all nades in the right subtree bave labels greater
tban tbe label of %. Tbis property is called tbe binary $eorch t~ property.

Binary search
tree property

+ Example 5.22. Figure 5.33 shows a binary 8earch tree Cor the set

{Hairy. Baahful. Gruapy. SleepJ. Sleazy. HapPJ}

where the < order is lexicographic. Note that the names in the left 8ubtree o( the
root are alllexicographically l~ than Hairy, while th~ in the right 8ubtree are
a.lllexicographica.lly greater. Tbis property holda at every node o( the tree. +
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Fig. 5.33.

Implementation oí a Dictionary as a Binary Search Tree

We can represent a binary search tree as any labeled binary tree. For example, we
might define tbe type IODE by

typedef struct laDE .TREE;

struct IODE {
ETYPE el_ent;
TREE leftChild. rightChildj

};

A binary search tree is represente<! by a pointer to tbe root node o( tbe binary search
tree. The type o( an element, ETYPE, should be set appropriately. Throughout the
programs of this section, we sball assume EnPE is int 80 tbat comparisons between
elements can be done simply using the aritbmetic companson operators <, = and
>. In the examples involving lexicograpbic comparisoos, we assume tbe compariaoos
in tbe programs will be done by the appropriate comparison (unctions lt, eq, and
gt as discussed in Section 2.2.

Looking U p an Element in a Binary Search Tree

Suppoee we want to look for an element z that mar be in a dictionary represented
by a binary search tree T. Ií we compare z with the element at the root of T, we
can take advantage of the BST property to locate z quickly or determine that z is
not presento If z is at the root, we are done. Otberwise, if z is lea than the element
at the root, z could be íound only in the left subtree (by the BST property); and if
z is greater, then it could be only in the right subtree (again, because oí the BST
property). Tbat is, we can express the lookup operation by the following recunive
algorithm.

BASIS. If the tree T is empty, then z is not presento If T is not empty, and z
appears at the root, then z ia presento

\ /
SleazyGrumpy

/
Happy

Binary search tree with six nodes labeled by strings.
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A bstract Data Types
A coIlection oí operations, such 88 insert, delete, and lookup, that may be performed
on a set of objects or a certain kind is sometimes called an abstmct data type or
ADT. The concept is also variously called a class, or a module. We shall study
several abstract data t.ypes in Chapter 7, and in this chapter, we shall see one more,
tbe priority queue.

An ADT can have more than one abstract implementation. For example, we
shall see in this section that the binary search tree is a good way to implement
tbe dictionary ADT. Lists are anotber plausible, though usually less efficient, way
to implement tbe dictionary ADT. Section 7.6 cayera hasbing, another good imple-
mentation of the dictionary.

Each abstract implementation can, in turn, be implemented concretely by sev-
eral different data structures. As an example, we sball use the left-child-rigbt-child
implementation of binary t.rees as a data structure implementing a binary search
tree. This data structure, along with the appropriate functions for insert, delete,
and lookup, becomes an implementation of the dictionary ADT.

An important reason for using ADT's in programs is that the data underlying
the ADT is accessible only tbrough the operations of the ADT, such as inserto
This restriction is a forro of defensive programming, protecting against accidental
aJteration oí data by functions tbat manipulate the data in unexpected ways. A

ve second important reason for using ADT's is that they allow us to redesign the data

strUctUfe8 and functions implementing tbeir operations, perhap6 to improve tbe
efficiency of operations, without having to worry about introducing errors into tbe
rest of the programo Tbere can be no new errors if tbe only interface to the ADT
is througb correctly rewritten functions for its operations.

:b INDUCTlON. 1fT is not empty but Z' is not at tbe root, let y be tbe element at the
le root of T. If z < y look up Z only in the left subtree of the root, and if z > y look
~ up z only in the right subtree of y. The BST property guarantees that z cannot be
.d in the subtree we do not ~arch.

u
id

+ Example 5.23. Suppose we want to look up Grumpy in the binary searcb tree
of Fig. 5.33. We compare Gruapy with Hairy at the root and find tbat Gruapy
precedes Hairy in lexicographic order. We thus call1ookup on the leCt subtree.

Tbe root of the left subtree is BuMul, and we compare tbis label with Gruapy,
¿ finding that the Corroer precedes the latter. We thus call1ookup recursively on the
ve right subtree ofBaaMul. Now we find Gruapy at the root ofthis subtree and return
is TROE. These steps would be carried out by a function modeled after Fig. 5.34 that
.rt dealt with lexicographic comparisons. ...
ir More concretely, tbe recursive function lookup(x. T) in Fig. 5.34 implements
T this algorithm, using the left-child-right-child data structure. Note that lookup
le returns a value of type BOOLEAJ', which is a defined type synonymous with int, but

with the intent that only defined values TROE and FALSE, defined to be 1 and O,
fe8pectively, wiU be used. Type BOOLEAI W88 introduced in Section 1.6. A~, note

x that lookup is written only for types that can be compared by =, <, and so oo. lt
would require rewriting Cor data like the character strings used in Example 5.23.

- ~.~ ~A~_'_~.'-'~~'- -. , - --.,
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At line (1), lookup determines whether T is empty. Ir not, then at line (3
lookup determines whether r. is stored at the current Bode. Ir r. is not there, ther
lookup recursively searches the left subtree or right 8ubtree depending on whethel
z is less than or greater than the element stored at the current nade.

BOOLEAN lookup(ETYPE x, TREE T)
{

(1) if (T == NULL)
(2) return FALSEó
(3) el.e if (x == T->el...nt)

(1)
(2)
(3)
(4)
(5)
(6)

(7) return lookup(x. T->rigbtChild);
}

Fig. 5.34. Function lookup(x. T) retums TRUE ir z: is in T, FALSE otherwise.

Inserting an Element into a Binary Search Tree
Adding a new element z: to a binary search tree T is straightforward. The foll<
recursive algorithm sketches the idea:

OASIS. If T is an empty tree, replace T by a tree consisting of a single node and
place z at that node. Ir T is not empty and its root has element z, then z is already
in the dictionary, and we do nothing.

INDUCTION. Ir T is not empty and does not have z at its root, then insert z into
the left subtree ir z is less than the element at the root, or insert z into the right
subtree ir z is greater than the element at the root.

The function insert(x, T) shown in Fig. 5.35 implements this algorithm for
the left-child-right-child data structure. When we find that the value of T is RULL
at line (1), we create a new nade, which becomes the tree T. This tree is created
by liDes (2) through (5) and returned at line (10).

If r. is not found at the root of T, then, at liDes (6) through (9), insert is
called on the leCt or right 8ubtree, whichever is appropriate. The 8ubtree, modified
by the insertion, becomes the new value of the left or right subtree of the root of T
at liDes (7) or (9), respectively. Line (10) returns the augmented tree.

Notice that ir r. is at the root of T, then none of the tests of lines (1), (6),
and (8) succeed. In this case, iDa.rt returns T without doing anything, which is
correct, since r. is already in the tree.

Example 5.24. Let US oontinue with Example 5.23, understanding that techni-
cally, the comparison of character strings requires slightly different code from that
of Fig. 5.35, in which arithmetic compariaons like < are replaced by calls t.o suit-
ably defioed fuoctioos like lt. Figure 5.36 shows the binary search tree of Fig. 5.33

.

T is empty. )
current node.

(x < T->el.-nt)

rn lookup(x. T->leftChild);
x 8U8t be > T->el-ent ./

rn lookup(x. T->rightChild);
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TR.BB in.eñ(ETTPE x. TRD T)
{

if (T = NULL) {
T = (TR.BB) aalloc(sizeof(atruct NaDE»;
T->el..ent = x;
T->leftChild = RULI.;
T->rightChild == NULL;

}
el.. if (x < T->el..ent)

T->l.ftChild = in.eñ(x. T->l8f~Child);
.lae if (x > T->.l..ent)

T->rightChild = inseñ(x. T->rightChild);
r.~urn T;

(1)
(2)
(3)
(4)
(5)

(8)
(7)
(8)
(9)
10)

}

Fig. 5.35. Function ina8rt(x.T) adds % Lo T.

aíter we insert Fil tby. We begin by calling in..rt at the root, and we find that
Fil tby < Hairy. Thus, we call ins.rt on tbe leít child, at line (7) oí Fig. 5.35.
Tbe result is that we find Filtby > Basbful, and 80 we call in8.rt on the right
child, at line(9). That. tak~ us t.o Gruapy, which íollows Filtby in lexicographic
order, and we call insert on the leít child oí Grumpy.

The pointer t.o the leít child oí Gruapy is IULL, 80 at line (1) we discover that
we must create a new nade. This one-node tree ia returned to the call oí insert at
tbe nade for Gruapy, and tbe tree is installed as the value oí the left. child oí Gruapy
at. line (7). Tbe modified tree witb Gruapy and Filtby ia returned t.o the call oí
in8ert at the nade labeled Ba8bful, and this modified tree becomes the right child
oí Basbtul. Then, continuing up tbe tree, tbe new tree rooted at Basbful becomes
the left child of the root oí the entire tree. The final tree is shown in Fig. 5.36. +

/
Ba8hful

Gruapy

/
Filtby Happy

Fig. 5.36. Binary 8eard1 tree after iD8erting FilthJ.



264 THE TREE DATA MODEL

Deleting an Element from a Binary Search Tree

Deleting an element z from a binary search tree is a little more complicated tban
lookup or insert. To begin, we may locate tbe nade containing z; iftbere is no euch
nade, we &re done, since z is not in the tree to begin with. Ir z is at a leaf, we can
simply delete the lea!. Ir z is at an interior nade n, however, we cannot delete that
nade, because to do 80 would disconnect the tree.

We must rearrange the tree in 8Ome way 80 that the BST property is maintained
and yet z is no longer present. Tbere are two cases. First, if n has only one child,
we can replace n by that child, and the BST property will be maintained.

Fig. 5.37.

Second, suppoee n has both children presento One straiegy is to find the node
m with label1/, the smallest element in the right 8ubtree oc n, and replace z by 1/
in node n, 88 sugge8t.ed by Fig. 5.37. We can then remove Bode m Crom the right
subtree.

The BST property continues to boldo The reason is that z is greater than
everything in the left subtree oC n, and 80 1/, ~ing greater than z (because 1/ is
in the right subtree oC n), is also greater than everything in the leCt subtree oC n.
Thus, as Car as the leCt subtree oC n is concerned, 1/ is a suitable element at n. As
Car 88 the right subtree oC n is concerned, 1/ is also suitable as the root, because 'J
was chosen to be the smallest element in the right subtree.

ETYPE delet_iD(TREE .pT)

{

(1)
(2)
(3)
(4)

(5)
}

Fig.5.38.

To delete %, remove the node containing 1ft the smallest element in the
right subtree, and then replace the label % by 1/ at node n.

ETYPE .iD;

{if «*pT)->leftChild == IULL)

.in = (*pT)->el.ent;

(*pT) = (*pT)->rightChild;

return .in;

}
el.e

return deleteain(&«.pT)->leftChild»;

F\mction delet_in(pT) removea and retUnIB the smaUest element (rom T.
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+ Example 5.26. Figure 5.41 shows what would happen if we used a function
similar to del.te (but able to compare character strings) to remove Bairy from the
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It is convenient to define a function delet_in(pT), shown in Fig. 5.38, to
remove the Bode containing the smallest element from a nonempty binary aearch
tree and to retum the value of that smallest elemento We p.. to the function an
argument that is the address of the pointer to the tree T. All references to T in the
function are done indirectly through this pointer.

This style of tree manipulation, where we pass the function an argument that
is a pointer to a place where a pointer to a node (i.e., a tree) is found, is called call
by reference. It is eaential in Fig. 5.38 because at line (3), where we have found
a pointer to a node m wh~ left child is IULL, we wish to replace this pointer by
another pointer - the pointer in the rightChild field of m. If the argument of

deletemin were a pointer to a node, then the change would take place locally to the
call to deletemin, and there would not actually be a change to the pointers in the
tree itaelf. Incidentally, we could use the call-by-reference style to implement iMert
as well. In that case, we could modify the tree directly and not have to return a
reviaed tree as we did in Fig. 5.35. We leave such a revised iMert function as an
eXerC1Be.

Now, let us see how Fig. 5.38 works. We lacate the smallest element by following
left children until we find a nade wh~ left child is IULL at line (1) of Fig. 5.38.
The element 11 at this node m must be the smallest in the subtree. To see why,
first observe that 11 is smaller than the element at any ancestor of m in the subtree,
becauBe we have followed only left children. The only other nodes in the subtree
are either in the right subtree of m, in which case their elements are surely larger
than y by the BST property, or in the rigbt subtree of one of m's ancestors. But
elements in the right subtrees are greater than the element at 9Ome ancestor of m,
and therefore greater than y, as suggested by Fig. 5.39.

Having found the smallest element in tbe subtree, we record this value at line
(2), and at line (3) we replace the node of the smallest element by its right subtree.
Note that when we delete the smallest element from the subtree, we always have
the easy case of deletion, becauae there is no left subtree.

The only remaining point regarding delet_in is that when the test of line (1)
faiJs, meaning that we are not yet at the smallest element, we proceed to the left
child. That step is accomplished by the recursive call at line (5).

The function delete(x .pT) is shown in Fig. 5.40. Ir pT points to an empty tree
T, there is nothing to do, and the test of line (1) makes sure that nothing is done.
Otherwiae, the tests of lines (2) and (4) handle the cases where z is not at the root.
and we are directed to the left or right subtree, as appropriate. If we reach line (6),
then z must be at the root ofT, and we must replace the root node. Line (6) tests
for the possibility that the left child is IULL, in which case we simpiy replace T by
its right subtree at line (7). Similarly, if at line (8) we find that the right child is
IULL then at line (9) we replace T by its left subtree. Note that ir both chiJdren of
the root are IULL, then we replace T by IULL at line (7).

The remaining case, where neither child is IULL, is handled at line (10). We
call delet_in, which returns the smallest element, 11. of the right subtree and al90
deletes 11 from that subtree. The assignment of line (10) replaces z by 11 at the root
orTo
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Fig. 5.39.

yoid delete(ETYPE x.
{

(1)
(2)
(3)
(4)
(5)

(6)
(7)
(8)
(9)

(10)

if ({*pT) != IULL)
if (x < (.pT)->el...nt)

delete{x, a{{*pT)->leftChild»;
el.e if {x > (.pT)->ele.ent)

delete{x. &({*pT)->rightChild»;
el.. /. here, x i. at the root of (*pT) */

if ({.pT)->leftChild =- NULL)
(.pT) = {*pT)->rightChild;

el.e if ({ .pT) ->rightChild == IULL)

(.pT) = {.pT)->leftChild;

el.e /* here, neither child i. IULL ./
(*pT)->el..ent =

deleteain{a{{.pT)->rightChild»;
}

Fig.5.40.

binary search tree of Fig. 5.36. Since Hairy is at a nade with two children, delete
calls the function delet_in, which removes and returns the smallest element,
Happy, from the right subtree of the root. Happy then becomes the label of the root
of the tree, the nade at which Hairy was stored. +

~

All the other elements in tbe right subtree are greater than y.

TREE .pT)

F\mctioo delete(x.pT) removes the element % from T.



EXERCISES

5.1.1: Suppoee that we use a leftmost-(;hild-rigbt-sibling implementatioo for bioary
search trees. Rewrite the functions that implement the dictionary operations insert,
de/ete, and lookup to work for this data structure.

5.1.2: Show what happens to the binary search tree of Fig. 5.33 if we insert the
following dwarfs in arder: Doc, Dopey, Ink,. Blinty. Pinty, and Sue. Theo show
what happens when we delete in arder: Doc, Sl.u" and Hairy.

5.1.3: Rewrite the functions 1 ookup , in.en, and delet. to use lexicographic
comparisoos 00 striogs instead of arithmetic comparisons 00 integers.

5.1.4.: Rewrite the fundiDO in.en 80 tbat the tree argument is passed by refer-
ence.

5.1.5*: We wrote delete in the "can by reference" style. However, it is aJso
possible to write it in a style like that of our in.en function, where it takes a
tree as argument (rather than a pointer to a tree) and returns the tree missing the
deleted elemento Write this veniDo of the dictionary operation de/ete. Note: It is
not really possible to have deletemin retum a revised tree, since it must &1so retum
the minimum elemento We could rewrite deletemin to return a structure with both
the new tree and the minimum element, but that approach is not recommended.

5.1.6: Instead of handling the deletion of a node with two children by finding the
least element in the right subtree, we could alao find the greatest element in the left
subtree and use that to replace the deleted elemento Rewrite the functions delet.
and del.teain from Figs. 5.38 and 5.40 to incorporate this modification.

5.1.1*: Another way to handle delete when we need to remove the element at a
nade n that has parent p, (nonempty) left child 1, and (nonempty) right child r is to
find the Bode m holding the least element in the rigbt subtree of n. Tben, make r
a left or right child of p, whichever n was, and make I the left child oí m (note that
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Happy

/
Buhful

Sleuy

Filth1

BÍDary leard1 tree alter deletÍDg Hairy.Fig. 5.41.
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m cannot previously have had a left child). Show why this ~t of changes preserves
the BST property. Would you prefer this strategy to the one described in Section
5.7? Hint: For both metbods, consider tbeir efl'ect on the lengths of patbs. As we
shall8ee in tbe next section, sbort paths make tbe operations run fasto

5.7.S.: In tbis exercise, refer to tbe binary search tree represented in Fig. 5.39.
Sbow by induction on i that if 1 :$ i :$ k, then y < Zi. Then, sbow that y is the
least element in the tree rooted at Zk.

5.7.9: Write a complete C program to implement a dictionary that stores integers.
Accept commands ofthe form x i, where x is one ofthe letters i (insert), d (delete),
and 1 (Iookup). Integer i is tbe argument ofthe command, tbe integer to be inserted,
deleted, or ~arched for.

+++ 5.8 Efficiency of Binary Search Tree Operations+

Tbe binary search tree provides a reasonably fast implementation of a dictionary.
First, notice that each of the operations insert, delete, and lookup makes a number
of recursive calls equal to the length of tbe patb followed (but tbis patb must include
tbe route to the smallest element of the right subtree, in case deleteain is called).
Also, a simple analysis of the functions lookup, inaert, delete, and deletain
tells us that each operation takes 0(1) time, plus tbe time for one recursive callo
Moreover, since this recursive call is always made at a child of the current nade,
the height of the nade in each successive call decreases by at least 1.

Thus, if T( h) is the time taken by any of these functions when called with
a pointer to a nade of height h, we have the following recurrence relation upper-
bounding T(h):

BASIS. T(O) = 0(1). That is, when called on- a leaf, tbe call either terminates
without further calls or makes a recursive can witb a IULL argument and then
retums without further calla. AII of this work takes O( 1) time.

INDUCTION. T(h) :$ T(h - 1) + 0(1) for h ~ 1. Tbat is, the time taken by a call
on any interior nade is 0(1) plus the time for a recursive call, which is on a nade
of beight at m~t h - 1. If we make the reasonable assumption that T( h) increases
with increasing h, then tbe time for the recursive call is no greater than T(h - 1).

The solution to tbe recurrence for T(h) is O(h), as di8CU88ed in Section 3.9.
Thus, the running time of each dictionary operation on a binary search tree of n
nades is at m~t proportional to the height of the tree. But what is the height of a
typical binary search tree of n nades?

The Worst Case

In the worst case, aIl tbe nades in the binary tree will be arranged in a single path,
like the tree of Fig. 5.42. That tree would result, for example, from taking a list of
k elements in sorted arder and inserting them one at a time into an initially empty
tree. There are aIso t~ in which tbe single path does not consist of right children

~, ~~,- ""._"-
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Fig. 5.42. A degenerate binary tree.

only but is a mixture of right and left children, with the path taking a tufO either
left or right at each interior node.

The height of a k-node tree like Fig. 5.42 is clearly k-l. We thus expect
that lookup, insert, and delete will take O(k) time on a dictionary of k elements, if
the representation of that dictionary happens to be one of these unfortunate trees.
lntuitively, if we need to look for element z, on the average we shall find it halfway
clown the path, requiring U8 to look at k/2 nodes. If we faíl to find z, we shall
likewise have to search clown the tree until we come to the place where z would be
found, which will also be halfway clown, on the average. Since each of the operations
lookup, insert, and delete requires searching for the element involved, we know that
these operations each take O(k) time on the average, given one of the bad trees of
the form of Fig. 5.42.

Tbe Best Case
However, a binary tree need not grow long and thin like Fig. 5.42; it could be short
and bushy like Fig. 5.43. A tree like the latter, where every interior Bode clown to
some level has both children present and the next level has all the leaves, is called
a full or complete tree.

Rill binary tree with Rven nodea.Fig. 5.43.

We can prove this claimA complete binary tree of height h has 2"+1 -1 nodea.
by ioduction 00 the height h.

Since ~1 - 1 = 1, the basisBASIS. lí h = O, the tree consista oí a single node.
case holds.
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Thus, we ask, For what value of d ia (3/4)dk :$ 1? If we take logarithms to the base
2, we get

dlog2(3/4) + log2 k :$ log21 (5.1)

Now log21 = O, and the quantity 1082(3/4) is a negative constant, about -0.4.
Thus we can rewrite (5.1) aslog2 k :$ O.4d, or d ~ (log2 k)/O.4 = 2.51og2 k.

Put anotber way, at a depth of about two and a hall times the logaritbrn to the
base 2 of the number of nades, we expect to find only leaves (or to have found the
leaves at higher levels). Thia argument justifies, but does not prove, the statement
that the typical binary search tree will have a height that is proportional to the
logarithm of the number of nodes in the tree.

EXERCISES

5.8.1: Ir tree T bas beigbt h and branching factor 6, wbat are the largest and
smallest numbers of nodes tbat T can have?

5.8.2..: Perform an experiment in which we cboose one of the n! orders for n
different values and insert tbe values in tbis arder into an initially empty binary
search tree. Let P(n) be the expected value of the depth of the node at which a
particular value v among tbe n values is found after this experimento

a) Show that, for n ~ 2,

2 R-1

P(n) = 1 + ;2 L kP(k)
.=1

b) Prove that P(n) is O(logn).

Queues and Partially Ordered Trees

So far, we have seen only one abstract data type, the dictionary, and one imple-
meotation for it, the binuy search tree. In this section we shall study anotber
abstract data type and one of its m~t efficient implementations. Tbis ADT, called
a priority queue, is a set of elements each of which has an associated priority. For
example, the elements rould be ~rds and the priority could be the value of one
field of the record. The two operations &SSOciated with the priority queue ADT &re
tbe íoIlowing:

l. Inserting an element into the set (insert).

2. Finding and deleting from the eet an element oí highest priority (this combined
operatoion is called deletemaz). The deleted element is retumed by this function.

Example 5.26. A time-shared operating system accepts requests for service
from VarioUS80ulcea, and these jobs may noto all have the same priority. For example,
at higbest priority may be tbe system proceMeS; tbese would include tbe "daemons"
tohat watch for incoming data, such as tohe signal generated by a keystroke at a
tenninal or tbe arriyal oí a packet of bite oyer a local &lea network. Tben mar
come User processes, the commands issued by ordinary users. Below these we mar
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have certain background jobs such 88 backup oc data to tape or long calculations
that the user has designated to run with a low priority.

Jobs can be represented by records consisting oí an integer ID Cor the job and
an integer íor the job's priority. That is, we might use the structure

struct ETYPE {
int jobm;
int priority;

};

for elements oí a priority queue. When a new job is initiated, it gets an ID and a
priority. We then execute the in.ert operation íor this element on the priority queue
of jobs waiting for service. When a processor becomes available, the system goes
to the priority queue and executes the deletemaz operation. The element retumed
by this operation is a waiting job of highest priority, and that is the one executed
next. .

... Example 5.27. We can implement a sorting algorithm using the priority queue
ADT. Suppoee we are given the sequence of integers °1. °2. . . . . Gn to sort. We
insert each into a priority queue, using the element's value as its priority. If we
then execute ddetemaz n times, the integers will be ~Iected highest fim, or in the
reverse oftheir sorted (Iowest-first) order. We shall discU88 this algorithm in more
detail in the next section; it is knowD as heapeort. ...

PartiaUy

An efficient way to implement a priority queue is by a partially ordered tree (POT),
which is a labeled binary tree with the following properti~:

1. The labels of the nades are elements with a "priority"; that priority mar be
the value of an element or tbe value of ~me oomPOnent of an elemento

2. The element store<! at a nade has at least as large a priority as the elements
stored at the children of that nade.

Property 2 implies that the element at the root of any subtree is always a largest
element of that subtree. We call property 2 the partially ordered tree property, or
POT properiy.

POT property

Example 5.28. Figure 5.44 shows a partially ordered tree with 10 elements.
Here, 88 elsewhere in this section, we shall represent elements by their priorities, 88
if the element and the priority were the SalDe thing. Note that equal elements can
appear on different levels in the tree. To see that the POT property is satisfied at
the root, note that 18, the element there, is no Iess than the elements 18 and 16
found at its children. Similarly, we can check that the POT property halda at every
interior node. Thus, Fig. 5.44 is a partially ordered tree. +

+

Ordered Trees



Partially ordered trees provide a useful abstract implementation for priority
queues. Briefly, to execute deletemaz we find tbe node at tbe root, wbich must be
tbe maximum, and replace it by tbe rigbtmost node on the bottom level. However,
when we do so, tbe POT property may be violated, and so we must restore that
property by "bubbling down" tbe element newly placed at tbe root until it finds a
suitable level where it is smaller than its parent but at least as large as any of its
children. To execute insert, we can add a new leaf at the bottom level, as far left
as possible, or at the left end of a new level if the bottom level is full. Again there
may be a violation of the POT property, and if so, we "bubble up" the new element
until it finds its rightful place.

Balanced POTs and Heaps
We say that. a partially ordered tree is balanced if all possible nodes exist at. alllevels
except the bottommost, and the leaves at the bottommost level are as far to the
left as possible. Tbis condition implies that if tbe tree has n nodes, tben no path
to a nade from the root is longer than log2 n. The tree in Fig. 5.44 is a balanced
paT.

Balanced POTs can be implemented using an array data structure called a
heap, which provides a fast, compact implementation of the priority qneue ADT. A
beap is simply an array A witb a special interpretation for the element indices. We
start witb tbe root in A[I]; A[O] is not used. Following the root, the levels appear
in order. Witbin a level, the nades are ordered from left to rigbt.

Thus, the left child of the root is in A[2], and the right child of the root is in
A[3]. In general, tbe left child of tbe nade in A[81 is in A[281 and the right child is in
A[2i + 1], if these children exist in the partiaUyordered tree. The balanced nature
of the tree allows this representation. The POT property of the elements implies
tbat if A[81 has two children, tben A[81 is at least as large as A[281 and A[2i + 1],
ud if A[81 has one child, tben A[81 is at least as large 88 A[281.

+ Example 5.29. The heap for the balanced partia1ly ordered tree in Fig. 5.44
is sbown in Fig. 5.45. For inst.ance, A[4] bolds tbe value 9; tbis array eleme:nt
repre8enta tbe left child oí tbe left child oí tbe root in Fig. 5.44. Tbe children of
tbis nade are found in A[8] and A[9]. Tbeir elementa, 3 and 7, are eacb no greater
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PartiaUy ordered tree with 10 nades.Fig. 5.44.
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"'

Layers of Implementation

lt is useful to compare our two ADT's, the dictionary and the priority queue, and
to notice that, in each case, we have given one abstract implementation and one
data structure for that implementation. There are other abstract implementations
for each, and other data structures for each abstract implementation. We promised
to discuss other abstract implementations for the dictioouy, such as the hash table,
and in the exercises of Section 5.9 we suggest that the binary search tree mar be
a suitable abstract implementation for the priority queue. The table below sum-
manzes what we already koow about abstract implementatioD8 ud data structures
for the dictiooary and the priority queue.

ADT ABSTRACT IMPLEMENTATION DATA STRUCTURE

dictioo&ry binal'Y 8eald1 Ieft-child-rigbt-child
tree structure

priority balanc:ed P8i'tially heap
queue ordered tree

than 9, as is required by tbe POT property. Array element A[ó), which corresponda
to the rigbt child of tbe left child of the root,. has a left child in A[IO). It would
have a rigbt child in A[ll), but the partially ordered tree has only 10 elements at
the moment, and 80 A(ll) is not part of the heap. +

While we have shown tree nodes and array elements as if they were the prior-
ities themeelves, in principIe an entire r«Ord appears at the node or in the array.
As we shall see, we shall have to do much swapping of elements bel.ween children
and p&rents in a partially ordered tree or its heap rep~ntation. Thus, it is COD-
siderably more efficient if the array elements themeelves are pointers 1.0 the records
representing the objects in the priority queue and these records are stored in an-
other array "outside" the heap. Then we can simply swap pointers, leaving the
records in place.

Performiog Priority Queue Operations 00 a Heap

Tbrougbout tbis section and the next, we shall represent a heap by a global array
A [1. . KJ.I:) of integers. We assume tbat elements are integers and are equal to tbeir
prioriti~. When elements are records, we can atore pointers to the record s in the
array and determine the priority of an element from a field in its record.

Suppoee that we have a heap of n-l elements satisíying tbe POT property, and
we add an nth element in A[n]. The POT property continu~ to hold everywhere,

Fig. 5.45. Heap for Fig. 5.4-4.



..

SEC. 5.9 PRlORITY QUEUES AND PARrIALLY ORDERED TREES 275

except perhaps between A[n] and its parent. Tbus, if A[n] islarger tban A[n/2] , tbe
element at the parent, we must swap these elements. Now tbere may be a violation
of the POT property between A[n/2] and its parent. If so, we recursively "bubble
up" the new element until it either reaches a position where the parent has a larger
element or reaches the root.

The C function bubbleUp to perform this operation is shown in Fig. 5.46. It
makes use ora function ..ap(A.i.j) that exchanges the elements in A[a1 and A[j]j
this function is also defined in Fig. 5.46. The operation of bubbleUp is simple.
Given argument i indicating the nade that, with its parent, poesibly violates the
POT property, we test whether i = 1 (that is, whether we are already at the root,
so that no POT violation can occur), 8lld if not, whether the element A[al is greater
than the element at its parent. If so, we swap A[i] with its parent and recursively
call bubbleUp at the parent.

void ..ap(int iD, int i, int j)
{

int t~;

t~ = A[i];
A[i] = A[j];
A[j] = t_p;

}

void bubbleUp(int 10. int i)

{
if (i > 1 la 1[i] > 1[i/2])

Bvap(l. i. i/2):

bubbleUp(l. i/2):
'\.

{

Fig. 5.46. and the function bubbleUpThe funct,ion ..ap exdlange8 array
pushes & new element of & heap into iu rightful place.

we start withExample 5.30. Suppoee we 8
eleventb element, witb priority 13.

1 2 3 4
I - I - - I - - I - I

rith the heap of Fig. 5.45 and we add an
element gas in A[ll], giving U8 the array

the
This

l 2;,;1 ,4; i .' 6 1 8 9 ,-.. 11
1_18118:1 Í, 1 9 1 7 ¡ti! 1 ~I 7 1 ¡ 1131

We now call bubbleUp(A ,11), whicb compares A[ll] with A[5] and finds that
we mustswap these elements becau~ A[ll] is larger. That ia, A[5] and A[ll] violate
the POT property. Thus, the array becomes

1 2 3 4 5 6 1 8 9 10 11
.118 118116 1 9113 1 i lO 1 '1 1 I! ¡ 1 ~ I
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Now we call bubbleUp(A. 6). This results in compari80D oí A [2) and A[5]. Since
A[2] is larger, there is no POT violation, ud bubbleUp(A. 6) does nothing. We
have now restored the POT property to the array. +

We now show how to implement the priority queue operation inserto Let n be
the current number oí elements in the priority queue, and 88ume A [1. . nJ already
satisfies the PQT property. We increment n and then atore the element to be
inserted into the new AW. Finally, we cala bubbleUp(A.n). The code for insert is
shown in Fig. 5.47. The argument z is the element to be inserted, and the argument
pn is a pointer to the current size of the priority queue. Note that n must be paseed
by reference - that is, by a pointer to n - 80 t.hat when n is incremented the

change has an affect that is not local only to inserto A check tbat n < M AX is
omitted.

Implementation
of insert

void iD..rt(iDt Ao. iDt x. int .pn)
{

(.pn)++;
A[.pn] = x;

bubbleUp(A. .pn);
)

Fig. ~.47.

To implement the priority queue operation deletemaz, we need another opera-
tion on heaps or partially orde~ t~, this time to bubble down an element at the
root that may violate the POT property. Suppose that A[al is a potential violator
oí the POT property, in that it may be smaller than one or both oí its children,
A[2al and A[2i + 1]. We can swap A[al with one oí its children, but we must be
careíul which one. If we swap with the larger oí ~he children, then we are sure not
to introduce a POT violation between the two íormer children of A [al , one oí which
has now become the parent oí tbe otber.

Tbe function bubbleDovn oí Fig. 5.48 implements this operation. ACter select-
ing a child witb whicb to swap A[al, it calla itselC recursively to eliminate a poesible
POT violation between tbe element A[a1 in its new position - which is now & (2i] or
A (2i +1] - and one of its new cbildren. The argument n is the number oí elements
in the beap, or, equivalently, tbe index oí the last elemento

This íunction is a bit tricky. We bave to decide which child oí A[a1 to swap
with, ií any, ud the first thing we do is aaume that the larger child is A[2a1, at
line (1) oí Fig. 5.48. If the right child exista (i.e., child < n) and the right child is
the larger, then the testa oí line (2) are met ud at line (3) we make child be the
right child oí A[a1.

Now at line (4) we test íor two things. First, it is poesible that A[a1 really has
no children in tbe heap. We tberefore check wbether A[a1 is u interior nade by
asking whether child ~ n. The second test oí line (4) is whether A[a1 is leas than
A[child). If both these conditions are met, then at line (5) we SW&p A[a1 with its
larger child, ud at line (6) we recursively call bubbleDovn, to push the offending
element further down, ií necessary.

We can use bubbleDovn to implement tbe priority queDe operation deletemaz
as shown in Fig. 5.49. Tbe íunction delet..x takes as arguments an array A ud

Bubbling down

Implementation
of deletemax

Priority queue operation in..ert implemented OD a heap.



a pointer pn to the number n that is the number oí elements currently in the heap.
We omit a test that n > O.

In line (1), we swap the element at the root, which is to be deleted, with the
last element, in A[n]. Technically, we should return the deleted element, but, as
we shall 8ee, it is convenient to put it in A [nJ, which will no longer be part oí the
heap.

At line (2), we decrement n by 1, effectively deleting the largest element, now
residing in the old A[n]. Since the root may now violate the POT property, we call
bubbleDown(A,l,n) at tiRe (3), which will recursively push the offending element
clown until it either reaches a point where it is no less than either oí its children, or
becomes a leaf; either way, there is no violation oí the POT property.

Example 5.31. Suppoee we start with tbe heap of Fig. 5.45 and execute
deletemo.r. Alter swappiq A[I] and A[IO], we ~t n to 9. The heap then becomes

I 2 3 4 5 6 7 8 9
I 6 118 116 I '9 1 7 I I I 9 I 3 I 7 I

+

When we execute bubbleDovn (A, 1,9), we set child to 2. Since A[2] ~ A [3] ,
we do not increment child at line (3) oí Fig. 5.48. Then Bince child .$ n and
A[l] < A[2], we 8wap these elementa, to obtain the &fray
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void bubbleDowu(int AO, int i, int n)

{
int child;

child.2.i;
it (child < n u A[child+1] > A[child])

++child;
it (child <= n u A[i] < A[child]) {

8vap(A. i, child);
bubbleDowu(A, child, n);

}
}

(1)

(2)

(3)

(4.)

(5)

(6)

bubbleDovn pushes a POT violator down to its proper pO8Ítion.S.48.Fig.

Toid deleteaax(int AD, i.nt .pn)
{

.8ap(A, 1, .pn);

--(.pn);
bubbleDown(A, 1, .pn);

(1)
(2)
(3)

}

Fig. 5.49. Priority queue operation deletemax implemented by a heap.
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We then call bubbleOovn(A.2.9). That requirea us to compare A[4] with A[5]
at line (2), and we find that the former is larger. Thus, child = 4 at line (4)
of Fig. 5.48. When we find that A[2] < .4[4], we 8wap these elements and call
bubbleOovn(A,4,9) on the array

Next, we compare A[8] and A[9], finding that tbe latter islarger, ~ that child =
9 at line (4) ofbubbleOovn(J.,4,9). We again perform the 8wap, 8ince A[4] < A[9],
resulting in the array

1 2 3 4- $ 6 7 S 9

11SI91.!sI7IrI119131.!1
Next, we call bubbleDovn(A.9.9). We set child to 18 at line (1), and the first

test of line (2) faila, becauae child < n is falseo Similarly, the test of line (4) fails,
and we make no 8wap or recursive callo Tbe array is now a heap witb tbe POT
property restored. +

Running Time oí Priority Queue Operations

The heap implementation of priority queues offers O(log n) running time per insert
or deletemaz operation. To 8ee why, Jet us first consider the insert prograrn of
Fig. 5.41. This program evidently takes 0(1) time for the first two steps, plus
whatever the caIl to bubbleUp takes. Thus, we need to determine the running time
of bubbleUp.

Informally, we notice that each time bubbleUp calls itself recursively, we are at
a node one position cl~r to the root. Since a balanced partially ordered t~ has
height approximately log2 n, the number of recursive calls ia 0(log2 n). Since each
call to bubbleUp takes time O( 1) plus the time of the recursive call, if any, the total
time should be O(logn).

More formally, let T(i) be the running time of bubbleUp(J..i}. Then we can
create a recurrence relation for T( i) as fOUOW8.

BASIS. If i = 1, then T(i) is 0(1), mnce it is easy to check that the bubbleUp
program of Fig. 5.46 does not make any recursive calls and only the test of the
if-statement ia ex~ted.

INDUCTION. If i > 1, then the if-statement test mar fail anyway, because A[al
does not need to rise furtber. Ir t.he te8t. su<x:eeds, then we execute swap, wbidI
takes 0(1) time, plus a ~rsive call to bubbleUp with an argument i/2 (or sligbtly
leE if á is odd). Thus T(á) $ T(á/2) + 0(1).

We thus have, for BOrne constante a and 6, the recurrence

T(l) = 4
T(al = T(i/2) + 6 for i> 1

12345.788
L18) 5 )!6)9 J 7 1I 1 9 I 3 1 7 1

1 2 S 4 5: e 7 8 g
1181 9 I i61 5 I 711 I 9 I 317 I
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as an upper bound on tbe running time of bubbleUp. If we expand T(i/2) we get

T(i) = T(i/V) + bj (5.2)

for each j. As in Section 3.10, we d1~ tbe value of j tbat makes T(i/2j) aimplest.
In tbia case, we make j ~ual t.o log2 i, 80 tbat. i/2j = 1. Thus, (5.2) becomes
T(i) = a + b log2 i; tbat ia, T(i) ia O(log i). Since bubbleUp ia O(log i), 80 ia in.en.

Now consider deletemaz. We can see from Fig. 5.49 tbat tbe running time of
deletemaz is 0(1) plus the running time of bubbleDovn. Tbe analysis of bubble-
DOVD, in Fig. 5.48, is ~ntially the same as tbat of bubbleUp. We omit it and
conclude that bubbleDovn and deletemaz also take O(log n) time.

EXERCISES

5.9.1: Starting with the heap of Fig. 5.45, show what happens when we

a) Insert 3
b) Insert 20
c) Delete the maximum element
d) Again delete the maximum element

5.9.2: Prove Equation (5.2) by induction on i.

5.9.3: Prove by induction on the depth of the POT-property violation that the
function bubbleUp of Fig. 5.46 correctly restores a tree with one violation to a tree
that has the POT property.

5.9.4: Prove that the function insert(A.x.n) makes A into a heap of size n, if A
was previously a heap of size n-l. You mar use Exercise 5.9.3. What happens if
A was not previously a heap?

5.9.5: Prove by induction on tbe heigbt of the POT -property violation that the
function bubbleDovn of Fig. 5.48 correctly restores a tree with oRe violation to a
tree that has the POT propeny. .

5.9.6: Prove that delet-.x(A .n) makes a heap of size n into one of size n-l.
What happens if A was not previously a heap?

5.9.1: Prove that bubbleDovn(A.1.n) takes O(logn) time on a heap oflength n.

5.9.8..: What is the probability that an n-element heap, with distinct element
priorities ch~n at random, is a partially ordered tree? If you cannot derive the
general rule, write a recursive function to compute the probability as a function of
n.

5.9.9: We do not need to use a heap to implement a partially ordered tree. Suppoee
we use the conventionalleft-child-right-child data structure for binary trees. Show
how to implement the functions bubbleOoVD, insert, and delet_ax using this
structure instead of the heap structure.

5.9.10.: A binary search tree can be used as an abetract implementation of a
priority queue. Show how the operations insert and deletemaz can be implemented
using a binary search tree with the left-child-right-child data structure. Wbat is
the running time of th~ operations (a) in tbe worst case and (b) on the average?
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.:. 5.10 Heapsort: Sorting
We shall now d~ribe the algorithm known as h~p.ort. It ~rta an array A[l..n]
in two ph~. In the first phaae, heapeort gives A the POT property. The second
phase oí heapsort repeatedly selecta the largest remaining element írom the heap
until the heap consista oí only the smallest element, whereupon the arfar A is
sorted.

Figure 5.50 SbOM tbe array A during tbe second pb~. Tbe initial part of
tbe array has tbe POT property, and tbe remaining part has its elements sorted in
nondecreasing order. F\lrtbermore, tbe elements in the sorted part are tbe largest
n - i elemente in tbe array. During tbe second pbase, i is allowed to run from n

down to 1, so tbat tbe beap, initia1ly tbe entire array A, eventua1ly shrinks until
it is only tbe smallest element, located in '[1]. In more detail, tbe second pbase
consiste of tbe following stepe.

1. A[l], the largest element in '[1. . i], is exchanged witb A[al. Since all elements
in '[i +1. . n] are as large as or lacger than any of '[1. . i], and since we just
moved tbe largest of tbe latter group of elements to position i, we know tbat
'[i. . n] are tbe largest. n - i + 1 elementa and are in ~rted order.

2. Tbe va1ue i is decremented, reducing tbe size of tbe beap by 1.

3. Tbe POT property is restored to tbe initial part oftbe array by bubbling down
tbe element at tbe root, wbich we just moved to A[l].

+ Example 5.32. Conaider the array in Fig. 5.45, whidt has the POT property.
Let U8 go through the first iteration of the second phase. In the first step, we
exchange A[l] and A[lO] to get:

The secood 8tep reduces the heap size to 9, and the tbird atep restof5 the POT
property to the first oioe elemeots by calliog bubbleDown(1). lo this call, A[l] and
A[2] are exchanged:

Tben, A[2] and A[4] are exchanged:

POTswith Balanced

I heap I Jarge elementa, 8Orted I

t t t
1 i n

Condition of array A during beapsort.Fig. 5.50.

'1 2 3 4 5 8 ", '8' lO
J~.J,~~.I,,161 gl711,I g 131! 1181

~
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1 2 3 4 5 6 7 8 9 10
, 18 , g 116 I 5 I 7 I 1 I giS I 7 , 18 I

Finally, A[4] and A[9] are exchanged:

1 2 3 4- 5 6 7 S 9 lO
I_I~I !: 1161 71 7 1 1"1 9 13 1 i 1 isl

At this point, A[1. .9] has the POT property.
The &eCOncl iteration oí pbaae 2 begins by swapping tbe element

with "he element 5 in A (8). After bubbling 5 clown, the array becomes

1 2 3 4 5 6 7 8 9 10

I~~I !.t 9171!I.!l513 t.!~)i81

18 in 1[1]

At this stage, the last two ts of the array are the two largest elements, inelemen
.,rted order.

Phase 2 continu~ ufttil the aRay ie completely 8Orted:

1 2 3 4 5 6 1 8 9 10

12_J~ 1_~11111919l1611~,J181
+

Heapifying an

We could describe heapsort informaJly as follows:
for (1 = 1; 1 <= D; 1++)

insert(ai);
for (1 = 1; 1 <= D; i++)

deletemaz

To implement this algorithm, we insert the n element& al, a2, . . ., an to be sorted
into a heap that is initially empty. We then perform deletemaz n times, getting
the elements in larg~t-first order. The arrangement of Fig. 5.50 allows os to store
the deleted elements in tbe tail of the array. as we sbrink the heap portion of that

array.
Since we just argued in tbe last section tbat insert and deletemaz take O(log n)

time e8cl1, and since we evidently execute eacb operation n times, we have an
O(n lagn) sorting algoritbm, which is comparable to merge sort. In fact, heapsort
can be superior to merge sort in a situation in which we only need a few of the
larg~t elements, rather than the entire sorted listo The reaaon is that we can make
the array be a beap in O( n) time, rather than O( n lag n) time, if we use the function
heap1fy of Fig. 5.51.
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void heapify(int AO. int n)
{

for (i . n/2; i >= 1;

bubbleDovn(A. i. :
}

Running Time of Heapify

At first, it migbt appear that the n/2 calls to bubbleDoVD in Fig. 5.51 shou1d take
O(n1ogn) time in total, because logn is the on1y upper bound we know on tbe
running time of bubbleDoWD. However, we can get a tighter bound, O(n), if we
exploit the fact that most of the sequences that bubble down e1ements are very
short.

To begin, we did not even have to call bubbleDovn on the eecond hall oí the
arfar, because all the elements there are leaves. On the second quarter of the arfar,
that is,

A[(n/4)+1..n/2)

we mar can bubbleDovn once, if the element is smaller than either oí its children;
but th~ children are in the second hall, and therefore are leav~. Thua, in the
second quarter of A, we call bubbleDovn at m~t once. Similarly, in the 8eCOnd
eighth oí the arfar, we call bubbleDovn at m~t twice, and 80 on. The number of
calla to bubbleDown in the varioua regions oí the array is indicated in Fig. 5.52.

n/16 "/8 _/4 "./1 .' '" ,; ;ff: n

AI...ls3Is21 S~:'(G:I

Fig.5.52.

Let us count tbe number of calla to bubbleDoVD made by heapifJ, including
recursive calls. From Fig. 5.52 we 8ee tbat it is pO68ible to divide A into zonu,
wbere tbe itb zone consista of A[jJ for j greater than n/21+1 but no greater tban
n/2i. Tbe number of elementa in BODe i is tbus n/2i+l, ud tbere are at m~t i calls
to bubbleDoVD for each element in BOne i. 1'\1rtber, tbe BOnes i > log2 n are empty,
since tbey contain at m~t n/21+1os2 n = 1/2 elemento Tbe element A [1J is tbe sale

occupant of zone log2 n. We tbus need to compute tbe sum

IOfoft

L
1:1

in/2i+l

We can provide &0 upper bouod on the finite eum (5.3) by extending it to an infinite
eum and then pulliog out the factor n/2:

i;int

; i--)
a) ;

Fig. 5.51.

Tbe number of calla to bubbleDovn decreases rapidly as we go througil
tbe alTaY from Iow to mgh iodices.

(5.3)
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~ L i/2' (5.4)
i=l

We must now get an upper bound on the sum in (5.4). This sum, ~~1 i/2',
can be written 88

(1/2) + (1/4 + 1/4) + (1/8 + 1/8 + 1/8) + (1/16 + 1/16 + 1/16 + 1/16) + ...

We can write th~ inv~ powen oí 2 88 the triangie shown in Fig. 5.53. Each row
is3D infinite geometric series with ratio 1/2, which suma to twice the fint term in
the series, 88 indicated at the right edge of Fig. 5.53. Tbe row sums form anotber
geometric series, which sums to 2.

It follows that (5.4) is upper-bounded by (n/2) x 2 = n. That is, the number
of calla to bubbleDoVD in tbe function heapify is no greater tban n. Since we have
already established that each call takes 0(1) time, exclusive of any recursive calla,
we conclude tbat the total time taken by heapify is O(n).

The Complete Heapsort Algorithm
Tbe C program for beapsort is sbown in Fig. 5.54. It uses an array of integers
A[1. .UI] for the beap. Tbe elements to be sorted are inserted in A[1..n]. Tbe
definitions of tbe function declarations in Fig. 5.54 are contained in Sections 5.9

and 5.10.
Line (1) calls heapify, wbich tufOS tbe n elements to be sorted into a beap;

and line (2) initializes i, which marks the end of the heap, to n. The loop of
liDes (3) and (4) appli~ deleteaax n - 1 times. We sbould examine tbe code of
Fig. 5.49 again to observe tbat deleteaax(A.i) swaps the maximum element of
tbe remaining beap - wbich is always in A[1] - witb A[al. As a side effect, i is
decremented by 1, 80 that tbe size of tbe beap sbrinks by 1. The element "deleted"
by delet~ at line (4) is now part of tbe sorted tail of tbe array. It is less tban
or equal to any element in tbe previous tail, A[1+1. .n], but greater than or equal
to any element still in tbe beap. Thus, the claimed property is maintained; all tbe
beap elements precede all tbe elements of tbe tail.
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1/4 + 1/8 + 1/16
1/4 + 1/8 + 1/16

1/8 + l/le
1/16

1
1/2
1/4
1/8

1/2 +
+
+
+

+ -.. .

:~ ..

Arranging E::l i/2; as a triangular sumoFig. 5.53.

Running Time of Heapsort
We have just established that heapify in line (1) takes time proportiooal to n. Line
(2) clearly takes O( 1) time. Since i decrea8e8 by 1 each time around the loop of liDes
(3) and (4), the number oftimes around the loop is n-l. The call to delet.u at
lioe (4) tak~ O(logn) time. Thus, the total time Cor the loop is O(nlogn). That
time dominates liDes (1) and (2), and so the running time ofheapsort is O(n lOS n)

00 n elements.
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linclude <stdio.h>

~efin. KAX 100

int A [KAI+1] ;

void bubbleDown(int AD. int i. int n);

void delet...x(int AO. int .pn);

void heapify(int ID. int a);

void heapsort(int AO. int n);

void ..ap(int AO. int i. int j);

aain()
{

int i, n, X;

n = o;

.hile (n < "Al U acant("'I.d", tx) != IOF)
A[ ++nJ = x;

heapaort(A, n);
for (i = 1; i <= n; i++)

printf("Xd\n", A[iJ);
}

yoid heapaort(int AO, int n)
{

int i;

(1) heapitJ(A, n);
(2) i = n;

(3) .hile (i > 1)

(4) deleteaax(A, ti);
}

Fig. 5.64. Heapeorting an alTaY.

EXERCISES

5.10.1: Apply heapsort to the list ofelements 3, 1,4,1,5,9,2,6,5.

}

void heapaort(int AO. iJ
{

int i;

heapify(A. n);
i = n;

.hile (i > 1)

d.l.t~(A. ai);
}

Fig.5.54.

(1)
(2)
(3)
(4)

5.10.2*: Give an O(n) running time algorithm that finda the ~ largest elements
in a list oí n elements.

+++ 5.11 Summary+

Tbe reader sbould take away tbe following points from Chapter 5:

+ Trees are an important data model for rep~nting hierarchical information.

5
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+ Many data structures involving combinations of arrays and pointers can be used
to implement t~, ud the data structure of choice dependa on the operations
performed on the tree.

+ Two of the m~t important representations for tree nodes are the leftm~t-
child-right-sibling representation and the trie (array of pointers to children).

+ Recursive algoritbms and proofs are well suited for trees. A variant of our
basic induction scheme, called structural induction, is effectively a complete
induction on the number of nodes in a tree.

+ The binary tree is a variant ofthe tree model in which each node has (optional)
left and right children.

+ A binary search tree is a labeled binary tree with the "binary search tree
property" that ala the labels in the left subtree precede the label at a nade, and
alllabels in the right subtree follow the label at the nade.

+ The dictionary abstract data type is a set upon wbicb we can perform the oper-
ations insert, delete, and lookup. Tbe binary search tree efficiently implements
dictionaries.

+ A priority queue is another abstract data type, a set upon which we can perform
the operations insert and deletemaz.

+ A partially ordered tree is a labeled binary tree with the property tbat the
label at any nade is at least as great as the label at its children.

+ Balanced partially ordered trees, where the nodes fully occupy levels from the
root to the lowest level, where only the leftm~t p~itions are occupied, can be
implemented by u array structure called a heap. Tbis structure provides an
O(log n) implementation of a priority queue ud leads to an O( n log n) sorting
algorithm called heapeort.

The trie repr~ntation oí trees is írom Fredkin [1960]. The binary 8e&rd1 tree W88
invented independently by a number oí people, ud tbe reader is reíerred to Knuth
[1973] íor a history as well as a great deal more iníormation 00 various kinds oí
search trees. For more advanced applicatioDS oí trees, ~ Tarjan [1983].

Williams [1964] devised the heap implementatioo oí balanced partially ordered
trees. Floyd [1964] d~ribes an efficient version oí beapeort.

Floyd, R. W. [1964]. "Algorithm 245: Treesort 3," Comm. ACM 1:12, pp. 701.

Fredkin, E. [1960]. "Trie memory," Comm. ACM 3:4, pp. 490-500.

Knutb, D. E. [1973]. The Art o( Computer Programming, Vol. 111, Sorting and
SeardJing, 2nd ed., Addison-Wesley, Reading, M~.

Tarjan, R. E. [1983]. Data Structures and Network Algorithms, SIAM Press,
Philadelphia.

Williams, J. W. J. [1964]. MAlgoritbm 232: Heapeort," Comm. ACM 1:6, pp. 347-
348.
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+:+ 9.1 What This

~~
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GraphThe

~

Data Model

A graph is, in a sense, nothing more than a binary relation. However, it has a
powerful visualization as a set of points (called nades) connected by liDes (called
edges) or by arrows (called arcs). In this regard, the graph is a generalization of the
tree data model that we studied in Chapter 5. Like trees, graphs come in several
forros: directedfundirected, and labeledfunlabeled.

Also like trees, graphs are useful in a wide spectrum of problems such as com-
puting distances, finding circularities in relationships, and determining connectiv-
ities. We have already seen grapbs used to represent tbe structure of programa in
Cbapter 2. Grapbs were u8ed in Cbapter 7 to represent binary relations and to
illustrate certain properties of relations, like commutativity. We sball see grapbs
used to represent automata in Cbapter 10 and to represent electronic circuits in
Chapter 13. Several otber important applications oí graphs are discussed in this

chapter.

Chapter Is About

The main topics of this chapter are

... The definitions conceming directed and undirected graphs (Sections 9.2 and

9.10).

... The two principal data structures for representing graphs: adjacency lists and
adjacency matrices (Section 9.3).

... An algorithm and data structure for finding the connected components of an
undirected graph (Section 9.4).

... A technique for finding minimal spanning trees (Section 9.5).

... A useful technique for exploring graphs, called "depth-first search" (Section

9.6).

451
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+ Applications of depth-first search to test whether a directed graph has a cycle,
to find a topological arder for acyclic graphs, and to detennine whether there
is a path fram one node to another (Section 9.7).

+ Dijkstra's algorithm for finding shortest paths (Section 9.8). This algorithm
finds the mínimum distance from one "source" node to every nade.

+ Floyd's algorithm for finding the mínimum distance between any two nodes

(Section 9.9).

Many of the algorithms in this chapter are examples of useful techniques that are
much more efficient than the obvious way of solving the given problem.

.:. 9.2 Basic Concepts

Directed graph A directed graph, consista of

l. A set N of node6 and

2. A binary relation A on N. We call A the set of arc6 of the directed graph.
Ara are thus paira of nod5.

Graphs are drawn as suggested in Fig. 9.1. Each node is rep~nted by a
circle, with the name of the node inside. We shall usually name the nodes by
integers starting at O, or we shail use an equivalent enumeration. In Fig. 9.1, the
set of nodes is N = {O, 1,2, 3,4}.

Each arc (u, ti) in A is repre&ented by an arrow from u to ti. In Fig. 9.1, the
~t of arcs is

A = {(O,O), (0,1), (0,2), (1,3), (2,0), (2,1), (2,4), (3,2), (3,4), (4,1)}

Nodes and ara

Head and tail In text, it is customary to repreeent an arc (Ut v) 88 u -+ v. We call v the head
of the arc and u the toil to conform with tbe notion tbat v is at tbe head of tbe

Fig. 9.1. Exampte of a directedgraph.
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.,,
arrow and u is at its tail. For example, O -t 1 is an arc of Fig. 9.1; its bead is nade
1 and its tail is node O. Anotber arc is O -t O; such an arc froro a nade to itself is

Loop called a loop. For tbis arc, botb tbe bead and tbe tail are node O.

Predecessors and Successors

Wben u -t v is an arc, we can also say tbat u is a predece or of v, and tbat v is a
successor of u. Tbus, the arc O -t 1 tells us that O is a predecessor of 1 and tbat 1
is a successor of O. The arc O -t O tells us that node O is both a predecessor and a
successor of itself.

Labels

As for trees, it is permissible to attach a label to each node. Labels will be drawn
near their nade. Similarly, we can label arca by placing the label near the middle
of tbe arco Any type can be used as a node label or an arc label. For instance, Fig.
9.2 sbows a nade named 1, with a label "dog," a node named 2, labeled "cat," and
an arc 1 -t 2 labeled "bites."

0~~
dog cat

Fig. 9.2. A labeled graph with two nodes.

Again as with trees, we should not confuse the name of a nade with its label.
Node names must be unique in a graph, but two or more nades can have the same
l&bel.

Paths

A path in a directed graph is a list of nodes (VI, t.I2, . . . , VJr.) such that there is an arc
Length of a froro each node to the next, that is, Vi -t Vi+I for i = 1,2,..., k-l. The length
path of the path is k - 1, the number of arcs along the path. For example, (0,1,3) is a

path of length two in Fig. 9.1.
The trivial case k = 1 is permitted. That is, any node v by itself is a path of

length zero from v to v. This path has no arca.

Cyclic and Acyclic Graphs
A cycle in a directed graph is a path of lengtb 1 or more tbat begins and ends at

Length of a tbe same nade. Tbe length o/ the cycle is the lengtb of tbe patb. Note tbat a trivial
cycle path of length O is not a cycle, even thougb it "begins and ends at tbe same node."

However, a patb consisting of a single arc v -t v is a cycle of lengtb 1.

.. Example 9.1. Consider tbe grapbofFig. 9.1. Tbere is a cycle (0,0) oflengtb 1
because of the loop O -t O. There is a cycle (0,2, O) of lengtb 2 because of the arcs
O -t 2 and 2 -t O. Similarly, (1,3,2,1) is a cycle of lengtb 3, and (1,3,2,4,1) is a
cycle of length 4. ..

1
c,: "O;

-h.!i ~-,~ '---"""'
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Note that a cycle can be written to start and end at any of its nades. That
is, the cycle (Vi, V2,..., Vk, Vi) could also be written as (f12,..., Vk, Vi, V2) or as
(V3,...,VklVi,V2,V3), and so on. For example, the cycle (1,3,2,4,1) could also
have been written as (2,4,1,3,2).

On every cycle, the first and last nades are the same. We say that a cycle
(Vi,V2,...,V",Vi) is simple ifno nade appears more than once among Vi,'",V,,;
that is, the only repetition in a simple cycle occurs at the final node.

Equivalent
cycles

Simple cycle

... Example 9.2. All the cycles in Example 9.1 are simple. In Fig. 9.1 the
cycle (0,2, O) is simple. However, there are cycles that are not simple, such as
(0,2,1,3,2, O) in which node 2 appears twice. ...

Given a nonsimple cycle oontaining Bode v, we can find a simple cycle contain-
ing v. To see why, write the cycle to begin and end at v, as in (v, V¡, V2,..., Vk, v).
If the cycle is not simple, then either

1. v appears three or more times, or

2. There is some node u other than v that appears twice; that is, the cycle must
look like (v,...,u,...,u,...,v).

In case (1), we can remove everything up to, but not including, the next-to-Iast
occurrence of v. The result is a shorter cycle from v to v. In case (2), we can remove
the section from u to u, replacing it by a single occurrence of u, to get the cycle
(v, . . . , u, . . ., v). The result must still be a cycle in either case, because each arc of
the result is present in the original cycle, and therefore is present in the graph.

It mar be necessary to repeat this transformation severa! times before the cycle
becomes simple. Since the cycle always gets shorter with each iteration, eventually
we must arrive at a simple cycle. What we have just shown is that if there is a cycle
in a graph, then there must be at least one simple cycle.

+ Example 9.3. Given the cycle (0,2,1,3,2, O), we can remove the first 2 and the
following 1,3 to get the simple cycle (0,2, O). In physical terms, we started with
the cycle that begins at O, goes to 2, then 1, then 3, back to 2, and finally back to
O. The first time we are at 2, we can pretend it is the second time, skip going to 1
and 3, and proceed right back to O.

For another example, consider the nonsimple cycle (O, O, O). As O appears three
times, we remove the first O, that is, everything up to but not including the next-
to-Iast O. Physically, we have replaced the path in which we went around the loop
O -+ O twice by the path in which we go around once. +

Cyclic graph Ir a graph has one or more cycles, we say the graph is cyclic. Ir there are no
cycles, the graph is said to be acyclic. By what we just argued about simple cycles,
a graph is cyclic ir and only ir it has a simple cycle, because ir it has any cycles at
all, it will have a simple cycle.

.. Example 9.4. We mentioned in Section 3.8 that we could represent the calls
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made by a collection of functions with a directed graph called the "calling graph."
The nodes are the functions, and there is an arc P -+ Q if function P calls function
Q. For instance, Fig. 9.3 shows the calling grapb &S8OCÍated witb tbe merge sort
algoritbm of Section 2.9.

The existence of a cycle in the calling graph implies a recursion in the algorithm.
In Fig. 9.3 there are four simple cycles, one around each of the nodes MakeLiat,
MergeSort, aplit, and aerge. Each cycle is a trivial loop. Recall that all these
functions call themselv~, and thus are recursive. Recursions in which a function
calls itself are by far the most common kind, and each of these appears as a loop in
the calling graph. We call these recursions directo However, one occasionally sees an
indirect recursion, in which there is a cycle of length greater than 1. For instance,
the graph

r""""'--~-"""~~
(~r-""-.'--\~) o(~ )

representa a function P that calls function Q, which calls function R, which calls
function P. +
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Acyclic
A path is said to be acyclic iCno nade appears more than once on the path. Clearly,
no cycle is acyclic. The argument that we just gave to show that Cor every cycle
there is a simple cycle also demonstrates the Collowing principie. If there is any path
at all Crom u to v, then there is an acyclic path Crom u to v. To see why, start with
any path Crom u to v. If there is a repetition oC some nade w, which could be u or
v, replace the two occurrences oC w and everything in between by one occurrence of
w. As Cor the case oC cycles, we may have to repeat this process several times, but
eventually we reduce the path to an acyclic path.

Example 9.5. Consider the graph of Fig 9.1 again. The path (0,1,3,2,1,3,4)
is a path fraro O to 4 that contains a cycle. We can focus on the two occurrences of
nade 1, and replace them, and the 3,2 between them, by 1, leaving (0,1,3,4), which
is an acyclic path because no nade appears twice. We could also have obtained the
same result by focusing on the two occurrences of node 3. +

U ndirected Graphs

Sometimes it makes sense to connect nades by liDes that have no direction, called
edges. Formally, an edge is a set of two nades. The edge {u, v} says that nades u
and v are connected in both directions.l If {u,v} is an edge, then nodes u and v
are said to be adjacent or to be neighbors. A graph with edges, that is, a graph
with a symmetric arc relation, is called an undirected groph.

.

Edge

Neighbors

+ Example 9.6. Figure 9.4 represents a partial road rnap of the Hawaiian Islands,
indicating BOrne of the principal cities. Cities with a road between thern are indicated
byan edge, and the edge islabeled by the driving distance. It is natural to represent
loada by edges, rather than arcs, because roads are norrnally two-way. +

Paths and Cycles in U ndirected Graphs

A path in an undirected graph is a list of nodes (v¡, V2, . . . , Vk) such that each
node and the next are connected by an edge. That is, {Vi, Vi+ 1} is an edge for
i = 1,2,..., k - l. Note that edges, being sets, do not have their elernents in any
particular order. Thus, the edge {Vi, Vi+¡} could just 88 well appear 88 {Vi+¡, Vi}.

The length of the path (v¡, V2, . . . , VIr) is k-l. As with directed graphs, a node
by itself is a path of length O.

Defining cycles in undirected graphs is a little tricky. The problern is that we
do not want to consider a path such 88 (u, V, u), which exists whenever there is an
edge {u, v}, to be a cycle. Sirnilarly, if (V¡, V2,. . ., VIr) is a path, we can traverse it
forward and backward, but we do not want to call the path

(V¡,V2,.. .,VIr-¡,Vk,Vk-¡,.. .,V2'Vl)

1 Note tbat the edse is ~quired to have exactly two nodes. A singleton set consisting of one

node is not an edge. Thus, although an are from a node to itself ia permitted, we do not
pemlit a looping edge from a node to itself. Some definitioDs of "undi~cted graph" do pemlit
such loop..

Paths
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~~~

An undirected grapb representing roads in three Hawaiian Islands
Oahu, Maui, and Hawaii (clockwise from tbe left).

Fig. 9.4.

a cycle.
Perhaps the easiest approach is to define a simple cycle in an undirected graph

to be a path of length three or more that begins and ends at the same node, and
with the exception of the last node does not repeat any node. The notion of a
nonsimple cycle in an undirected graph is not generally useful, and we shall not
purgue this concept,

As with directed cycles, we regard two undirected cycles 88 the same if they
consist of the same nades in the same order, with a different starting point, Undi-
rected cycles are also the same if they consist of the same nades in reverse order.
Formally, the simple cycle (VI, V2,o o o, VIt) is equivalent, for each i between 1 and k,
to the cycle (Vi, Vi+I"", VIt, VI, V2,..', Vi-l) and to the cycle

(tli, tli-1 , . . . , tl1, ti", tI"-1, . . . , "'+1)

Example 9.7. In Fig. 9.4,

(Wahiawa, Pearl City, Maili, Wahiawa)

is a simple cycle oí length three. It could have been written equivalently as

(Maili, Wahiawa, Pearl City, Maili)
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by starting at Maili and proceeding in the same order around the circle. Likewiae,
it could have been written to start at Pearl City and proceed around the circle in
reverse order:

(Pearl City, Maili, Wahiawa, Pearl City)

For another example,

(Laie, Wahiawa, Pearl City, Honolulu, Kaneohe, Laie)

is a simple cycle of length five. +

EXERCISES

9.2.1: Consider the graph of Fig. 9.5.

a) How many arcs are there?
b) How many acyclic paths are there from node a to node d? What are they?
c) What are the predecessors of node 6?
d) What are the succeaors of node 6?
e) How many simple cycles are there? List them. Do not repeat paths that differ

only in the starting point (see Exercise 9.2.8).
() List all the nonsimple cycl~ o( lengt.h up to 7.

9.2.2: Consider the graph o( Fig. 9.5 to be an undirected graph, by replacing each
arc u -+ v by an edge {u,v}.

a) Find all the patbs from a to d that do not repeat any nade.
b) How many simple cycles are there that include all six nades? List theae cycles.
c) What are the neighbors of nade a?

9.2.3-: If a graph has 10 nades, what is tbe larg~t number of arcs it can have?
What is the smallest po88ible number of arca? In general, if a graph has n nod~,
what are the mínimum and maximum number of arca?

9.2.4-: Repeat Exercise 9.2.3 for the edg~ of an undireded graph.

9.2.5-.: If a directed graph is acyclic and has n nades, what is the large8t p<8ible
number of arca?

Fig. 9.5. grapb fcr ~--!.~ 9.2.1 and 9.2.2.Directed
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Find an of indirect recursion among the functions 80 lar in this9.2.6:
book.

9.2.7: Write tbe cycle (0,1,2, O) in all possible ways.

9.2.8*: Let G be a directed grapb and let R be tbe relation on tbe cycles of G defined
by (UI".. ,Uk,UI)R(Vl," .,Vk,VI) ifand only if(UI,'.. ,Uk,UI) and (VI,... ,Vk, VI)
represent tbe same cycle. Sbow that R is an equivalence relation on the cycles of
G.

9.2.9*: Show that the relation S defined on tbe nades of a grapb by uSv if and only
if u = V or there is some cycle that includes both nades u and v, is an equivalence
relation.

9.2.10*: When we discussed simple cycles in undirected graphs, we mentioned
that two cycles were really the same if they were the same nades, either in order,
or in reverse order, but with a different starting point. Show that the relation R
consisting of pairs of representations for the same simple cycle is an equivalence
relation.

There are two standard ways to represent a graph. Que, called adjacency lists, is
familiar from the implementation oí binary relations in general. The second, called
adjacency matrices, is a new way to represent binary relations, and is more suitable
for relations where the number of pairs is a sizable fraction of the total number
of pairs that could poesibly emt over a given domain. We shall consider these
representations, first for directed , then for undirected graphs.grapbs

Adjacency Lists

Let nodes be named either by the integers 0,1, . .., M AX - 1 or by an equivalent
enumerated type. In general, we shall use NODE as the type of nodes, but we
may 8UPPose that NODE is a synonym for int. Then we can use the generalized
characteristic-vector approach, introduced in Section 7.9, to represent the set of
arcs. This representation is called adjacency lists. We define linked lists of nodes

by
typedet struct CELL .LIST;
struct CELL {

NODE nodeName;
LIST next;

};

and then create an array

succeaaora[MAX];LIST

That is, the entry successors [u] contains a pointer to a linked list oí all the
8Uccessors of nade u.
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Fig. 9.6.

Example 9.8. Tbe grapb oí Fig. 9.1 can be represented by the adjacency lists
shown in Fig. 9.6. We have sorted the adjacency lista by Bode number, but the
successors of a node can appear in any order on ita adjacency listo +

+

Adjacency Matrices

Another cornrnon way to represent directed grapbs is as adjacency matrices. We
can create a two-dirnensional array

BOOLEAN

in which the value or arca [u] [v] is TRUE ir there is an arc u -+ v, and FALSE ir noto

... Example 9.9. The adjacency matrix for
9.7. We use 1 for TRUE and O for FALSE. ...

Operations on

We can see some of the distinctions between the two graph representations if we
consider BOrne simple operations on graphs. Perhaps the m~t basic operation i8
to determine whether there is an arc u -+ v (rom a node u to a nade v. In the
adjacency matrix, it takes 0(1) time to look up arca [u] [y] to see whether the
entry there is TRUE or noto

8UCC8SS0rs

o
1

2

3

4

Adjacency-list representation of the graph shown in Fí¡. 9.1.

arC8 (MllJ [MAl] ;

of Fig. 9.1 is shown in Fig.the graph

o
1
O
O

o
1

1

O

1

2
3
4

1

O
O
O

o
o
1

O

o
1

O

1

Fig.9.7. the gnph oí Fig. 9.1.AdjKency matrix

Graphs
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Comparison of Adjacency Matrices and Adjacency Lists

We tend to prefer adjacency matrices when the graphs are dense, that is, when the
number of arcs is near the maximum possible number, which is n2 for a graph of n
nodes. However, if the graph is sparse, that is, if most of the possible arcs are not
present, then the adjacency-list representation mar save space. To see why, note
that an adjacency matrix for an n-node graph has n2 bita (provided we represent
TRUE and FALSE by single bita rather than integers as we have done in this section).

In a typical computer, a structure consisting of an integer and a pointer, like our
adjacency list cells, will use 32 bita to represent the integer and 32 bita to represent
the pointer, or 64 bita total. Thus, if the number of arcs is a, we need about 64a
bita for the lista, and 32n bits for the array of n headers. The adjacency list will use
less space than the adjacency matrix if 32n + 64a < n2, that is, if a < n2/64 - n/2.
If n is large, we can neglect the n/2 term and approximate the previous inequality
by a < n2/64, that is, if fewer than l/64th of the possible arcs are actually presento
More detailed argumenta favoring one or the other representation are presented
when we discuss operations on graphs. The following table summarizes the preferred
representations for various operations.

OPERATION DENSE GRAPH SPARSE GRAPH

Look up an arc Adjacency matrix Eitber
Find 8U~rs Eitber Adjacency lists
Find predecessors Adjacency matrix Eitber

With adjacency lists, it takes 0(1) time to find tbe beader of tbe adjacency
list for u. We must tben traverse this list to the end if v is not there, or half the
way clown the list on the average if v is presento If there are a arcs and n nades in
the graph, then we take time 0(1 + a/n) on the average to do the 100kup. If a is
no more than a constant factor times n, this quantity is 0(1). However, the larger
a is when compared with n, the longer it takes to tell whether an arc is present
using the adjacency list representation. In the extreme case where a is around n2,
its maximum possible value, there are around n nades on each adjacency listo In
this case, it takes O(n) time on the average to find a given arco Put another way,
the denser a graph is, the more we prefer the adjacency matrix to adjacency lists,
when we need to look up a given arco

On tbe otber hand, we often need to find all tbe successors of a given node
U. Using adjacency lists, we go to 8UCC888ors [uJ and traverse the list, in average
time O(a/n), to find all tbe successors. If a is comparable to n, then we find all the
successors of u in 0(1) time. But with adjacency matrices, we must examine tbe
entire row for nade u, taking O(n) time no matter what a is. Tbus, for grapbs with
a small number of edges per nade, adjacency lists are much rastel tban adjacency
matrices when we need to examine all the successors of a given nade.

However, suppose we want to find all the predecessors of a given node v. With
an adjacency matrix, we can examine tbe column for v; a 1 in the row for u means
that u is a predecessor of v. This examination takes O(n) time. The adjacency-
list representation gives us no help finding predecessors. We must examine the
adjacency list for every nade u, to see if that list includes v. Thus, we may examine
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A Matter oí Degree

The number of arca out of a node v is called the out-degree of v. Thus, the out-
degree of a node equals the length of its adjacency list; it also equals the number
of 1 's in the row for v in the adjacency matrix. The number of arca into node v is
the in-degree of v. The in-degree measures the number of times v appears on the
adjacency list of some node, and it is the number of 1 's found in the column for v
in the adjacency matrix.

In an undirected graph, we do not distinguish between edges coming in or
going out of a node. For an undirected graph, the degree of node v is the number
of neighbors of v, that is, the number of edges {u, v} containing v for some node
u. Remember that in a set, order of members is unimportant, so {u, v} and {v, u}
are the same edge, and are counted only once. The degree 01 an undirected graph is
the maximum degree of any node in the graph. For example, if we regard a binary
tree as an undirected graph, its degree is 3, since a node can only have edges to its
parent, its left child, and its right child. For a directed graph, we can say that the
in-degree 01 a groph is the maximum of the in-degrees of its nodes, and li kewise , the
out-degree 01 a groph is the maximum of the out-degrees of its nodes.

all the cells of all the adjacency lists, and we shall probably examine most of them.
Since the number of cells in the entire adjacency list structure is equaJ to a, the
number of arca of the graph, the time to find predecessors using adjacency lists is
thus O(a) on a graph of a arca. Here, the advantage goes to the adjacency matrix;
and the denser the graph, the greater the advantage.

In- and Out-
degree

Degree of a
graph

Implementing Undirected Grapbs
If a graph is undirected, we can pretend that each edge is replaced by arcs in both
directions, and represent the resulting directed grapb by either adjacency lists or
an adjacency matrix. If we use an adjacency matrix, the matrix is symmetric.
That is, if we call the matrix edges, then edges[u][v] = edges[v][u]. If we use an
adjacency-list representation, then the edge {u, v} is represented twice. We find v
on the adjacency list for u and we find u on the list for v. That arrangement is
often useful, since we cannot tell in advance whether we are more likely to follow
the edge {u, v} from u to v or from v to u.

Symmetric
adjacency
matrix

Kaneohe
Honolulu

PearlCity
Maili

Wahiawa

Fig. 9.~.

o
1
O
O
O

1
O

1 o
1
O
1
1

o
o
1
O
1

o
o
1

1

O

o
o
o

1
o
o1

Adjacency-matrix representation of an undirected graph from Fig. 9.4.
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.. Example 9.10. Consider how to represent the largest component of the undi-
rected graph of Fig. 9.4 (which represents six cities on the island of Oahu). For the
moment, we shall ignore the labels on the edges. The adjacency matrix representa-
tion is shown in Fig. 9.8. Notice that the matrix is symmetric.

Figure 9.9 shows the representation by adjacency lista. In both cases, we are

using an enumeration type

enua CITYTYPE {Late, Kaneohe, Honolulu,
PearlCity, Maili, Vahiawa};

to index arrays. That arrangement is somewhat rigid, sÍDce it does not allow any
changes in the set of nodes of the graph. We shall give a similar example shortly
where we name nodes explicitly by integers, and use city names as node labels, for
more flexibility in changing the set of nodes. ..

8Ucc...or.

Laie

Kaneohe

Honolulu

PearlCity

MaiIi

Wahiawa

Fig. 9.9. Adjacency-list repre8entation of an undirected grapb from ras. 9...

Representing Labeled Graphs

Suppose a graph has labels on its arca (or edges if it is undirected). Using an
adjacency matrix, we can replace the 1 that represents the presence of arc u -t v in
the graph by the label of tbis arco It is necessary that we have some vaJue that is
permissible as a matrix entry but cannot be mistaken for a label; we use this value
to represent the absence of an arco

If we represent the grapb by adjacency lists, we add to the cells forming the
lista an additional field nodeLabel. If there is an arc u -t v with label L, then on
the adjacency list for node u we shall find a ceIl witb v in its nodelame field and L
in its nodeLabel field. That value representa the label of the arco

We represent labels on nodes in a different way. For an adjacency matrix, we
simply create another array, say llodeLabela, and let llodeLabela [u] be the label oí
node U. When we use adjacency lista, we already bave an array of headers indexed
by nodes. We cbange tbis array so that it has elements that are structures, ORe field
for tbe node label and one field pointing to the beginning of tbe adjacency listo

¡

'C(
~-- _ooó""".
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Fig. 9.10.

Fig. 9.11.

Example 9.11. Let us again represent the large component oí the graph oí
Fig. 9.4, but this time, we shall incorporate the edge labels, which are distances.
Furthermore, we shall give the nades integer names, starting with O íor Laie, and
proceeding clockwise. The city names themselves are indicated by nade labels..
We shall take the type of nade labels to be character arrays oí length 32. This
representation is more flexible than that oí Example 9.10, since ií we allocate extra
places in the array, we can add cities should we w1sh. The resulting graph is redrawn

...

Maili

Pearl
City

Map of Oahu with nades named by iotegers aod labeled by cities.

citie.

O Laie
1 Kaneohe
2 Honolulu

3 PearlCity
4 Maili

5 Wahiawa

-. ,., di.tanc..

O 1 2 3 4 5

O -1 24 -1 -1 -1 28

'~ ;':1 U~-l -1 ---11

2

3

4

Ó

-1

-1

11
,

-1

~~
1

-.1 -1

20 12
-1 15

15 -1
,71 .,.,.1

28 -1

of a directed graph.

~
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in Fig. 9.10, and the adjacency matrix representation is in Fig. 9.11.
Notice that there are really two parta to this representation: the arfar cities,

indicating the city that each of the integers O through 5 stands for, and the matrix
distancea, indicating the presence or absence of edges and the labels of present
edges. We use -1 as a value that cannot be mistaken for a label, since in this
example, labels, representing distances, must be positive.

We could declare this structure as follows:

typedef char CITYTYPE[32];
typedet CITYTYPE cities[KiX];
int distancea [Mil] [KiX] ;

Here, M AX is some number at least 6; it limits the number of nades tbat can ever
appear in our graph. CITYTYPE is defined to be 32-character arrays, and the arfar
cities gives tbe labels of the various nades. For example, we expect cities[O] to be
"Laie".

An alternative representation of the graph of Fig. 9.10 is by adjacency lists.
Suppose the constant M AX and the type CITYTYPE are as above. We define the
types CELL and LIST by

typedef struct CELL *LIST;
struct CELL {

NODE nodeNaae;
int distance;
LIST next;

};

Next, we declare the arfar cities by

struct {
CITYTYPE city;
LIST adjacent;

} cities[Mil];

Figure 9.12 sbows the grapb of Fig. 9.10 represented in this manner. .

citie.

o Laie

1 Kaneohe

2 Honolulu

.3 PearlCity

4 Maili

5 Wahiawa

Fig. 9.12. Adjacen<:y-Jist repreaentatiOD oí graph witb Bode and edge labels.
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EXERCISES

9.3.1: Represent tbe graph oí Fig. 9.5 (see the exercises oí Section 9.2) by

a) Adjacency lists

b) An adjacency matrix

Give the appropriate type definitions in each case.

9.3.2: Suppose the arcs of Fig. 9.5 were instead edges (i.e., the graph were undi-
rected). Repeat Exercise 9.3.1 for the undirected graph.

9.3.3: Let us label each ofthe arcs ofthe directed graph ofFig. 9.5 by the character
string of length 2 consisting of the tail followed by the head. For example, the arc
a -+ b is labeled by the character string ab. Also, suppose each nade is labeled
by the capitalletter corresponding to its name. For instance, the nade named a is
labeled A. Repeat Exercise 9.3.1 for this labeled, directed graph.

9.3.4*: What is the relationship between the adjacency-matrix representation of
an unlabeled graph and the characteristic-vector representation of a set of arcs?

9.3.5*: Prove by induction on n that in an undirected graph of n nades, the sum
of the degrees of the nades is twice the number of edges. Note. A proof without
using induction is also possible, but here an inductive proof is required.

9.3.6: Design algorithms to insert and delete arca from an (a) adjacency-matrix (b)
adjacency-list representation of a directed graph.

9.3.1: Repeat Exercise 9.3.6 Cor an undirected graph.

9.3.8: We can add a "predecessor list" to the adjacency-list representation of a di-
rected or undirected graph. When is this representation preferred Cor the operations
oC

a) Looking up an arc?

b) Finding all 8Uccessors?

c) Finding all predecessors?

Consider both dense and sp&rse graphs in your analysis.

.+.. 9.4 Connected Components

We can divide any undirected graph into one or more connected components. Each
connected component is a set of nodes with paths from any member of the compo-
nent to any other. Moreover, tbe connected components are maximal, that is, for
no node in the component is there a path to any node outside the component. If a
g~aph consista of a single connected component, then we say the graph is connected.

Connected

graph

of an Undirected Graph
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Physical Interpretation of Connected Components

Ir we are given a drawing of an undirected graph, it is easy to see the connected
components. Imagine that the edges are strings. Ir we pick up any nade, the
connected component of which it is a member wiii come up with it, and members
of all other connected components will stay where they are. Of course, what is easy
to do by "eyebali" is not necessarily easy to do by computer. An algorithm to find
the connected components of a graph is the principal subject of this section.

Example 9.12. Consider again the graph of the Hawaiian Islands in Fig. 9.4.
There are three connected components, corresponding to three islands. The largest
component consists of Laie, Kaneohe, Honoluiu, Pearl City, Maili, aod Wahiawa.
These are cities on the island of Oahu, and they are cieariy mutually connected
by roads, that is, by paths of edges. Also, clearly, there are no roads leading from
Oahu to any other island. In graph-theoretic terms, there are no paths from any of
the six cities mentioned above to any of the other cities in Fig. 9.4.

A second component consists of the cities of Lahaina, Kahului, Hana, and
Keokea; these are cities on the isiand of Maui. The third component is the cities oí
Hilo, Kona, and Kamuela, on the "big island" of Hawaii. ..

Connected Components as Equivalence Classes

Another useful way to look at connected components is that they are the equivalenc~

classes of the equivalence relation P defined on the nodes of the undirected graph

by: uPv if and only if there is a path from u to v. It is easy to check that P is an

equivalence relation.

1. P is reflexive, that is, uPu Cor any node u, since there is a path of length O

from any node to itself.

2. P is symmetric. If uPv, then there is a path from u to v. Since the graph is
undirected, the reverse sequence of nodes is also a path. Thus vPu.

3. P is transitive. Suppose uPw and wPv are true. Then there is a path, say

(%1, %2,. ..,%¡)
from u to w. Dere, u = %1 and w = %¡. Also, there is a path (Yl,Y2,...,Yk)
from w to v where w = Yl and ti = y". If we put these paths together, we get

a path from u to ti, namely
(u = %1,%2,'" ,%¡ = W = Yl,Y2,.'. ,Yk = v)

Example 9.13. Consider the path

(Honolulu, PearlCity, Wahiawa, Maili)

Crom Honolulu to Maili in Fig. 9.10. Also consider the path

(Maili, PearlCity, Wahiawa, Laie)
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from Maili to Laie in the same graph. Ir we put these paths together, we get a path
from Honolulu to Laie:

(Honolulu, PearlCity, Wahiawa, Maili, PearlCity, Wahiawa, Laie)

It happens that this path is cyclic. As mentioned in Section 9.2, we can always
remove cycles to get an acyclic path. In this case, one way to do 80 is to replace
the two occurrences of Wahiawa and the nades in between by one occurrence of
Wahiawa to get

(Honolulu, PearlCity, Wahiawa, Laie)

which is an acyclic path from Honolulu to Laie. +

Since P is an equivalence relation, it partitions the set ofnodes ofthe undirected
graph in question into equivalence cl~. The class containing node v is the set
of nodes u such that vPu, that is, the set oí nodes connected to v by a path.
Moreover, another property oí equivalence classes is that ií nodes u and v are in
different classes, then it is not possible that uPv; that is, there is never a path
írom a node in one equivalence class to a node in another. Thus, the equivalence
cl~ defined by the "path" relation P are exactly the connected components oí
the graph.

An Algorithm for Co

Suppose we want to construct the connected components oí a graph G. One ap-
proach is to begin with a graph Go consisting oí the nades oí G with Done oí the
edges. We then consider the edges oí G, one at a time, to construct a sequence oí
graphs Go, GI,..., where Gi consists oí the nades oí G and the first i edges oí G.

BASIS. Go consists oí only the nades oí G with Done oí the edges. Every nade is
in a component by itselí.

INDUCTION. Suppose we have the connected components Cor the graph Gi after
considering the first i edges, and we now consider the (i + l)st edge, {u, v}.

1. If u and v are in the same component oC Gi, then Gi+l has the same set of
connected components as Gi, because the new edge does not connect any nodes
that were not already connected.

2. If u and v are in different components, we merge the components containing
u and v to get the connected components Cor Gi+l. Figure 9.13 suggests why
there is a path from any node z in the component of u, to any node y in the
component of v. We follow the path in the first component Crom z to u, then
the edge {u, v}, and finally the path from v to y that we know exista in the
second component.

When we have considered al) edges in this manner, we have the connected compo-
nents oí the full graph.

the Connected Components
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Adding edge {u, v} connects the components containing u and v.
Fig.9.13.

Example 9.14. Let us consider the graph of Fig. 9.4. We can consider edges
in any order, but for reasons having to do with an algorithm in the next section,
let us list the edges in order of the edge 1 abeIs , smallest first. This Iist of edges is

shown in Fig. 9.14.
lnitially, alI thirteen nodes are in components of their own. When we consider

edge 1, {Kaneohe, HonoIuIu}, we merge these two nodes into a single component.
The second edge, {Wahiawa, PearICity}, merges those two cities. The third edge
is {PearICity, HonoIuIu}. That edge merges the components containing these two
cities. PresentIy, each of these components contains two cities, so we now have one

component with four cities, namely

{Wahiawa, PearlCity, Honolulu, Kaneohe}

AII other cities are still in components by themselves.

EOOE CITY 1 CITY 2 DISTANCE

1 Kaneobe Honolulu 11
2 Wahiawa PearlCity 12

",3 PearlCity Honolulu I 13

4 Wahiawa Maili 15
5 Kabului Keokea 16
6 Maili PearlCity 20

" 7 Labaina Kabului 22
8 Laie Kaneobe 24
9 Laie Wabiawa 28

10 Kona Kamuela 31
41 K amuela Hilo 45
12 Kahului Hana 60
13 Kona Hilo - 114

Fig. 9.14. Edges of Fig. 9.4 in order of labels.
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Edge 4 is {Maili, Wahiawa} and adds Maili to the large component. The fifth
edge is {Kahului, Keokea}, which merges these two cities joto a component. When
we consider edge 6, {Maili, PearICity}, we see a new phenomenon: both ends ofthe
edge are already in the same component. We therefore do no merging with edge 6.

Edge 7 is {Lahaina, Kahului}, and it adds the nade Lahaina to the component
{Kahului, Keokea}, forming the component {Lahaina, Kahului, Keokea}. Edge 8
adds Laie to the largest component, which is now

{Laie, Kaneohe, Honolulu, PearlCity, Wahiawa, Maili}

The ninth edge, {Laie, Wahiawa} , connects two cities in this component and is thus
ignored.

Edge 10 groups Kamuela and Kona into a component, and edge 11 adds Hilo
to this component. Edge 12 adds Hana to the component oí

{Lahaina, Kahului, Keokea}

Finally, edge 13, {Hilo, Kona}, connects two cities already in the same component.
Thus,

{Laie, Kaneohe, Honolulu, PearlCity, Wahiawa, Maili}
{Lahaina, Kahului, Keokea, Hana}
{Kamuela, Hilo, Kona}

is the final set oí connected components. .

A Data Structure for Forming Components

Ir we consider the algorithm described informally above, we need to be able to do
two things quickly:

1. Given a nade, find its current component.

2. Merge two components into one.

There are a number oí data structures that can support these operations. We shall
study one simple idea that gives surprisingly good performance. The key is to put
the nades oí each component into a tree.2 The component is represented by the
root oí the tree. The two operations above can now be implemented as follows:

1. To find the component oí a nade in the graph, we go to the representative
oí that nade in the tree and íollow the path in that tree to the root, which
represents the component.

2. To merge two different components, we make the root oí one component a child
oí the root of the other.

2 It ia important to undentand th&t., in what follows, the "t~" and the "graph" are distinct
structures. There ia a one-to-one correspondence between the nodes of the graph and the
nodes of the t~; that ia, eadt t~ node representa a graph Bode. However, the parent-child
edges of the t~ are not necesaarily edses in the graph.

-~. e"~
~ c~-~~, .
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Example 9.15. Let us follow the steps of Example 9.14, showing the trees
created at certain. steps. Initially, every Bode is in a one-node tree by itself. The
first edge, {Kaneohe, Honolulu}, causes us to merge two one-node trees, {Kaneohe}
and {Honolulu}, into one two-node tree, {Kaneohe, Honolulu}. Either Bode could
be made a child oí the other. Let us suppoee that Honolulu is made tbe cbild of
the root Kaneohe.

Similarly, the second edge, {Wahiawa, PearlCity}, merges Lwo trees, and we
mar suppose tbat PearlCiLy is made Lhe child oí the root Wahiawa. At Lhis point,
the current collection oí components is represented by the two trees in Fig. 9.15 and
nine one-node trees.

KaneoheWahiawa

HoDoluluPearlCity

The fust two nontriyjal t.rees as we m~ component.s.Fig.9.1$.

The tbird edge, {PearICity, Honolulu} , merges these two components. Let
us suppose that Wabiawa is made a child of the other root, Kaneohe. Then the
resulting component is repreaented by the tree of Fig. 9.16.

Ttoee repreeenting component of fOUT nodes.Fig. 9.16.

When we consider the fourth edge, {Wahiawa, Maili}, we merge Maili into tbe
component represented by the tree oí Fig. 9.16. We could either make Maili a cbild
oí Kaoeohe, or make Kaoeohe a child oí Maili. We preíer tbe former, since tbat
keepe tbe beigbt oí tbe tree amall, while making the root oí tbe large compooent
a child oí the root oí tbe small componeot tends to make patbs in tbe tree larger.
Large paths, in turn, cause us to take more time íollowing a path to the root, wbich
we need to do to determine tbe compooent oí a node. By íollowing that policy
and making arbitrary decisions when components bave the same height, we migbt
wind up witb the three trees in Fig. 9.17 that represent the three'final connected
components. +
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Kahului Kamuela

Lah~~ ~an. KOO./ ~IO

Fig.9.17.

BASIS. The basis is h = O.
the siaternent 5(0) is true.

We now know that ií a tree has n nodes and height h, it must be that n ~ 2h
Taking logarithms oí both sides, we have log2 n ~ h; that is, the heigbt of tbe tre4

Moili ::-¿" ..,~::- Laie
PearlCity

Such a tree must be a single node, and since ~ =
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,

~

PiS. 9.18. Forming a toree of heigbt h + l.

cannot be greater than the logarithm of the number of nodes. Consequently, when
we follow any path from a node to its root, we take O(logn) time.

We shall now describe in more detail the data structure that implements these
ideas. First, suppoee that there is a type NODE representing nodes. As before, we
auume the type IODE is int and !Al is at least the number of nodes in the graph.
For our example of Fig. 9.4, we shalllet IIAI be 13.

We shall algo assume that there is a list edg.. consisting of cells of type EDGE.
These cells are defined by

typedet .truct EDGE .EDGELIST;
.truct EDGE {

NODE nod.1. nod.2;
EDGELIST next;

};

Finally, for each node of the graph, we need a corresponding tree node. Tree
nodes will be structurea of type TREENODE, consisting of

l. A parent pointer, so that we can build a tree on the graph 's nodes, and follow
the tree to its root. A root node will be identified by having NULL as its parent.

2. The beight of the tree of wbicb a given node is the root. The beigbt will only
be used if the node is presentIr a root.

We may thus define type TREENODE by

typedet .truct TRE~ODE .TRBB;

.truct TREEIODE {
int height;
TREE parent;

}:

We sball define an array

TREE Bode. [!Al] ;

to aaociate with each graph node a node in some tree. It is important to realize
that each entry in tbe array Bode. is a pointer to a node in tbe tree, yet this entry
is the BOle representative of the node in tbe grapb.

Two important auxiliary functions are shown in Fig. 9.19. The first, tind,
takes a node a, gets a pointer to the correaponding tree node, Z, ~d follom tbe
parent pointers in Z and its ancestors, until it comes to the root. This searcb for
tbe root is performed by liDes (2) and (3). If the root is found, a pointer to the root
is returned at line (4). Note that at line (1), the type IODE must be int ~ it may
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/. return the root ot the tree containing th. tree node x
corre.ponding to graph node a ./

TREE tind(NODE a. TREE node. O);
{

(1)
(2)
(3)
(4)

}

/. merge the tree. vith roots x and y into one tree,

by aaking the root 01 the lo.er a child 01

the root ot the higher./

void .erge(TREE x, TREE y)

{
TREE higher, lo.er;

it (x->height > y->h.igbt) {
bigber = x;

lo.er = y;

}
el.. {

bigher = y;
lo..r = x;

(5)
(6)
(7)

(8)
(~)

(10)
(11)
(12)

}

be used to index tbe array Bode8.
Tbe eecond fundían, _rge,3 takes pointers to two tree nod5, z and &', wbich

must be the roots of distinct trees for the merger to work properly. The test o( line
(5) determines wbich ofthe roots bas the greater beigbt; ti5 are broken in favor o(
y. Tbe bigber is assigned to tbe local variable higher and the lower to the local
variable lover at liDes (6-7) or liDes (8-9), whichever is appropriate. Tben at line
(10) tbe lower is made a child of tbe higber and at. lin~ (11) and (12) tbe beigbt
of the higher, whiclt is now the root of the combined tree, is incremented by one if
the beigbts of TI and T2 are equal. The height o( tbe lower remains as it was, but
it is now meaningle88, becauae the lower is no longer a root.

Tbe heart of tbe algorithm to find connected components is sbown in Fig. 9.20.

3 Do not conf- thia function with a function of the 8ame name u8ed for merae 8OI"tins in
Chaptcn 2 and 3.

TREE x;

x = Bode. [a] ;

.hile (x->parent 1=
x = x->parent;

retnrn x;

NULL)

}
lo.er->parent = higher;

it (lover->height == higher->height)

++(higher->height);

Fig. 9.19. Auxiliary functions find and ..rse.
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#include

#define MAl 13

typedef int NaDE;
typedef struct EDGE .EDGELIST;

struct EDGE {
NaDE nodel, node2;

EDGELIST next;

};

typedef struct TREENODE *TREE

struct TREENODE {
int height;

TREE parent;

};

TREE find(RODE a. TREE nodeaO);
void aerge(TREE x. TREE y);
EDGELIST aakeEdges();

aain()
{

NODE u;
TREE a, b;
EDGELIST e;
TREE nodes (MAl] ;

~

/* initialize nodes so each node is in a tree by itself */

for (u = O; u < KAX; u++) {

nodes [u] = (TREE) malloc(sizeof (struct TREENODE»;
(1)
(2)
(3)
(4)

nodes [u] ->parent = NULL;
nod.. [u] ->height = O;

}

/* initializ8 e as the liat of edg8s of the graph */

e = aak8Edge8();(5)

/. examine each edge. and if its ends are in different
coaponents. then aerge them ./

vhile (e != RULL) {
a = find(e->node1. nodes);
b = find(e->node2. node.);
if (& != b)

aerge(a. b);
e = e->next;

}

(6)
(7)
(8)
(9)
10)
11)

(
(

}

Fig. 9.20. C program to find connected components.
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.

Better Algoritbms lor Connected Components

We shall 8ee, when we leam about deptb-first 8earch in Section 9.6, that there is
actuaJly a better way to compute connected components, ORe that takes only O(m)
time, instead of O(mlogn) time. However, the data structure given in Section 9.4
is useful in its own right, and we shall gee in Section 9.5 another program that U8e8
this data structure.

We aMume tbat tbe (unction aü.Edg.. () turna tbe grapb at band into a list o(
edges. Tbe cacle (or this (unction is not shown.

Lines (1) through (4) o( Fig. 9.20 go down tbe array node., and for each nade,
a tree nade is created at line (2). Its parent field is set to NULL at line (3), making
it tbe root of its own tree, and its h.ight field is set to O at line (4), reftecting the
fact that the node is alone in its tree.

Line (5) then initializes e to point to the first edge on tbe list of edges, and
the loop of lin~ (6) tbrougb (11) examines each edge in turno At liDes (7) and (8)
we find tbe roots of tbe two ends of tbe current edge. Then at line (9) we test to
see if these roots are different tree nades. If so, the ends of the current edge are
in different components, and we merge these components at line (10). I( tbe two
ends o(the edge are in the same component, we skip line (10),80 no change to tbe
collection of trees is made. Finally, line (11) advances U8 along tbe list of edges.

Running Time of the Connected Components Aigorithm

Let us determine bow long the algoritbm of Fig. 9.20 takes to pr0ce8 a grapb.
Sup~ tbe grapb has n nades, and let m be tbe larger of the number of nades and
the number of edges.4 First, let us examine the auxiliary functions. We argued that
the policy of merging lower trees into higber ones guarantees tbat the patb from
any tree nade to its root cannot be longer than logn. Thus, find takes O(logn)
time.

Next, let us examine the function aerge from Fig. 9.19. Each ofits statements
takes O( 1) time. Since there are no loops or function cal1s, the entire function takes
0(1) time.

FinaUy,let us examine the main program of Fig. 9.20. Tbe body of the for-loop
oflines (1) to (4) takes 0(1) time, and tbe loop is iterated n tim~. Thus, tbe time
for liDes (1) tbrough (4) is O(n)- Let us aaume line (5) takes O(m) time. Finally,
consider tbe while-loop of liDes (6) to (11). In the body, lin~ (7) and (8) eacb
take O(logn) time, since tbey are calla to a fundion, fiAd, that wejust. determined
takes O(logn) time. Lines (9) and (11) clearly take 0(1) time. Line (10) likewiae
takes 0(1) time, because we just determined that function aerge takes 0(1) time.
Thus, the entire body takes O(log n) time. The wbile-loop iteratee m tim~, wbere
mis the number ofedges. Tbus, tbe time for this loop Í8 O(mlogn), tbat is, tbe
number of iterations times tbe bound on tbe time for tbe body.

In general, tben, tbe running time of the entire program can be expre88ed as
O(n + m + mlogn). However, m is at least n, and 80 the mlogn term dominates
the other terms. Tbus, the running time of t,be program in Fig. 9.20 is O(miogn)-.

4 It i. nonnal to think o( m .. the number o( ed¡es, but in some Irapha, there are MOR noda
tban edsee.

MODEL

Time oí the Connected Components Algorithm
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Some distances wjthin the state of Michigan.Fig. 9.21.

EXERCISES

9.4.1: Figure 9.21 lists some cities in the state of Michigan and the road mileage
between them. For the purposes of this exercise, ignore the mileage. Construct the
connected components of the graph by examining each edge in the manner described

in this section.

9.4.2*: Prove, by induction on k, that a connected component of k nodes has at
least k - 1 edg~.

9.4.3*: There is a simpler way to implement "merge" and "find," in which we keep
an array indexed by nodes, giving the component oí each node. Initially, eacb node
is in a component by itself, and we name tbe component by the node. To find
tbe component of a nade, we simply look up the corresponding array entry. To
merge components, we run down tbe array, changing each occurrence of the first

component to the secando

a) Write a C program to implement this algorithm.

b) As a function of n, the number of nodes, and m, the larger of the number of
nodes and edges, what is the running time of this program?

c) For certain numbers of edges and nodes, this implementation is actually better
than the one described in the section. When?

9.4.4*: Suppoee that instead of merging lower trees into higher trees in the con-
nected components algorithm of this section, we merge trees with fewer nodes
into trees with a larger number of nodes. Is the running time of th~ connected-
components algorithm still O(mlogn)?
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..".... 9.5 Minimal Spanning 'li-ees

There is an important generalization ofthe connected componente problem, in which
we are given an undirected graph with edges labeled by numbers (integers or reals).
We must not onIy find the connected components, but for each component we must
find a tree connecting the nades of that component. Moreover, this tree must be
minimal, meaning that the sum of the edge labels is as small as possible.

The trees talked about here are not quite the same as the trees of Chapter 5.
Here, no nade is designated the root, and there is no notion of children or of arder
among the children. Rather, when we speak of "trees" in this section, we mean
unrooted, unordered trees, which are just undirected graphs that have no simple
cycles.

A spanning free for an undirected graph G is the nades of G together with a
subset of the edges of G that

1. Connect the nades; that is, there is a path between any two nades using onIy
edges in the spanning tree.

2. Form an unrooted, unordered tree; that is, there are no (simple) cycles.

If G is a single connected component, then there is always a spanning tree. A
minimal spanning free is a spanning tree the sum of whose edge labels is as small
as that of any spanning tree for the given graph.

..~.

Unrooted,
unordered trees

"
(1 Spanning tree

11

+ Example 9.16. Let graph G be the connected component for the island of
Oahu, as in Fig. 9.4 or Fig. 9.10. One possible spanning tree is shown in Fig. 9.22.
It is formed by deleting the edges {Maili, Wahiawa} and {Kaneohe, Laie} , and
retaining the other five edges. The weight, or sum of edge labels, for this tree is 84.
As we shall see, that is not a mínimum. ..

Weight of a tree

~!
~,

;J
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20

13

Fig. 9.22. A spanning tree for fue ialand oí Oahu.
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. Example 9.17. Tbe Acme Surfboard Wax Company has ofli~ in tbe thirteen
cities sbown in Fig. 9.4. It wisbes to rent dedicated data transmission liDes from the
phone company, and we shallsuppoee that the phone lines ron along the roads that
are indicated byedges in Fig. 9.4. Between islands, the company must use satellite
transmission, and tbe cost will be proportional to the number of components. How-
ever, for tbe ground transmission liDes, the phone company charges by the mile.5
Thus, we wish to find a minimalspanning tree for each connected component of the
graph of Fig. 9.4.

If we divide the edges by component, tben we can ron Kruskal's algoritbm on
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Rooted and U nrooted Trees
The notion of an unrooted tree sbould not seem too straoge. In fact, we can chooee
any nade of an unrooted tree to be the root. That gives a direction to all edges,
away from tbe root, or from parent to child. Physically, it is as if we picked up tbe
unrooted tree by a node, letting the rest of the tree daogle from the selected node.
For example, we could make Pearl City the root of the spanning tree in Fig. 9.22,
and it would look like this:

PearlCity

~I~Maih Wahiawa HonoluluWahil

Laje Kaneohe

We can order the children of each nade if we wish, but the order will be arbitrary,
bearing no relation to the original unrooted tree.

Finding a Minimal Spanning Tree

There are a number of algorithms to find minimal spanning trees. We shall exhibit
one, called A' rtlskal 's algorithm, that is a simple extension to the algorithm discussed
in the lut section for finding connected components. The changes needed are

1. We are required to consider edg5 in increuing order of their labels. (We
happened to cho<.e that order in Example 9.14, but it wu not required for
connected components.)

2. As we consider edges, if an edge has its ends in dift'erent components, then
we select that edge for the spanning tree and merge components, as in the
algorithm of the previous section. Otherwise, we do not select the edge for the
spanning tree, and, of course, we do not merge components.

s This is one pouible way to charle for leued telephone lines. One finds a minimal spanning
t.- connecting the desi~ sites, and the ch&r8e is bued on the wei«ht of that t~, rep¡odlea
of how the phone connections are provided physically.
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each component separately. However, if we do not already know the components,
then we must consider all the edges together, smallest label first, in the order of
Fig. 9.14. As in Section 9.4, we begin with each Bode in a component by itself.

We first consider the edge {Kaneohe, Honolulu}, the edge with the smallest
label. This edge merges these two cities into one component, and because we
perform a merge operation, we select that edge for the minimal spanning tree.
Edge 2 is {Wahiawa, PearICity}, and since that edge also merges two components'
it is selected for the spanning tree. Likewise, edges 3 and 4, {PearlCity, Honolulu}
and {Wahiawa, Maili}, merge components, and are therefore put in the spanning
tree.

Edge 5, {Kahului, Keokea}, merges these two cities, and is also accepted for
the spanning tree, although this edge will tUfO out to be part of the spanning tree
for the Maui component, rather than the Oahu component as was the case for the
four previous edges.

Edge 6, {Maili, PearICity}, connects two cities that are already in the same
component. Thus, this edge is rejected for the spanning tree. Even though we
shall have to pick some edges with larger labels, we cannot pick {Maili, PearICity},
because to do so would form a cycle ofthe cities Maili, Wahiawa, and Pearl City. We
cannot have a cycle in the spanning tree, so one of the three edges must be excluded.
As we consider edges in order of label, the last edge oc the cycle considered must
have the largest label, and is the best choice to exclude.

Edge 7, {Lahaina, Kahului}, and edge 8, {Laie, Kaneohe}, are both accepted
for the spanning tree, because they merge components. Edge 9, {Laie, Wahiawa},
is rejected because its ends are in the same component. We accept edges 10 and 11;
they form the spanning tree Cor the "big island" component, and we accept edge 12
to complete the Maui component. Edge 13 is rejected, because it connects Kona
and Hilo, which were merged into the same component byedges 10 and 11. The
resulting spanning trees of the components are shown in Fig. 9.23. +

~

Why Kruskal's AIgorithm Works

We can prove that Kruskal's algorithm produces a spanning tree whose weight is
as srnall as that of any spanning tree for the given graph. Let G be an undirected,
connected graph. For convenience, let us add infinitesirnal amounts to sorne labels, if
necessary, so that alllabels are distinct, and yet the sum of the added infinitesimals
is not as great as the difference between two edges of G that have different labels.
As a result, G with the new labels wiU have a unique minimal spanning tree, which
wiU be one of the rninirnal spanning trees of G with the original weights.

Then, let el, e2, . . . , em be all the edges of G, in arder of their labels, smallest
first. Note that this arder is also the arder in which Kruskal's algorithrn considera
the edges. Let K be the spanning tree for G with the adjusted labels produced by
Kruskal's algorithm, and let T be the unique minimal spanning tree for G.

We shall prove that K and T are really the same. If they are different, then
there rnust be at least one edge that is in one but not the other. Let eó be the firat
such edge in the ordering of edges; that is, each of el,. . ., eó-l is either in both K
and T, or in neither of K and T. There are two cases, depending on whether ei is
in K or is in T. We shall show a contradiction in each case, and thus conclude that
eó does not exist; thus K = T, and K is the rninimal spanning tree for G.

l'
,!
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12 Fig. 9.23. Spanning trees for the graph of Fig. 9.4.
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Greed Sometimes Pays

Greedy Kruskal's algorithm is a good example oí a greedy algorithm, in which we make a
algorithm series of decisions, each doing what seems best at the time. The local decisions

Ís are which edge to add to the spanning tree being formed. In each case, we pick
~, the edge with the least label that does not violate the definition of "spanning tree"
if by completing a cycle. Often, the overaIl efl'ect of locally optimal decisions is not

i.Js globaIlyoptimum. However, in the case of Kruskal's algorithm, it can be shown that
Iso the result is globaIly optimalj that is, a spanning tree of minimaI weight results.

ch

:8t Case 1. Edge ei is in T but not in K. If Kruskal's aIgorithm rejects ei, then ei must
! 'rs form a cycle with some path P of edges previously selected for K, as suggested in
I by Fig.9.24. Thus,theedgesofPareallfoundamongel,...,ei-l' However,Tand

I K agree about these edgesj that is, if the edges of P are in K, then they are aIso
~n in T. But since T has ei as well, P plus ei form a cycle in T, contradicting our
.st assumption that T was a spanning tree. Thus, it is not possible that ei is in T but

K not in K.

lB Case IJ. Edge ei is in K but not in T. Let ei connect the nodes u and v. Since T
at is connected, there must be some acyclic path in T between u and Vi call it path

Q. Since Q does not use edge ei, Q plus ei forros a simple cycle in the graph G.

..' ,

- ;.:;;;~.~.'._~
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There are two subcases, depending on whether or not ei has a higher label than all
the edges on path Q.

a) Edge ei has the highest label. Then all the edges on Q are among {el, . . ., ei-l}.
Remember tbat T and K agree on all edges before ei, and so all the edges of
Q are also edges of K. But ei is also in K, which implica K has a cycle. We
thus rule out the possibility that ei has a higher label than any of tbe edges of
path Q.

b) There is some edge f 00 path Q that has a higher label than ei. Suppose
f connects nodes w and z. Figure 9.25 shows the situation in tree T. Ir we
remove edge f from T, and add edge ei, we do not form a cycIe, because path
Q was broken by tbe removal of f. The resulting collection of edges has a lower
weight than T, because f has a higher label than ei. We claim the resulting
edges still connect all the nades. To see why, notice that w and z are still
connectedj there is a path that follows Q from w to ", tben follows tbe edge
ei, tben tbe patb Q from ti to z. Since {w, z} was tbe onIy edge removed, if its
endpoints are still connected, surely all nodes are connected. Thus, the new
set of edges is a spanning tree, and its existence contradicts the assumption
that T W8S minimal.

We bave now sbown that it is impossible for ei to be in K but not in T. That roles
out the second case. Since it is impossible that ei is in one of T and K, but not tbe
otber, we conclude that K realIy is tbe minimalspanning tree T. Tbat is, Kruskal 's
algorithm always finds a minimal spanning tree.

Running Time of Kruskal's AIgorithm

Suppose we ron Kruska!'s algorithm on a graph of n nades. Aa in the previous
section, Jet m be the larger of the number of nades and the number of edges, but
remember that typically the number of edges is the larger. Let us suppose that the
graph is represented by adjacency lists, so we can find all the edges in O(m) time.

To begin, we must sOrt the edges by label, which takes O(mlogm) time, if
we use an eflicient sorting algorithm such 88 merge sort. Next, we consider the
edges, taking O(mlogn) time to do all the merges and linda, as discussed in the

.0.., """'.'

...' "0

O ",,/ ;:' ", ~.
",~~:, ,

Fig. 9.24. Path P (solid lines) is in T and K; edge e¡ is in T onIy.
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Fig. 9.25. Path Q (salid) is in T.
We can add edge eó to T and remove the edge f.

previous section. It appears that tbe total time for Kruskal's algorithm is thus
O (m(log n + logm)).

However, notice that m :$: n2, because tbere are only n(n -1)/2 pairs of nodes.
Thus, logm :$: 2logn, aod m(logn + logm) :$: 3mlogn. Since constant factors can
be neglected within a big-oh expression, we conclude that Kruskal's algorithm takes
O( m log n) time.

EXERCISES

9.5.1: Draw the tree oí Fig. 9.22 ií Wahiawa is selected as the root.

9.5.2: Use Kruskal's algorithm to find minimal spanning trees íor each oí the
components oí the graph whose edges and labels are listed in Fig. 9.21 (see the
exercises íor Section 9.4).

9.5.3**: Prove that if G is a connected, undirected graph oí n oodes, and T is a
spanning tree íor G, theo T has n - 1 edges. Hint: We need to do an ioduction 00
n. Tbe hard part is to sbow tbat T must bave 8Ome node v with degree 1; tbat is,
T has exactly one edge containing v. Consider what would happen iííor every node
u, tbere were at least two edges oí T containing u. By íollowing edges into and out
oí a sequence oí nodes, we would eventually find a cycle. Since T is supposedly a
spanning tree, it could not have a cycle, wbich gives us a contradiction.

9.5.4*: Once we have selected n -1 edges, it is not necessary to consider any more
edges íor possible inclusion in the spanning tree. Describe a variation oí Kruskal's
algorithm that does not 8Ort all tbe edges, but puts them in a priority queue, witb
the negative oí tbe edge's label as its priority (i.e., shortest edge is selected first by
deleteMar). Show that ií a spanning tree can be íound among the first m/logm
edges, then tbis version oí Kruskal's algoritbm takes only O(m) time.

9.5.5*: Suppose we find a minimal spanning tree T for a graph G. Let us then add
to G the edge {u, v} with weigbt w. Under wbat circumstances will T be a minimal
spanning tree oí the new grapb?
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9.5.6..: An Euler circuit for an undirected graph G is a path that starts Uld ends
at the same nade and contain8 each edge of G exactly once.

a) Show that a connected, undirected graph has an Euler circuit if Uld only ir
each nade is of even degree.

b) Let G be an undirected graph with m edges in which every nade is oí even
degree. Give an O(m) algorithm to construct Ul Euler circuit for G.

Euler circuit

.:. 9.6 Depth-First Search

We shall now describe a graph-exploration method that is useful for directed graphs.
In Section 5.4 we discussed the preorder and postorder traversals of trees, where we
stan at the root and recursively explore the children of each nade we visito We can
apply almost the same idea to any directed graph.8 From any nade, we recursively
explore its successors.

However, we must be careful if the graph has cycles. If there is a cycle, we can
wind up calling the exploration function recursively around the cycle forever. For
instance, consider the graph of Fig. 9.26. Starting at nade a, we might decide to
explore nade 6 next. From 6 we might explore c first, and from c we could explore
6 first. That gets us into an infinite recursion, where we alternate exploring from 6
and C. In fact, it doesn't matter in what arder we choose to explore SUCCeMOrs of
b and C. Either we shall get caught in BOme other cycle, or we eventually explore c
from b and explore 6 from c, infinitely.

!!;

There is a simple 8O1ution to our problem: We muk nodes as we visit them,
and never revisit marked nodes. Tben, any node we can reach from our starting
node will be reached, but no previously visited node will be revisited. We sban lee

6 Notice that a tree can be thought of as a 8peciaJ case of a directed graph, if we l'egard the
ara of the tree as directed from parent to mildo In cact, a tree ia aI'waY8 an acyclic graph ..
_Do

An example djrected grapb.Fig.9.26.
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tbat tbe time taken by tbis exploration takes time proportional to tbe number of
arcs explored.

Tbe search algorithm is called depth-first sea~h because we find ourselves going
as far from tbe initial nade (as "deep") as fast as we can. It can be implemented
with a simple data structure. Again, let us assume that the type NaDE is used
to name nades and tbat this type is int. We represent arcs by adjal:-ency lists.
Since we need a "mark" for each nade, which can take on the values VISITED and
UNVISITED, we sball create an array of structures to represent the graph. These
structures will contain both the mark and the header for the adjacency listo

enua KARKTYPE {VISITED. UNVISITED};
typede.t struct {

enua KARXTYPE aark;
LIST 8ucceS80ra;

} GRAPH (MAX] ;

where LIST is an adjacency list, defined in tbe customary manner:

typede.t struct CELL *LIST;
struct CELL {

NaDE nodeNaae
LIST next;

};

We begin by marking all the nodes UNVISITED. Recursive function dfs(u, G)
of Fig. 9.27 works on a node u of sorne externaUy defined graph G of type GRAPH.

At line (1) we mark u VISITED, so we don't call dfs on it again. Line (2)
initializes p to point to the first ceU on the adjacency list for Bode u. The loop of
liDes (3) through (7) takes p clown the adjacency list, considering each successor, v,
of u, in turno

void dfs(NODE u, GRAPH G)
{

LIST p; /* runa dovn the adjacency liat of u */
NaDE v; /* the node in the cell pointed to by p */

G [uJ . aark = VISITED;
P = G[U].sucCeSSOr8;
while (p ! = RULL) {

(1)
(2)
(3)
(4)
(5)
(6)
(7)

v = p->nodeName;
if (G[v] .m.ark. = UNVISlTED)

dfs(v. G);
p = p->next;

}

Tbe recursive deptb-fu'St seardt function.Fig. 9.27.

Line (4) sets v to be the "current" successor of u. At line (5) we test whether
v has ever been visited before. If so, we skip tbe recursive call at line (6) and we
move p to the next cell of the adjacency list at line (7). However, ir v has never been
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visited, we start a depth-first search from nade V, at line (6). Eventually, we finish
the call to dfs(v. G). Then, we execute line (7) to move p clown u's adjacency list
and go around the loop.

Example 9.18. Suppose Gis the graph of Fig. 9.26, and, for specificity, &$Sume
the nades on each adjacency list are ordered alpbabetically. lnitially, all nades are
marked UNVISITEn. Let us call dfs(a).7 Nade a is marked VISITEn at line (1), and
at line (2) we initialize p to point to the first cell on a's adjacency listo At line (4)
v is set to b, since b is tbe nade in the first cell. Since b is currently unvisited, the
test ofline (5) succeeds, and at line (6) we call dfa(b).

Now, we start a new call to dfa, with ti = b, while tbe old call with ti = a is
dormant but still alive. We begin at line (1), marking b VISITEn. Since c is tbe first
nade on b's adjacency list, c becomes the value of v at line (4). Node c is unvisited,
so that we succeed at line (5) and at line (6) we call df.(c).

A third call to dfa is now alive, and to begin df.(c), we mark c VISITEn
and set v to b at line (4), since b is the first, and only, nade on c's adjacency listo
However, b was already marked VISITEn at line (1) of the call to dfs(b), so that
we skip line (6) and move p clown c's adjacency list at line (7). Since c has no more
successors, p becomes 1iULL, so that the test of line (3) fails, and dfs (c) is finished.

We now retum to the call dfa(b). Pointer p is advanced at line (7), and it
now points to the second cell oí b's adjacency list, which holds nade d. We set v to
d at line (4), and since d is unvisited. we call dfs(d) at line (6).

For the execution oídfa(d), we mark d VISITEn. Then vis first set to c. But
c is visited, and so next time around the loop, v = e. That leads to the call dfa(e).
Node e has only c as a successor, and so alter marking e VISITBD, dfs(e) returns
to dfa(d). We next set v = f at line (4) ofdfs(d), and call dfa(f). After marking
f VISITED, we find that f also has only c as a successor, and c is visited.

We are now finished witb dfa(f). Since f is the last successor oí d, we are
also finished with df s (d), and since d is the last successor oí b, we are done with
dfs(b) as well. Tbat takes us back to dfs(a). Nade a has another successor, d.
but that nade is visited, and so we are done with dfa(a) as well.

Figure 9.28summarizes the action oídfa on thegraph ofFig. 9.26. We show the
stack of calls to dfa, with the currently active call at the right. We also indicate the
action taken at each step, and we show the value oí the local variable v associated
with each currently live call, or show that p = 1iULL, indicating that there is no
active value for v. +

...

Constructing a Depth-First Search Tree

Because we rnark nodes to avoid visiting thern twice, the graph behaves like a tree
as we explore it. In fact, we can draw a tree whose parent-child edges are sorne of
the arcs of the graph G being searched. If we are in dfa(u), and a call to dfa(v)
results, then we rnake v a child of u in the tree. The children of u appear, frorn
left to right, in the order in which dfs was called on these children. The nade upon
which the initial c3.l1 to dfs was made is the root. No node can have dfs c3.lled on
it twice, since it is markedYISlTED at the first c3.l1. Thus, the structure defined is
truly a tree. We call the tree a depth-first sean::h free for the given graph.

- .hall omit the eecond 8I'gUment of dla, which ia always the graph G.7 In what

.

rollows,



SEC. 9.6 DEPTH-FIRST SEARCH 487

can df8(b)

CalI df8(C)

Skip; b already visited

Return

Call dfa(d)

Skip; c already visited

Call df8(e)

Skip; c already visited

Return

Call df8(f)

Skip; c already visited

Return

Return

Return

Skip; d already visited

Return

418(&)
v=b

418(&)
v=b

~

dfa{b)
v=c

dfa{b)
v=c

d:fs(c)
v=6

MaCa)
v=6

MaCa)
v=6

d.fa(b) d.fa(c)
v=c p=1ULL

<I1.(a)
v=b

<I18(a)
v=6

df8(a)
v=b

df8(b)
v=d

dfa(b)
v=d

dfs(d)
v=c

df8(b)
v=d

df8(b)
v=d

df8(b)
v=d

dfa(d)
v=e

dfaCa)
v=6

dfaCa)
11=6

dfa(d) dfa(e)
v=e v=c

dfa(d) dfs(e)
v=e p=WULL

df8(d)
tJ=/

df8(d) dfa(f)
tJ=/ tJ=c

dfa(d) df8(f)
v=/ p=RULL

M.(e)

df8{a) df8{b)
v=b v=d

dfa(a)
v=6

dfa(a)
v=6

dfa(b)
v=d

dfa(b)
v=d

cifa(a) cifa(b) cifs(d)
,,=6 ,,=d p=WULL

df8(b)

p=1ULL

df8(a)
tI=6

dfs(a)
v=d

df.(a)
p=NULL

Fig. 9.28. 1race of caIJs made during depth-first 8eard1.
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Example 9.19. The tree íor the exploration oí the graph in Fig. 9.26 that was
summarized in Fig. 9.28 is seen in Fig. 9.29. We show the free a~s, representing the
parent-child relationship, as solid liDes. Other arcs oí the graph are shown as dotted
arrows. For the moment, we should ignore the numbers labeling the nades. +

.

Fig.9.29.

When we build a depth-first search tree for a graph G, we can classify the arca of G
into four groups. It sbould be understood tbat tbis classification is with respect to
a particular depth-first search tree, or equivalently, witb respect to the particular
arder for the nades in each adjacency list that led to a particular exploration of G.
The four kinds of arca are

1. Tree ares, which are the arca u -+ v sucb tbat dfs(v) is called by dfs(u).

2. Fonoard ares, which are arca u -+ v such that v is a proper descendant of u, but
not a child of u. For instance, in Fig. 9.29, tbe arc a -+ d is tbe only forward
arco No tree arc is a forward arco

3. Backward ares, which are arca u -+ v such that v is an ancestor of u in the tree
(u = v is perntitted). Arc c -+ b is the only example of a backward arc in Fig.
9.29. Any loop, an arc from a Bode to itself, is cl888ified as backward.

4. Oross ares, wbicb are arca u -+ v such tbat v is neitber an ancestor nor de-
scendant of U. There are three cross arca in Fig. 9.29: d -+ c, e -+ c, and
f -+C.

In Fig. 9.29, each of the cross arca go from rigbt to left. It is no coincidence
tbat they do so. Supp~ we had in some depth-first search tree a cr<* arc u -+ v
such that u was to tbe left of V. Consider what bappens during the call to dfs(u).
By the time we finish dfs(u), we sball bave considered tbe arc from u to V. If v
has not yet been placed in the tree, then it becomes a child oí u in the tree. Since

Cross arcs go
from right to
left

6

3

One possible depth-first search tree for the graph of Fig. 9.26.

Search Treen of Arcs for a Depth-

.
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nodes
with
active
calla
to
dta

Part of tbe tree tbat ia built when arc u -+ v ia considered.Fig.9.30.

that evidently did not happen (ror then v would not be to the right of u), it must
be tbat v is already in the tree when tbe arc u -+ v is considered.

However, Fig. 9.30 shows the parts of the tree that exist while dfs(u) is active.
Since children are added in left-to-right order, no proper ancestor of node u as Jet
has a child to the right of u. Tbus, v can only be B.O ancestor of u, a descendant of
u, or somewhere to tbe left of u. Tbus, if u -+ v is a cross edge, v must be to the
left of u, not the right of u 88 we initially suppoeed.

Tbe Deptb-First Searcb Forest

We were quite íortunate in Example 9.19 that when we started at nade a, we were
able to reach all the nades oí the grapb oí Fig. 9.26. Had we started at any other
nade, we would not bave reached a, and a would not appear in the tree. Tbus, the
general method oí exploring a graph is to construct a sequence oí trees. We start
at some nade u and call dfa(u). If there are nades not Jet visited, we pick one,
8&Y v, and call dfa(w). We repeat this proceM as long as there are nades not Jet
a!Rñgned to any tree.

When aIl nades have been assigned a tree, we list the trees, írom len to right,
in the arder of their construction. This list of trees is called the depth-first sean.-h
forest. In terma oí the data types RODE and GRAPH defined earlier, we can explore an
entire externally defined graph G, starting the search on as many roots as necessary
by the íunction oí Fig. 9.31. There, we assume that the type IODE is int, and MAX
is the number oí nades in G.

In lines (1) and (2) we initialize all nades to be UfiISITBD. Then, in the loop
oí liDes (3) to (5), we consider each nade u in turno When we consider u, ií that
nade has not yet been added to any tree, it will still be marked unvisited when we
make the test oí line (4). In that case, we cal1 df8(U, G) at line (5) and explore
the deptb-first search tree with root u. In parfoicular, the first nade always becomes
the root of a tree. However, if u has already been added to a tree when we perform
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void dfsForest(GRAPH G)i
{

NODE u;

(1)
(2)
(3)
(4)
(5)

for

for

}

Fig.9.31.

the test oí line (4), then u will be marked
with root u.

Example 9.20. Suppose we apply the above algorithm to the graph oí Fig.
9.26, but let d be the nade whose name is O; that is, d is the first root oí a tree
for the depth-first spanning forest. We call d1.s(d), which constructs the first tree
of Fig. 9.32. Now, all nades but a are visited. As u becomes each oí the various
nades in the loop of liDes (3) to (5) oí Fig. 9.31, the test oí line (4) fails except
when u = a. Then, we create the one-node second tree of Fig. 9.32. Note that both
successors oí a are marked VISITEn when we call d1.s(a) , and 80 we do not make
any recursive calls from dta(a). +

.

When we present the nades of a graph as a depth-first search forest, the notions
of forward, backward, and tree arcs apply as before. However, the notion of a cross
arc must be extended to include arcs that ron from one tree to a tree to its left.
Examples of such crOM arcs are a -t b and a -t d in Fig. 9.32.

The rule that crOM arcs' always go from right to left continues to boldo The
reason is also the same. H there were a CfOM arc u -t v that went from one tree
to a tree to the right, then consider what happens when we call dfs(u). Since v

(u = o; u < MAl; u++)

G[u] .mark = UNVISITED;

(u = O; u < MAl; u++)

it (G [uJ . mark == UNVISITED)

dta(u. G);

Exploring a graph by exploring as many t~ as Decessary.

, and so we do not create a treeVISlTED

Fig. 9.32. A depth-first sean:b forest.
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The Perfection of Depth-First Search

Regardless of the relationsbip between the numbers of nades and arca, the running
time of the depth-first exploration of a graph takes time proportional to the "size"
of the graph, that is, the sum of tbe numbers of nades and arca. Thus, depth-first
search is, to within a constant factor, as fast as any algorithm that "Iooks at" the
graph.

was not added to the tree being formed at tbe moment, it must already bave been
in some tree. But the trees to the right of u have not yet been created, and so v
cannot be part of one of them.

Running Time of the Depth-First Search Algorithm
Let G be a graph with n nades and let m be the larger of tbe number of nades and
the number of arcs. Then dfsForest of Fig. 9.31 takes O(m) time. Tbe proof of
this fact requires a trick. Wben calculating the time taken by a call dfs(u), we
shall not count the time taken by any recursive calla to dfs at line (6) in Fig. 9.27,
as Section 3.9 suggested we should. Rather, observe tbat we call dfa(u) once for
each value of u. Tbus, if we sum the cost of each call, exclusive of its recursive calla,
we get the total time spent in all tbe calla as a group.

Notice that the wbile-loop of lines (3) to (7) in Fig. 9.27 can take a variable
amount of time, even excluding the time spent in recursive calla to dfs, because
the number of successors oí nade u could be any number fram O to n. Suppose we
let mu be the out-degree of nade u, tbat is, the number of successors of u. Then
the number of times around the while-loop during the execution of dfa(u) is surely
mu. We do not count the execution ofdfa(v, G) at line (6) when assessing the
running time oí dfs (u), and the body of tbe loop, exclusive of this ca.ll, takes 0(1)
time. Thus, tbe total time spent in the loop of liDes (3) to (7), exclusive of time
spent in recursive calls is 0(1 + mu); the additionall is needed because mu migbt
be O, in which case we still take 0(1) time for the test of (3). Since liDes (1) and (2)
of dfs take 0(1) time, we conclude that, neglecting recursive calla, dfa(u) takes
time 0(1 + mu) to complete.

Now we observe that during the running ofdfaForeat, we call dfa(u) exactly
once for eacb value of u. Thus, tbe total time spent in all tbese calls is big-oh of
the sum of the times spent in eacb, tbat is, O(2:u(1 + mu)). But L.. mu is just
the number of arca in the graph, that is, at most m,8 since each arc emanates írom
some one nade. Tbe number oí nades is n, so tbat Lu 1 is just n. As n s: m, the
time taken by all the calls to dfa is tbus O(m).

Finally, we must consider tbe time taken by dfaForeat. Tbis program, in Fig.
9.31, consists oí two loops, eacb iterated n times. Tbe bodies of tbe loops are easily
seen to take 0(1) time, exclusive of the calla to dfa, and so tbe cost of tbe loops is
O(n). Tbis time is dominated by the O(m) time oftbe calla to dfs. Since the time
íor tbe dfs calla is already accounted lar, we conclude that dfaForest, togetber
with all its calls to dfs, takes O(m) time.

of the numben of nodes and arca.
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Postorder Traversals oí Directed Graphs

Once we bave a dept,b-first, search t,ree, we could number its nodes in poet.order.
However, t,here is an easy way to do t,he numbering during t,be eearch itself. We
simply attach t,be number to a node u as tbe last tbing we do before dta(u) com-
pletes. Tben, a node is numbered rigbt after all its children are numbered, just as
in a postorder numbering.

int k; /. counta viaited nodea ./

yoid dla(IODE u, GRAPH G)
{

LIST p; /. points to c811. 01 adjacency liat 01 u ./
NODE v; /* tbe node in tbe cell pointed to by p */

(1)
(2)
(3)
(4)
(5)
(6)
(7)

G[u] ..art = VISITED;
P = G(U].8UCC.SSors;

.hile (p != NULL) {
y = p->nod ;
if (G(v] .8ark == UNVISITED)

dfs(v. G);
P = p->next;

}
++k;
G (u] . poatorder = t;

(8)
(9)

}

void df8For..t(GRAPH G)
{

NDDE u;

k = O;

for (u = O; u < MAX; u++)
G[u] .aark = UNVISITED;

for (u = O; u < MAX; u++)
11 (G[u] .aark = UlVISITED)

df.(u. G);

(10)
(11)
(12)
(13)
(14)
(15)

Fig. 9.33.

+ Example 9.21. The tree oí Fig. 9.29, which we constructed by depth-first
search of the gra.ph in Fig. 9.26, has the postorder numbers la.beling the nodes. If
we examine the trace of Fig. 9.28, we see tha.t the first ca.ll f.o return is df8(C), a.nd
nade c is given the number l. Then, we visit d, theo e, and retum from the call
to e. Therefore, e's number is 2. Similarly, we visit a.nd retum from 1, which is
numbered 3. At tha.t point, we ha.ve completed the ca.ll 00 d, which gets number 4.
Tba.t completes tbe call f.o dfa(b), a.nd tbe oumber oí 6 is 5. FioallYI tbe original

-

Procedure to number tbe nades of a directed grapb in poetorder.



}

SEC. 9.6 DEPTH.FIRST SEARCH 493

We can assign tbe postorder numbers to tbe nades witb a few simple modifica-
tions to tbe depth-first searcb algoritbm we bave written so lar; these changes are
summarized in Fig. 9.33.

1. In tbe GRAPH type, we need an additional field for eacb nade, called poatorder.
For tbe grapb G, we place the postorder number of nade " in G [u] . poatorder.
This assignment is accomplished at line (9) of Fig. 9.33.

2. We use a global variable k to count nades in postorder. This variable is defined
externally to dia and dfaForeat. As seen in Fig. 9.33, we initialize k to O
in line (10) of diaForeat, and just before assigning a postorder number, we
increment k by 1 at line (8) in dia.

Notice that as a result, when there is more than one tree in the depth-first search
forest, the first tree gets the lowest numbers, the next tree gets the next numbers
in order, and so oo. For example, in Fig. 9.32, a would get the postorder number 6.

Special Properties of Postorder N umbers

The impossibility of cross arcs that go left to right tel1s us something interesting
and useful about the postorder numbers and the loor types of arcs in a depth-first
presentation of a graph. In Fig. 9.34(a) we see three nades, ", v, and w, in a depth-
first presentation of a graph. Nodes v and w are descendants of ", and w is to the
right of v. Figure 9.34(b) shows the duration of activity for the calla to dia for each
of these nades.

,

~.
/ ""

(a) Three nodes in a depth-first tree.
c

t .L__~ -1L":i;;;; ~ I
Time of u

(b) Active intervals fOT their caUs to dfs.

Fig.9.34. Relationslúp between position in tree and duration of calls.
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We can make leveral obeervations. First, the call to dfs on a descendant like v
is active for only a 8ubinterval of the time during wbich the call on an ancestor, like
u, is active. In particular, the call to dfs(v) terminates before the call to dfs(u)
doea. Thus, tbe postorder number of v must be lesa than the postorder number of
u whenever v is a proper deacendant of u.

Second, if w is to the right of v, then the call to dfs(w) cannot begin until after
the call to dfs(v) terminates. Thus, whenever vis to the left of w, the postorder
number of v is leM than tbat of w. Although not shown in Fig. 9.34, the sarne is
true even if v and w are in dift'erent trees of the depth-first learch forest, with v's
tree to the left of w's tree.

We can now consider the relationship between the postorder numbers of u and
v for each arc u -+ v.

l. Ir u -+ v is a tree arc or forward arc, then v is a descendant of u, and 80 v
precedes u in postorder.

2. Ir u -+ v is a cross arc, then we know v is to the left of u, and again v precedes
u in postorder.

3. lf u -+ v is a backward arc and v * u, then v is a proper ancestor of u, and so
v follows u in pO8torder. However, v = u is possible for a backward arc, lince
a loop is a backward arco Tbus, in general, for backw&l'd arc u -+ v, we know
that the pO8torder number of v is at least as bigh as the postorder number of
U.

In surnrnary, we see that in postorder, the head of an arc precedes the tail, unleM
the arc is a backward arc; in whidl ~ the tail precedes or equals the head. Thus,
we can identify the backward arca simply by finding th~ arca whose tails are equal
to or less than their heads in ~torder. We shall see a number of applications of
this idea in the next section.

EXERCISES

9.6.1: For the tree of Fig. 9.5 (see the exercises for Section 9.2), give two depth-first
search trees starting with nade a. Give a depth-first search tree starting with node
d.

9.6.2*: No matter which nade we start with in Fig. 9.5, we wind up with only one
tree in the depth-first search forest. Explain briefty why that must be the case for
this particular graph.

9.6.3: For each of YoUl' trees of Exercise 9.6.1, indicate which of the arcs are tree,
forward, backward, and cr<8 arca.

9.6.4: For each of your trees of Exercise 9.6.1, give the postorder numbers ror the
nades.

9.6.5*: Consider the graph with three nodes, a, 6, and C, and the two arcs a -t 6
and 6 -t c. Give all the possible depth-first search forests for this graph, considering
all possible starting nades for each tree. What is the postorder numbering of the
nades for each forest? Are the postorder numbers always the same for this graph?
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9.6.6*: Consider the generalization of the graph of Exerci8e 9.6.5 to a graph with n
nodes, al, a2,..., an, and arce al -+ a2, a2 -+ a3,"', an-l -+ an. Prove by complete
induction on n that this graph has 2n-l dilferent depth-first search foresta. Hint:
It helpe to remember that 1 + 1 + 2 + 4 + 8 + . . . + ~ = ~+l, Cor i ~ O.

9.6.7*: Suppose we start with a graph G and add a new node z that is a predecessor
of all other nodes in G. Ir we run dfaFor8st of Fig. 9.31 on the new graph, starting
at node z, then a single tree resulta. Ir we then delete z from this tree, several trees
may resulto How do these trees relate to the depth-first search forest of the origina]
graph G?

9.6.8**: Suppoee we have a directed graph G, from wh~ representation we have
just constructed a depth-first spanning forest F by the algorithm of Fig. 9.31. Let
U8 now add the arc u -+ v to G to Corm a new graph H, whose representation is
exactly that of G I except that node v now appears somewhere on the adjacency
list for node u. Ir we now ruo Fig. 9.31 00 this representation of H, under what
circumstances will the same depth-first forest F be constructed? That is, when will
the tree arca for H are exactly the sarne as the tree arce for G?

In tbis section, we see bow deptb-first search can be used to solve some problems
quickly. As previously, we shall bere use n to represent the number of nodes of a
graph, and we shall use m for the larger of the number of nodes and the number of
atCS; in particular, we asume tbat n ~ m is always true. Each of the algoritbms
presented takes O(m) time, on a graph rep~nted by adjacency lista. The first
algorithm determines whether a directed graph is acyclic. Then for tbose graphs
tbat are acyclic, we see how to find a topologicalsort ofthe nodes (topologicalsort-
ing was discussed in Section 7.10; we sball review tbe definitions at tbe appropriate
time). We also show bow to oompute tbe transitive cl~ure of a grapb (see Section
7.10 again), and how to find connected components of an undirected graph rastel
tban the algorithm given in Section 9.4.

in a Directed GrapbFinding Cycles
During a depth-first eearch oí a d~ graph G, we can a88igD a postorder number
to all the nodes in O( m) time. Recall from the last section that we discovered the
only arca whose tails are equal to or less than their heads in postorder are tbe
backward arca. Whenever there is a backward arc, u -+ v, in which the postorder
number of v is at least as large as the postorder number of u, there must be a cycle
in the graph, as suggested by Fig. 9.35. The cycle consista of the arc from u to v,
and tbe path in the tree from v to its descendant u.

The converse is also true; that is, ir there is a cycle, then there must be a
backward arco To ~ why, 8UPpoee there is a cycle, say VI -+ f12 -+ ... -+ v,. -+ VI,

and Jet tbe postorder number of node Vi be Pi, for i = 1,2,..., k. If k = 1, that is,
the cycle is a single arc, then surely VI -+ VI is a backward arc in any depth-first
presentation of G.

If k > 1, suppoee that Done of the arca VI -+ V2, V2 -+ V3, and 80 on, up to
V.-1 -+ v. are backward. Then each head precedes each tail in postorder, and
M) the ~rder numbers P1, P2, . . . ,P. forro a decreasing sequence. In particular,
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Fig. 9.35.

P/c < Pl. Then consider the arc Vk -+ Vl that completes the cycle. The postorder
number of its tail, which is Pk, is less than the postorder number of its head, Pl,
and 80 this arc is a backward arco Tbat provea there must be some backward arc

in any cycle.
As a result, after computing tbe postorder numbers of all nodes, we simply

examine all the arcs, to see if any has a tail less than or equal to its head, in
postorder. If so, we bave found a backward arc, and the graph is cyclic. If tbere is
no such arc, the graph is acyclic. Figure 9.36 shows a function that tests whether an
externally defined graph G is acyclic, using the data structure for graphs described
in the previous section. It al8O makes use of tbe function dfaForea't defined in Fig.
9.33 to compute the postorder numbers of the nodes of G.

BOOLEAN

{
NaDE u, v; /. u runa ~hrough all ~he nodea ./
LIST p; /. p poin~a ~o each cell on ~he adjacency lia~

for u; v ia a Bode on ~he adjacency li.~ ./

dfsForest(G);
for (u = o; u < Kilo u++) {

p = G[u].sucCeSSOr8;
vhile (p ! = RULL) {

(1)
(2)
(3)
(4.)
(5)
(6)
(7)
(8)

}

(9) return TRUE;

Fig.

.

" ,

Every backward arc COnDS a cycle with tree arcs.

teatAcyclic(GRAPH G)

v = p->nodeRaae;
if (G[u].postorder <= G[v].postorder)

return FALSE;
p = p->next;

}

f\mction to determine whether a graph G is acyclic.9.36.
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After calling dfaFor..t to compute postorder numbers at line (1), we examine
each node u in the loop of liDes (2) through (8). Pointer p goes clown the adjacency
list for u, and at line (5), v in tum becomes each successor of u. If at line (6) we
find that u equals or precedes v in postorder, then we have found a backward arc
u ~ v, and we retum FALSE at line (7). If we find no such backward arc, we retum
TROE at line (9).

Running Time of the Acyclicity Test

As before, let n be the number oí nades of graph G and let m be the larger of
the number of nades and the number of arca. We already know that the call to
dfsForest at line (1) oí Fig. 9.36 takes O(m) time. Lines (5) to (8), the body of
the while-loop, evidently take 0(1) time. To get a good bound on the time for the
while-loop itself, we must use the trick that was used in the previous section to
bound the time of depth-first search. Let Tnu be the out-degree of nade u. Then
we go around the loop of liDes (4) to (8) Tnu times. Thus, the time spent in liDes
(4) to (8) is 0(1 + Tnu).

Line (3) only takes 0(1) time, and so the time spent in the for-loop of fines
(2) to (8) is O(Eu(1 + Tnu). As observed in the previous section, the sum of 1 is
O(n), and the SUJD oí Tnu is m. Since n $ m, the time for the loop of liDes (2) to
(8) is O(m). That is the same as the time for line (1), and line (9) takes 0(1) time.
Thus, the entire acyclicity test takes O(m) time. As for depth-first search itself, the
time to detect cycles is, to within a constant factor, just the time it takes to look
at the entire graph.

Topological Sorting

Suppose we know that a directed graph G is acyclic. As for any graph, we may find
a depth-first search forest for G and thereby determine a postorder for the nades of
G. Suppose (VI, V2,"', VA) is a list of the nades of G in the reverse of postorder;
that is, VI is the nade numbered n in postorder, V2 is numbered n-l, and in general,
Vi is the nade numbered n - i + l in postorder.

The arder of the nades on this list has the property that all arcs of G go forward
in the arder. To see why, suppose Vi -+ Vj is an arc of G. Since Gis acyclic, there
are no backward arcs. Thus, for every arc, the head precedes the tail. That is, Vj
precedes Vi in postorder. But the list is the reverse of postorder, and 80 Vi precedes
Vj on the listo That is, every tail precedes the corresponding head in the list order.

An arder for the nades of a graph G with the property that for every arc of G
the tail precedes the head is called a topoiogical order, and the process of finding
such an arder for the nades is called topological sorting. Only acyclic graphs have a
topological arder, and as we have just seen, we can produce a topological arder for
an acyclic graph O(m) time, where m is the larger ofthe number ofnodes and arce,
by performing a depth-first search. As we are about to give a nade its postorder
number, that is, as we complete the call to dfs on that nade, we push the nade
anta a stack. When we are done, the stack is a list in which the nades appear in
postorder, with the highest at the top (front). That is the reverse postorder we
desire. Since the depth-first search takes O(m) time, and pushing the nades onto a
stack takes only O(n) time, the whole process takes O(m) time.
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Applications oí Topological Order and Cycle Finding

There are a number of situations in which the algorithms discussed in this eection
will prove useful. Topological ordering comes in handy when there are constraints
on the arder in which we do certain tasks, which we represent by nades. If we draw
an arc from u to v whenever we must do task u before v, then a topological order is
an arder in which we can perform all tbe tasks. An example in Section 7.10 about
putting on shoes and socks illustrated this type of problem.

A similar example is the calling grapb of a nonrecursive collection of functions,
in which we wish to analyze each function alter we bave analyzed the functions it
calls. As the arca go Crom caller to called function, the reverse of a topological order,
that is, the postorder itselC, is an order in which we can analyze tbe Cunction, making
BUfe that we only work on a Cunction after we bave worked on all the Cunctions it
calls.

In other situations, it is sufficient to run the cycle test. For example, a cycle
in the grapb oC task priorities tells us there is no order in whidl all the tasks can
be done, and a cycle in a calling graph tells us there is recursion.

Example 9.22. In Fig. 9.37(a) is an acyclic graph, and in Fig. 9.37(b) is the
depth-first search forest we get by considering the nades in alpbabetic order. We
alBO show in Fig. 9.37(b) the postorder numbers that we get Crom this depth-first
search. IC we list tbe nades highest. postorder number first, we get the topological
order (d,e,c,J,b,a). The reader should check that each oCtbe eighl. arcs in Fig.
9.37(a) has a tail that precedes its head according to thislist. There are, incidentally,
three other topological orders Cor this graph, such as (d, c, e, b, J, a). +

The Reachability Problem

A natural question to ask about a directed graph is, given a nade u, which nades
can we reach Crom u by Collowing arcs? We call this set of nades the reachable set
Cor nade u. In fact, iC we ask this ~bility question Cor each nade u, then we
know for which pairs of nodefi (u, v) there is a path fram u to v.

The algorithm Cor solving reachability is simple. If we are interested in nade
u, we mark all nades URVISITED and call d.fs(u). We then examine aIl the nades
again. Th~ marked VISITED are reachable from u, and the others are noto If we
then wish to find the nades reachable from another nade v, we set all t.he nades to
UNVISITED again and call dfa(v). This process may be repeated for as many nodes
as we like.

..

Reachable set

Example 9.23. Consider the graph of Fig. 9.37(a). Ir we start our depth-first
search from node a, we can go nowhere, since there are no arca out of a. Thus,
df8(a) tenninates immediately. Since only a is visited, we conclude that a is the
only node reachable from a.

If we start with 6, we can reach a, but that is all; the reachable set for b is
{a,6}. Similarly, from c we r~ach {a,6,c,/}, from d we reach all the nodes, from e
we reach {a,6,e,/}, and from / we can reach only {a,/}.

For another example, consider the graph of Fig. 9.26. From a we can reach all
the nodes. From any node but a, we can reach all tbe nodes except a. +

.

..
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(a) A directed acyclic graph.
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(b) A depth-first search forest.

TopologicaUy sorting an acyclic graph.Fig. 9.37.

Running Time of the Reachability Test

Let us assume we have a directed graph G with n nodes and m arca. We shall
also assume G is represente<! by the data type GRAPH oc the previous section. First,
suppose we want to find the reachable set Cor a nade u. Initializing the nodes
to be URVISITED takes O(n) time. The call to dfs(u, G) takes O(m) time, and
examining the nades again to see which are visited takes O(n) time. While we
examine the nodes, we could also create a list of those nodes that are reachable
from u, still taking only O(n) time. Thus, finding the reachable set ror one node
takes O(m) time.

Now suppose we want the reachable sets ror all n nodes. We mar repeat the
algorithm n times, once ror each node. Thus, the total time is O(nm).

Finding Connected Components by Depth-First Search

In Section 9.4, we gave an algorithm for finding the connected components of an
undirected graph with n nades, and with m equal to the larger of the number of
nades and edges, in O( m lag n) time. The tree structure we used to merge com-
ponents is of interest in its own rightj for example, we used it to help implement
Kruskal's minimalspanning tree algorithm. However, we can find connected com-
ponents more efficiently if we use depth-first search.
suffices. ,

The idea is to treat the undirected graph as if it were a directed graph with each
edge replaced by arcs in both directions. If we represent the graph by adjacency
lista, then we do not even have to make any change to the representation. Now
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Transitive Closure and Reftexive-Transitive Clo8ure

Let R be a binary relation on a eet S. The reachability problem can be viewed as
computing the reJlexive-trnnsitive closure of R, which is usually denoted n.. The
relation R* is defined to be the set of pairs (u, v) 8uch that there is a path of length
zero or more from nade u to nade v in the graph represented by R.

Another relation that is very similar is n+ , the trnnsitive closure of R, which is
defined to be the set of pairs (u, v) such that there is a path of length ORe or more
from u to v in the graph represented by R. The distinction between n. and n+ is
that (u, u) is always in R* for every u in S, whereas (u, u) is in n+ if and only if
t.here is a cycle of length ORe or more from u to u. To compute n+ Crom R., we
just have to check whether or not each nade u has .,me entering arc from ORe of it.s
reachable nades, including itself; if it does not, we remove u from its own reachable
seto

construct tbe depth-first search forest for tbe directed graph. Each tree in the
forest is one connected component of the undirected graph.

To see why, first note that tbe presence of an arc u -+ v in the directed grapb
indicates that there is an edge {u, v}. Tbus, aIl tbe nades of a tree are connected.

Now we must sbow the converse, tbat if two nades are connected, then they are
in the same tree. Suppose tbere were a path in tbe undirected grapb between two
nades u and v that are in different trees. Say the tree of u was constructed first.
Then there is a path in the directed graph from u to v, which tells us that v, and
all the nades on this path, should have been added to tbe tree with u. Thus, nades
are connected in tbe undirected graph ir and only ir tbey are in the same tree; that
is, the trees are the connected components.

Example 9.24. Coosider tbe undirected grapb oí Fig. 9.4 &gain. One poesible
depth-first search forest we rnight construct for tbis graph is shown in Fig. 9.38.
Notice bow the three depth-first search trees corre&pond to tbe three connected
cornponents. +

EXERCISES

9.7.1: Find all the topological orders for the grapb of Fig. 9.31.

9.7.2*: Suppose R is a partial arder 00 dornain D. We can represent R by its
grapb, where the nades are tbe elerneots of D and there is an arc u -+ v whenever
uRv and u ~ v. Let (VI, V2, . . ., vn) be a topological ordering oí the graph oí R.
Let T be the relation defined by viTvj wbenever i .$: j. Show that

...

a) T is a total order, and

b) The paira in R are a subeet oí the paira in T; that ia, T ia a total order containing
the partial order R.

9.7.3: Apply depth-firat 8earch to tbe graph oí Fig. 9.21 (after converting it to a
symmetric directed graph), to find the connected components.

..
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The depth-fust searclt forest divides an undirected graph
joto connected componeots.

Fig. 9.38.

9.7.4: Consider the graph with arcs a -+ c, b -+ a, b -+ c, d -+ a, and e -+ c.

a) Test the graph for cycles.
b) Find all the topologicalorders for the graph.
c) Find the reachable set of each nade.

9.7.5*: In the next section we shall consider the general problem of finding shortest
paths from a source nade s. That is, we want for each nade u the length of the
shortest path from s to u if one exists. When we have a directed, acyclic graph, the
problem is easier. Give an algorithm that will compute the length of the shortest
path from nade s to each nade u (infinity if no such path exists) in a directed,
acyclic graph G. Your algorithm should take O(m) time, where m is the larger of
the number of nades and arcs of G. Prove that your algorithm has this running
time. Hint: Start with a topological sort of G, and visit each nade in turno On
visiting a nade u, calculate the shortest distance from s to u in terms of the already
calculated shortest distances to the predecessors of u.

9.7.6*: Give algorithms to compute the following for a directed, acyclic graph G.
Your algorithms should ron in time O(m), where m is the larger of the number of
nades and arcs of G, and you should prove that this running time is all that your
algorithm requires. Hint: Adapt the idea of Exercise 9.7.5.

a) For each nade u, find the length of the longest path from u to anywhere.

b) For each nade u, find the length of the longest path to u from anywhere.

c) For a given source nade s and for all nades u of G, find the length of the longest
path from s to u.

d) For agiven source nade 8 and for all nades u ofG, find the length ofthe longest
path from u to s.

e) For each nade u, find the length of the longest path through u.
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... 9.8 Dijkstra's Algorithm for Finding Shortest Paths.
Supp~ we have a graph, which could be either directed or undirected, with labels
on the ara (or edges) to rep~nt tbe "length" of tbat arco Ao example is Fig.
9.4, which showed the distance along certain roads of the Hawaiian Islands. It
is quite common to want to know the minimum distance between two nodes; for
example, maps often include tables of driving distance 88 a guide to how lar one can
travel in a dar, or to belp determine which of two routes (tbat go througb dift'erent
intermediate cities) ia shorter. A similar kind of problem would 888OCiate with each
arc the time it takes to travel &long that arc, or perhaps tbe C(»t of traveling that
arco Then the minimum "distance" between two nodes would correspond to the
traveling time or tbe fare, fe8pectively.

In general, tbe distance along a patb is the sum of the labels of that path. The
Minimum mínimum distance from nade u to nade v is tbe mioimum of tbe disl.ance of any
distance path from u to v.

. Example 9.25. Consider tbe map of Oahu in Fig. 9.10. Suppose we want to
find the minimum distance from Maili to Kaneobe. Tbere are several paths we
could chooee. One useful observatioo is tbat, 88 long as the labels of the arca are
nonnegative, the minimum-distance path oeed never bave a cycle. For we could
skip that cycle and find a path between the same two nodes, but witb a distance
no greater than that of the path witb the cycle. Thus, we need only consider

l. The path through Pearl City and Honolulu.

2. The patb through Wabiawa, Pearl City, and Honolulu.

3. The path through Wabiawa and Laie.

4. The path through Pearl City, Wabiawa, and Laie.

The distances oftb~ paths are 44, 51, 67, and 84, respectively. Thus, tbe minimum
distance from Maili to Kaneohe is 44. .

If we wish to find the minimum distance from one given nade, called tbe source
Source nade node, to all the nades of the graph, one of tbe m~t efficient techniques to use is

a method called Dijk6trn's algorithm, the subject of this sectioo. It turna out that
if all we want is the distance from one nade u to another nade v, the best way is
to run Dijkstra's algorithm with u 88 tbe source nade and stop wben we deduce
the distance to v. Ir we want to fiod the minimum distance between every pair of
nodes, tbere ia an algorithm that we sh&ll cover in the next section, called Floyd's
algorithm, tbat sometimes is preferable to running Dijkstra's algorithm with every
nade 88 a source.

Tbe essence of Dijkstra's algorithm is that we discover tbe minimum distance
from the sou~ to other nodes in tbe order of tb~ minimum distances, that is,
closest nades first. As Dijkstra's algoritbm proceeds, we have a situation like that

Settled nade suggested in Fig. 9.39. In the graph G tbere are certain nades that are ..ettled, that
is, their minimum dist&Qce is known; tbis set always includes 8, the source node.

Special path For the unsettled nod~ v, we record the length of the shortest ..pecial path, which
is a path that starts at the source node, travels only through settled nades, then at
the last step jumps out of the settled region to v.

- -- --~--~~-~~..."..,._.~ ~,-"-~
,,
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settled
nod~

0 Fig. 9.39. Intennediate 8tage during tbe execution of Dijkstra '8 algorithm.

We maintain a value dist(u) for every node u. Ir u is a settled node, then
dist(u) is the length of the shortest path from the source to u. Ir u is not settled,
then dist(u) is the length ofthe shortest special path from the source to u. Initially,
only the source node s is settJed, and dist(s) = O, sÍDce the path consisting of s

alone surely has distance O. Irthere is an arc from s to u, then dist(u) is the labeJ
of that arco Notice that when onJy s is settled, the only special paths are the arcs
out of s, so that dist(u) should be the label of the arc s -+ u if there is one. We
shall use a defined constant IJfFTY, that is intended to be Jarger than the distance
along any path in the grapb G. IJfFTY serves as an "infinite" value and indicates
that no special paths have Jet been discovered. That is, initially, if there is no arc
s -+ u, then dist(u) = IHm.

Now suppose we have some settled and some unsettled nades, as suggested by
Fig. 9.39. We find the nade v that is unsettJed, but has the smallest dist value of
any unsettled node. We "settle" v by

1. Accepting dist(v) as the minimumdistance from sto v.

2. Adjusting tbe value of dist(u), for all nodes u that remain unsettled, to account
for the fact that v is now settled.

The adjustment required by step (2) is the following. We compare the old value
of dist(u) with the sum oí dist(v) and label oí the arc v -+ u, and ir the latter sum
is smaller, we replace dist(u) by that sumo Ir there is no arc v -+ u, tben we do not

adjust dist(u).

+ Example 9.26. Consider the map oí Oahu in Fig. 9.10. That graph is undi-
rected, but we shall assume edges are arcs in both directions. Let the source be
Honolulu. Then initially, only Honolulu is settled and its distance is O. We can set
dist(PearlCity.) to 13 and dist(Kaneohe) to 11, but other cities, having no arC from
Honolulu, are given distance INFTY. The situation is shown in tbe first column of
Fig. 9.40. The star on distances indicates that the node is settled.

Among the unsettled nades, the one with the smallest distance is now Kaneohe,

c~ ,,-c,'" , ,"
-.."'C" .'- ._~) ,,- -,"~
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and 80 this node is settled. There are arcs from Kaneohe to Honolulu and Laie.
The arc to Honolulu does not help, but the value of dist(Kaneohe), which is 11,
plus the label of the arc frorn Kaneohe to Laie, which is 24, totals 35, which is less
than "infinity," the current value of dist(Laie). Thus, in the second colurnn, we
have reduced the distance to Laie to 35. Kaneohe is now settled.

In the next round, tbe unsettled node witb the smallest distance is Pearl City,
with a distance of 13. When we rnake Pearl City settled, we rnust consider the
neighbors of Pearl City, which are Maili and Wahiawa. We reduce the distance to
Maili to 33 (the sum of 13 and 20), and we reduce the distance to Wahiawa to 25
(the surn of 13 and 12). The situation is now as in column (3).

Next to be settled is Wahiawa, with a distance of 25, least among the currently
unsettled nodes. However, that node does not allow us to reduce the distance to
any other Bode, and 80 colurnn (4) has t,be same distances as column (3). Sirnilarly,
we next settle Maili, wit,h a distance of 33, but t,hat does not reduce any distances,
leaving column (5) the same as colurnn (4). Technically, we have to settle the last
node, Laie, but the last Bode cannot affect any ot,her dist,ances, aod 80 colurnn (5)
gives the shortest distances from Honolulu to all six cities. +

Wby Dijkstra'8 Algoritbm Works

In order to show that, Dijkstra's algorithrn works, we rnust 888ume that the labels
of arcs are Donnegative.9 We shall prove by induction on k that when there are k
settled nodes,

a) For eacl1 settled Bode u, dist(u) is the rninimurn distance from s to u, and the
shortest path to u consista only of settled nodes.

b) For eacl1 unsettled node u, dist(u) is the rninirnurn distaoce of any Speclal path
frorn s to u (IIFTT if no such path exists).

BASIS. For k = 1, s is the only settled Bode. We initialize dist(s) to O, which
satisfies (a). For every other node u, we initialize dist(u) to be the label of the arc
s -+ u ir it exists, and INFTT if noto Thus, (b) is satisfied.

v ~hen. labels are allowed to be nesative. - can find s:raphs far whidl Dijkstra's alsorithm

.,
MODEL

V ALUES OF di8t

Fig. 9.40. Stages in the execution of' Dijbtra's aIgorithm.
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Fig. 9.41. shorter path to v, through w and u.

INDUCTION. Now assume (a) and (b) hold after k nades have been settled, and
let v be the (k + 1)st nade settled. We claim that (a) still holds, because dist(v)
is the least distance oc any path Crom s to v. Suppose noto By part (b) oC the
inductive hypothesis, when k nades are settled, dist(v) is the minimum distance
oC any special path to v, and so there must be some shorter nonspecial path to v.
As suggested in Fig. 9.41, this path must leave the settled nades at Borne nade w
(which could be s), and go to some unsettled nade u. From there, the path could
meander in and out oC the settled nades, until it finally arrives at v.

However, v was chosen to be the (k + 1)st nade settled, which means that at
this time, dist(u) could not be less than dist(v), or else we would have selected u
as the (k + 1)st nade. By (b) oC the inductive hypothesis, dist(u) is the minimum
length oC any special path to u. But the path Crom s to w to u in Fig. 9.41 is a
special path, so that its distance is at least dist(u). Thus, the supposed shorter
path Crom 8 to v through wand u has a distance that is at least dist(v), because
the initial part Crom 8 to u already has distance dist(u), and dist(u) ~ dist(v).10
Thus, (a) holds Cor k + 1 nodes, that is, (a) continues to hold when we include v
among the settled nodes.

Now we must show that (b) halda when we add v to the settled nades. Consider
some node u that remains unsettled when we add v to the settled nades. On the
shortest special path to u, there must be some penultimate (next-to-last) nade; this
node could either be v or some other nade w. The two possibilities are suggested
by Fig. 9.42.

First, suppose the penultimate nade is v. Then the length oC the path Crom s
to v to u suggested in Fig. 9.42 is dist( v) plus the label oC the arc v -t u.

Alternatively, suppose the penultimate nade is some other nade w. By induc-
tive hypothesis (a), the shortest path Crom s to w consists only oC nades that were
settled prior to v, and thereCore, v does not appear on the path. Thus, the length oC
the shortest special path to u does not change when we add v to the settled nades.

Now recall that when we settle v, we adjust each dist(u) to be'the smaller oC

10 Note that the fact that the l&bel. are nonnegatiw is vital; if not, the portion of the path

from u to v could have a negative di.tance. resulting in a shorter path to v.
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Fig.9.42.

the old v&lue ofdist(u) and dist(v) plus the label ofarc v -+ u. The Corroer covers
the case that some w other than v is the penultimate nade, ud the latter covers
the case that v is the penultimate nade. Thus, part (b) &Iso holds, and we have
completed the inductive step.

Data Structures for Dijkstra's Algorithm

We shall now present an efficient implementation of Dijkstra's algorithm making
use of the balanced partially ordered toree structure of Section 5.9.11 We use two
arrays, one called graph to represento tobe grapb, and tbe otober called potBod..
to represent the partially ordered tree. The intent is that to each graph node u
there corresponds a partially ordered tree node a that has priority equal to dist(u).
However, unlike Section 5.9, we shall organize the partially ordered tree by least
priority rather than greatest. (Altematoively, we could take the priority of a to be
-dist(u).) Figure 9.43 illustrates the data structure.

We use BODE for the type of graph nodes. As usual, we shall name nodes with
integers starting at O. We shall use the type POTIODE for the type of nodes in the
partially ordered tree. As in Section 5.9, we shall assume that the nodes of the
partially ordered tree are numbered starting at 1 for conveniente. Tbus, botb NaDE
and POTNODE are synonyms for int.

The data type GRAPH is defined to be

typedef .truct {
float dist;
LIST successors;
POTIODE toPOT;

} GRAPH(MAX];

Actually, this implementation i. ooly beat wheo the number oí an:a ia lOIDewhat leas than
the Iquare o( the number of nodes, which i. the maximum oumber o( ara there can be. A
simple implementation (or the dense case is discussed in the exen:ises.

..

.,

What is the penuitimate nade on tbe shortest speciaI path to u?

.



We can now define the principal data structures:

GRAPH graph;
POT potNodes;
POTNODE last;

The array oí structures graph contains the nodes oí the graph, the array potNodes
contains the nades oí the partiaUy ordered tree, and the variable last indicates the
current end oí the partialIy ordered tree, which resides in potNodes [1. .last].

IntuitiveIy, the structure oí the partially ordered tree is represented by the
positions in the array potNodes, as usual íor a partially ordered tree. The elements
oí this array let-os tell the priority oí a node by referring back to the graph itself.
In particular, we place in potNodes (a] the index u oí the graph nade represented.
The dist field, graph [u] . dist, gives the priority oí node a in the partialIy ordered
tree.

1
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graph

o

u

Fig.9.43. Data structure to represent a graph for Dijkstra's aIgorithm.

Rere, HAI is the number of nodes in the graph, and LIST is the type of adjacency
lists consisting of cells of type CELL. Since we need to include labels, which we take
to be floating-point numbers, we shall declare as the type CELL

typedef struct CELL *LIST;
struct CELL {

NODE nodeName;
float nodeLabel;
LIST Den;

};

We declare the data type POT to be an array of graph nodes

typedef NODE POT(KAX+1];
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Functions for
ra. UAaa&ca& J' ... uaa aUUD ava &I..,...~va - - ~ --o-a avaaa.a
We need a number oí auxiliary íunctions to make our implementation work. The
most fundamental is the function .wap that swaps two nades oí the partially ordered
tree. The matter is not quite as simple as it was in Section 5.9. Here, the field t.oPOT
of graph must continue to track the value in the array pot.Rod.., as was suggested
by Fig. 9.43. That is, if the value graph (u] . toPOT is a, tben it must al80 be the

case that potRod.. [aJ has value u.
The code for .vap is shown in Fig. 9.44. It takes as arguments a graph G and

a partially ordered tree P, as well 88 two nades a and b oí that partially ordered
tree. We leave it to tbe reader to check that the íunction exchanges the values in
entries a and 6 oí the partially ordered tree and al80 exchanges the toPOT fields of
the corresponding graph nades.

void avap(POTNODE a. POTNODE b. GRAPH G. POT P)
{

NODE teap; /. uaed to svap POT nodes ./

teap E P(b];
P(b] = P(aJ;
P(a] = teap;
G(P(aJ] .toPOT = a;
G(P(b]] .toPOT = b;

}.,

Fig.9.44.

We shall need to bubble nades up and down the partially ordered tree, as we
did in Section 5.9. The majar difl'erence is that here, the value in an element of
the array potNodes is not the priority. Rather, that value takes us to a nade of
graph, and in the structure for that nade we find the field dist, which gives us
the priority. We therefore need an auxiliary function priority t,hat returns di8t
for the appropriate graph nade. We shall &Iso assume for this section that smaller
priorities rise to the top of the partially ordered tree, rather than larger priorities
as in Section 5.9.

Figure 9.45 ShOW8 the fundían priority and functions bubbleUp and bubble-
Don that are simple modifications of the functions of the salDe name in Section 5.9.
Each takes a graph G and a partially ordered tree P as arguments. Function bub-
bleDon also needs an integer last that indicates the end of the current partially
ordered tree in the array P.

Initialization

We shall assume t,hat t,he adjacency list, for each graph nade has already been
created and that, a pointer to the adjacency list for graph nade u appears in
graph [u] . succe.sor.. ~e shall a1ao ~ume t,hat. nade O is t,he source nade. If we
take the graph nade i to correspond to nade i + 1 of the partially ordered tree, then
the array potlod.s is appropriately iniiialized as a pariiaUy ordered tree. That is,
the roat, of the partially ordered t,ree represents the source nade of the graph, to

.'8 Algorithm

F\mction to 8wap two nodes of the partially ordetoed tree.
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tloat priority(POTNODE a. GRAPH G. por P)
{

return G [P [aJ]. di.t;
}

void bubbleUp(PDTNDDE a, GRAPH G, PDT P)
{

if «a> 1) (priority(a, G, P) < priority(a/2, G, P») {

8wap(a, &12, G, P);
bubbleUp(&l2, G, P);

}

void bubbleDovn(POTNODE a, GRAPH G, por P. int laat)
{

POTNODE child;

child = 2.a;

if (child < last ti;

priority(child+l, G, P) < priority(child, G, P»
++child;

if (child <= lut ti;

priority(a, G, p) > priority(child, G, P» {

8Vap(a, child, G, P);

bubbleDovn(child, G, P, last);

}

Bubbling nodes up and down the partíaUy ordered tree.Fig.9.45.

which we give priority o, and to all other nades we give priority IIIFTY, our "infinite"
defined constant.

As we shall see, on the first round of Dijkstra's algorithrn, we select the source
nade to "settle," which will create the condition we regard as our starting point in
the informal introduction, where the source nade js settled and dist [u] is noninfi-
nite only when there js an arc from the source to u. The initialization function is
shown in Fig. 9.46. As with previous functions in this section, initialize takes as
arguments the graph and the partially ordered tree. It also takes a pointer pLast to
the integer la.t, so it can initialize it to M AX, the number of nades in the graph.
Recall that last will indicate the last position in the array for the partially ordered
tree that is currently in use.

Note that the indexes of the partially ordered tree are 1 through M AX, while
for the graph, they are O through M AX - l. Thus, in liDes (3) and (4) of Fig. 9.46,
we have to make nade i of the graph correspond initially to nade i+ 1 of the partially
ordered tree.

Implementation of Dijkstra's Algorithm

Figure 9.47 shows the cacle for Dijkstra's algorithm, using all the functions we
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void initialize(GRAPH G, POT P, int .pLaat);

{
int i; /. ve u.. i as both a graph and a

for (i = O; i < MAl; i++) {
G[i].diat = INFTY;
G[i].toPOT = i+1;
P[i+1] = i;

}
C[O].dist = O;
(.pLast) = nI;

(1)
(2)
(3)
(4)

(5)
(6)

l'

Fag. 9.46. lnitiaüzation f« Dijbtra'. aigorithm.

Initializing with an Exception

Notice LhaL at line (2) of Fig 9.46, we set diat (1] to 18m. along with all the otber
distances. Then at line (5), we correct Lhis distance to O. That is more efficient tban
testing each value of i to see if it is Lhe exceptional case. True, we could eliminate
line (5) if we repiaced line (2) by

1! (1 = O)

G(i].diat = O;

.1..
G(i].diat = INFTY;

but that would not only add to the code, it would increase the running time, since
we would have to do n tests and n ~ignments, instead of n + 1 ~ignments and
no tests, as we did in liDes (2) and (5) of Fig. 9.46.

have previously writteo. To execute Dijkstra's algorithm 00 the graph graph with
partially ordered tree potNodes and with integer la.t to iodicate the end of the
partially ordered tree, we initialize theae variabl~ and tbeo call

Dijk.~ra(graph, potRode.. Alast)

The function Dijkatra worka as follows. At line (1) we call initialize. The
remainder oí the code, lin~ (2) through (13), is a loop, eadt iteration of which
corresponds to one round oí Dijkstra's algorithm, where we pia one Bode v and
settle it. The Bode tJ picked at line (3) is always the one whose corr~ponding tree
node Í8 at the root oí the partially ordered tree. At line (4), we take tJ out oí the
partially ordered tree, by awapping it with the current last Bode of that. tree. Line
(5) actually remov~ tJ by decrementing la.t. Then line (6) restor~ the partially
ordered tree property by calling bubbleDoVD on the Bode we just placed at the root.
In efl'ect., unsettled nod~ appear below last and settled nod~ are at. last and above.

At line (7) we begin updating distances to reftect the fact that tJ is now settled.
Pointer p Í8 initialized to the beginning of the adjaceocy list for Bode tJ. Then in the
loop of lio~ (8) to (13), we consider each 8UCce80r fA of tJ. Arter setting variable

)

toree node ./

.



As in previous sections, we shall assume that our graph has n nodes and that m
is the larger of the number of arca and the number of nodes. We sball analyze the
running time of each of tbe functions, in the order they were d~ribed. First, 8Wap
clearly takes 0(1) time, since it consista only of assignment statements. Likewise,
priori ty takes O( 1) time.

1'\mction bubbleUp is recursive, but its running time is O( 1) plus the time oc a
recursive call on a node that is half tbe distance to the root. As we argued in Section
5.9, tbere are at most log n calla, each taking 0(1) time, for a total of O(Jog n) time
Cor bubbleUp. Similarly, bubbleDown takes O(log n) time.

F\1nction initialize takes O(n) time. Tbat is, tbe loop oC lines (1) to (4) is
iterated n times,..and its body takes O( 1) time per iteration. That giv~ O( n) time
Cor the loop. Lines (5) and (6) each contribute 0(1), which we may neglect.

Now Jet us turn our attention to function Dijt8tra in Fig. 9.47. Let m" be
tbe out-degree oí node v, or equivalently, the length oí v's adjacency listo Begin by

1
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yoid Dijk.tra(GRAPH G, POT P, int .pLaat)
{

NDDE u, Vj /. v i. the node ve .elect to .ettle ./
LIST p.j /. p. runa dovn the li.t of successor. of Vj

u ia the aucce.aor pointed to by pa ./

initialize(G. p. p~t);
.hile «.pLut) > 1) {

v=P[1];
a.ap(1. .pLut. G. P);
--(.pLut);
bubbleDovn(1. G. P. .pLa8t);
pa = G[v].aucceaaora;

.hile (pa != IUU) {
u = pa->nod"..e;

it (G[u].diat > G[v].diat + p8->nodeLabel)
G[u].di8t = G[v].diat + pa->nodeLabel;

bubbleUp(G[u].toPOT. G. P);

(1)
(2)
(3)
(~)
(5)
(6)
(7)
(8)

" (9)
(10)
(11)
(12)

(13)

11 {

}
pa->next;p8 =

}
}

}

Fig. 9.47. The romo function for Dijkstra '1 algoritbm.

u to one of the succeaors of v at line (9), we test at line (10) whetber the shortest
special path to u goes through v. That is the case whenever the old valueofdist(u),
represented in thia data structure by G[u] .dist, is greater tban the sum of dist(v)
plus the label of the arc v -+ u. Ifso, tben at line (11), we ~t dist(u) to its new,
smaller value, and at line (12) we call bubbleUp, so, if neceaary, u can ri~ in the
partiallyordered tree to reftect its new priority. The loop completes when at line
(13) we move p down the adjacency list of v.

Running Time oí Dijkstra's Algoritbm
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analyzing the inDer loop of liDes (8) to (13). Each of liDes (9) to (13) take 0(1)
time, except for liDe (12), the call to bubbleUp, wbich we argued takes O(logn)
time. Thus, tbe body of the loop takes O(log n) time. Tbe number of times around
the loop equals the length of the adjacencY list for v, which we referred to as
m". Thus the running time of the loop of liDes (8) through (13) may be taken
as 0(1 + m" lag n); the t.erm 1 covers the case wbere v has no 8UCCessors, tbat is,
m" = O, yet we still do the test of line (8).

Now consider the out.er loop of liDes (2) through (13). We already accounted
for liDes (8) to (13). Line (6) takes O(logn) for a call to bubbleDovn. The otber
liDes ofthe body take 0(1) each. The body tbU8 takes time 0((1 + mv)logn).

The outer loop is iterated exactly n - 1 times, as laat ranges from n down to
2. The t.erm 1 iD 1 + m" thus contributes n - 1, or O(n). However, the mv term
must be summed ayer each nade v, since all nades (but the last) are chosen once to
be v. Thus, the contribution of nlv summed ayer all iterations of the outer loop is
O(m), since Lv m" ~ m. We conclude that tbe outer loop takes time O(mlogn).
The additional time for line (1), the call to initialize, is oDly O(n), which we may
neglect. Our conclusion is tbat Dijkstra 's algorithm takes time O( m lag n), that is,
at most a factor of lag n more than the time taken just to look at the nades and
arcs of the graph.

EXERCISES

9.8.1: Find the shortest distance from Detroit to the other cities, according to the
graph of Fig. 9.21 (see the exercises for Section 9.4). If a city is unreachable from
Detroit, the minimum distance is "infinity."

9.8.2: Sometimes, we wish to count the number of arca traversed getting from one
node to another. For example, we might wish to minimize the number of transfers
needed in aplane or bus trip. Ir we label each a.rc 1, then a minimum-distance
calculation will count arcs. For the graph in Fig. 9.5 (~ the exercises for Section
9.2), find the minimum number of a.rcs oeeded to reach each oode from node a.

9.8.3: In Fig. 9.48(a) are ~ven species of hominids &ud tbeir convenient abbrevia-
tions. Certain of these species are koown to have preceded others because remains
have beeo found in the sarne place ~parated by layers indicating that time had
elapsed. The table in Fig. 9.48(b) gives triples (z,1',t) tbat mean species z has
been fouod in the sarne place as species 1', but z appeared t millions of years before
,.

a) Draw a directed graph representing the data of Fig. 9.48, with arcs from the
earlier species to the l&ter, labeled by the time difference.

b) Run Dijkstra's algoritbm on the graph from (a), with AF as the source, to find
the shortest time by which each of the other species could have followed AF.

9.8.4*: The implementation of Dijkstra's algorithm that we gave takes O(m lag n)
time, which is leM than O(n2) time, except in the case that the number of arcs is
close to n2, its maximum poesible number. If m is large, we can devise another
implementation, without a priority queue, where we take O(n) time to select the
winner at each round, but only O( mu) time, that is, time proportional to the
number of arcs out of the settled node u, to Update disto The result is an O(n2)
time algorithm. Develop the ideas suggested here, and write a C pragram for this
implement.ation of Dijkstra's algorithm.

1
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Aostralopith~ ACarensis AF
Australopithecus Africanos AA
Horno Habilis HH
Australopithecus Robustus AR
Horno Erectus HE
Australopithecus Boisei AB
Horno Sapiens HS

(a) Species and abbreviations.

SP~ 1 SPECIES 2 TIME

AF HH 1.0
AF AA 0.8
HH HE 1.2
HH AS 0.5
HH AR 0.3
AA AB 0.4
AA AR 0.6
AS HS 1.7
HE HS 0.8

(b) Speciell ~ species 2 by time.

Fig.9.48. between homjojd speOes.

9.8.5**: Dijkstra's algorithm does not always work ir there are negative labels
on some arca. Give an example oc a graph with some negative labels ror which
Dijkstra's algorithm gives the wrong answer Cor M>me mínimum distance.

9.8.6**: Let G be a graph Cor which we have run Dijkstra's algorithm and eettled
the nades in some order, Suppose we add to G an arc u -t ti with a weight oC O, to
Corm a new graph G', Under what conditions will Dijkstra '8 algorithm run on G'
eettle the nades in the sarne arder as Cor G?

9.8.1.: In this section we took the approach oC linking the arrays representing the
graph G and the partially ordered tree by storing integers that were indices into the
other array. Another approach is to use pointers to array elements. Reimplement
Dijkstra 's algorithm using pointers instead oC integer indices.

Pathsfor Shortest

If we want the mínimum distances between all pairs of nades ín a graph with n
nades, with nonnegative labels, we can ron Dijbtra's algorithm with each of the n
nades as .,urce. Since ORe run of Dijkstra 's algoritbm takes O( m lag n) time, where
m is tbe larger of tbe number of nodes and number of arca, finding tbe minimum
distances between all pairs of nades tbis way takes O(mnlogn) time. Moreover,
if m is cl~ to its maximum, n2, we can use an O(n2)-time implementation of
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Dijkstra's algorithm discussed in Exercise 9.8.4, which when ron n times gives os
an O( n3)-time algorithm to find the minimum distances between each pair of nades.

There is another algorithm for finding the minimum distances between all pairs
of nades, calIed FloUd's algorithm. This algorithm takes 0(n3) time, and thus is in
principIe no better than Dijkstra's algorithm, and worse than Dijkstra's algoritbm
when the number of arca is much less than n2. However, Floyd's algorithm works
on an adjacency matrix, rather than adjacency lista, and it is conceptually much
simpler than Dijkstra's algorithm.

Tbe essence of Floyd 's algoritbm is tbat we consider in turn each node u of
tbe grapb as a pivot. Wben u is tbe pivot, we try to take advantage of u as an
intermediate node between all pairs of nodes, as suggested in Fig. 9.49. For eacb
pair of nodes, say ti and w, if tbe sum of the labels of arca ti --+ u and u --+ w, which
is d + e in Fig. 9.49, is less tban the current label, f, of tbe arc from v to w, tben
we replace / by d+ e.

A fragment of code implementing Floyd's algoritbm is sbown in Fig. 9.50. As
before, we 888ume nodes are named by integers starting at O. We use moR as the
type of nodes, but we &88ume tbis type is integers or an equivalent enumerated type.
We &88ume tbere is an n x n array are, sud1 that are [v] [w] is the label of tbe arc
v --+ w in tbe given grapb. However, on tbe diagonal we bave are [y] [y] = O for
all nodes v, even if tbere is an arc v --t v. Tbe reason is tbat tbe shortest distance
from a node to itself is always O, and we do not wisb to follow any arcs at all. If
tbere is no arc froro v to w, tben we let are [y] [w) be IWFTY, a special value tbat. is
much greater tban any- otber label. Tbere is a similar array di.t tbat, at tbe end,
bolds tbe mínimum dietancesj di.t [ v] [w] wiIl become the minimum distance from
node v to node w.

Lines (1) to (3) initialize di.t to be arco Lines (4) to (8) forro a loop in wbich

Pivot

.
" ..

f:I .
.

..

.~ .. .
.

Fig. 9.49. Using nade u as a pivot to irnprove
the distances between BOrne pain of nades.

.
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NODE u, v. v;

(1) for (v = O; v < MAl; v++)
(2) for (v = o; v < KAX; v++)
(3) dist[v] [v] = arc[y] [v];
(4q for (u = O; u < MAl; u++)
(5) for (v = o; v < MAl; v++)
(6). for (w = o; v < MAl; v++)
(7) if (dist[v][u] + dist[u] [v] < dist[y] [v])
(8} dist [v] [v] = dist [y] [u] + diat [u] [v] ;

Fig. 9.50. Floyd's algorithm.

Warshall's Algorithm

Sometimes, we are only interested in telling wbether there exists a path between two
nodes, rather than what the mínimum distance is. Ir so, we can use an adjacency
matrix where the type of elements is BOOLEAN (int), with TRUE (1) indicating the
presence of an arc and FALSE (O) its absence. Similarly, the elemen~ of the dist
matrix are of type BOOLEA'B, with TRUE iodicatiog the existence of a path and FALSE
indicating that no path between the two oodes in question is known. The only
modification we need to make to Floyd's algorithm is to replace liDes (7) and (8) of
Fig. 9.50 by

(7) if (dist [v] [v] == FALSE)
(8) dist[v] [v] = dist[v] [u] t& dist[u] [v];

These liDes will set dist [v] [v] to TRUE, if it is not already TRUE, whenever both
dist[v] [u] and diat[u] [v] are TRUE.

The resultiog algorithm, called Warshall's algorithm, computes the reflexive
and transitive closure of a graph of n nodes in O(n3) time. That is never better
than the O(nm) time that the method ofSection 9.7 takes, where we used depth-first
search from each node. However, Warshall's algorithm uses an adjacency matrix
rather than lis~, and if m is near n2, it may actually be more efficient than multiple
depth-first searches because of the simplicity of Warshall's algorithm.

each node u is taken in turn to be the pivot. For each pivot u, in a double loop 00
v and w, we consider each pair of oodes. Line (7) tests whether it is shorter to go
from v to w through u than directly, and if so, line (8) lowers dist [v] [v] to the
sum of the distances from v to u and from u to w.

... Example 9.27. Let us work with the graph of Fig. 9.10 from Section 9.3, using
the numbers O through 5 for the nodes; O is Laie, 1 is Kaneohe, and so oo. Figure
9.51 shows th,e arc matrix, with label INFTY for any pair of nodes tbat do not have
a connecting edge. The arc matrix is alBO the initial value of the dist matrix.

Note tbat tbe graph of Fig. 9.10 is undirected, so the matrix is symmetric; that
is, arc[v] [w] = arc[v] [w]. Ir the grapb were directed, this symmetry might not

~. ~~~~- -'-: .""""0 '-
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be preaent, but Floyd's algorithm
ror directed or undirected graphs.

Fig. 9.61.I
The first pivot is u = O. Since the eum of 11m and anytbing is IRFTY, the only

pair of nodes v and w, neither of which is u, for which di8t [y] [u] + di8t [uJ [V] is

less than 11m is ti = 1 and w = 5, or vice versa.12 Since dist[1] [6] is 18m at
this time, we replace dist [1] [6] by the eum of dist [1] [O] + dist [O] [6] which
ie 52. Similarly, we replace dist [6] [1] by 52. No other distances can be improved
with pivot O, which leaves the di8t mairixof Fig. 9.52.

Now we make node 1 the pivot. In the current di.t, shown in Fig. 9.52, node 1
has noninfinite connections to O (distance 24), 2 (distance 11), and 5 (distance 52).
We can combine th~ edg5 to reduce the distance between nades O and 2 from
11m to 24+ 11 = 35. Also, the distance between 2 and 5 is reduced to 11 +52 = 63.
Note that 63 is the distance along the path from 80nolulu, to Kaneohe, to Laie, to
Wahiawa, not the shortest way to get to Wahiawa, but the shortest way that ooly
goes through nod5 that have been the pivot so faro Eventually, we shall find the
shorter route through Pearl City. The current dist matrix is shown in Fig. 9.53.

Now we make 2 be the pivot. Node 2 cunently has noninfinite connections to
O (distance 35), 1 (distance 11),3 (distance 13), and 5 (distance 63). Among th~
nodes, the distance bet~n O and 3 can be improved to 35 + 13 = 48, and the

12 If one of ti and VI ia the u, it is ~ to eee di8t[.] [w] can nner be improved by soing
throup V. 111..., - can IpOft pain of the form (v, u) or (",VI) when 8eard1ins for pain
wh~ distance ia improved by soins through the pivot u.

1

takes no advantage oí symmetry I and thU8 works

INFTY
INFTY
IBFTY

20
O

15

11
O

13
IRFTY
IRFTY

IRFTY

13

O

20

12

24
11m
1RFTT
1RFTT

28

o

11

11m

11m

11m

1'IFTY
11m

12
15
O

1
2
3
4
5

initial value of the dist matrix.The arc matrix, whidt is the

INFTY

INFTY

13

O

20

12

11m 52
IRFTT IIfFTY

20 12

O 15
15 O

24
11m
IIFTY
11m

28

o
11

I~
11m

52

11
O

13
IRFTT
I~

1
2
3
4
5

The matrix diat after using o as the pivot.Fig. 9.52.
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i) o 1 2 3 4 5

O O 24 35 IRFTY IIFTT 28
1 24 O 11 IBFTY 11m 52

,2, 35 11 O 13 11m 63
3 INFTY INFTY 13 O 20 12
4 INFTY IRFTY IRFTY 20 O 15
J 28 52 63 12 15 O

Fig.9.53. The matlÍx dist alter using 1 as the pivot.

o .. 2 3 4 5
. Q O 24 35 48 IIFTY 28

.. :
~ t 24 O 11 24 ¡Km 52
, ,

2 35 11 O 13 IKFTY 63
3 48 24 13 O 20 12

" I8FT! I8FT! IWFTY 20 O 15
" "

5 28 52 63 12 15 O

The matrix dist after using 2 as the pivot.Fig.9.54.

distance between 1 and 3 can be improved to 11 + 13 = 24. Thus, the current dist
matrix is shown in Fig. 9.54.

Next, nade 3 becomes tbe pivot. Figure 9.55 shows the current best distance
between 3 and each ofthe other nades.13 By traveling tbrougb nade 3, we can make
the following improvements in distances.

l. Between 1 and 5, the distance is reduced to 36.

2. Between 2 and 5, the distance is reduced to 25.

3. Between O and 4, the distance is reduced to 68.

4. Between 1 and 4, tbe distance is reduced to 44.

5. Between 2 and 4, the distance is reduced to 33.
Tbe current dist matrix is sbown in Fig. 9.56. .

Tbe use of 4 as a pivot does not improve any distances. When 5 is tbe pivot,
we can improve the distance between O and 3, since in Fig. 9.56,

dist [oJ [6J + dist [6J [3J = 40

13 The reade! should compare Fig. 9.55 with Fig. 9.49. The latter shows how to use a pivot
node in the general case of a directed graph, where the arcs in and out of the pivot may have
different labels. Fig. 9.55 takes advantage of the symmetry in the example graph, letting us
use edges between node 3 and the other nodes to repl'aent both arcs into node 3, as on the
left of Fig. 9.49, and ara out of 3, aa on the ript of Fig. 9.49.
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which is less than diat (o] (3] , or 48. In terms of cities, that corresponds t.o diacov-
ering that it is shorter t.o go from Laie t.o Pearl City via Wahiawa than via Kaneohe
and Honolulu. Similarly, we can improve the distante bet~n O and 4 to 43, from
68. The final dist matrix is shown in Fig. 9.57. ...

Why Floyd's Algorithm Works
As we have leen, at any st.age during Floyd's algorithm the distance from Bode v
t.o Bode w will be the dÍstance of the shortest of th<* paths that go through only
nades that have been the pivot. Eventually, all nodes get t.o be the pivot, and
diat (y] (w] holds th"e minimum distante of all poesible paths.

Fig. 9.55. to node 4.CUlTeDt best

36
25
12
15
O

24
13

O
20
12

44
33
20
O

15

o
11
24

44

36

11

O

13

33

2S

24

35

48

68

28

1

2

3

4

5

Tbe matrix diat afte!" using 3 as the pivot.Fig. 9.56.

44
33
20
O

15

36
25
12
15
O
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O

13

33

25

24
13
O

20
12

24

35
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43

28

o
11
24
44

36

1
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Fig. 9.57. Tbe final diat matnx.



k-path

+ Example 9.28. In Fig. 9.10, the path O, 1, 2, 3 is a 2-path. The intermediate
nodes, 1 and 2, are each 2 or less. This path is also a 3-path, a 4-path, and a
5-path. It is not a l-path, however, because the intermediate Bode 2 is greater than
1. Similarly, it is not a O-path or a (-l)-path. +

.,
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We define a k-path from a node v to a nade w to be a path from v to w such that
no intermediate nade is numbered higher than k. Note that there is no constraint
that v or w be k or less.

An important special case is when k = -1. Since nades are assumed numbered
starting at O, a (-l)-path can have no intermediate nades at aIl. It can only be
either an arc or a single node that is both the beginning and end of a path of length
O.

Figure 9.58 suggests what a k-path looks like, aIthough the end points, v and
W, can be above or below k. In that figure, the height of the line represents the
numbers of the nades aIong the path from v to w.

nades numbered
higher than k

Fig. 9.58. A k-path cannot have nodes higher than k, except (possibly) at the ends.

As we assume nodes are numbered O to n - 1, a (-l)-path cannot have any
intermediate nodes at aIl, and thus must be an arc or a single node. An (n-1)-path
is any path at all, since there can be no intermediate node numbered higher than
n - 1 in any path of a graph with nodes numbered O through n-l. We shall prove
by induction on k the statement

STATEMENT S(k): If labels of arca are nonnegative, tben just before we set u to
k + 1 in tbe loop of liDes (4) to (8) of Fig. 9.50, dist [v] [v] is tbe length of
tbe shortest k-path from v to w, or IKm if tbere is no such path.
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BASIS. The basis is k = -l. We set u to O just
loop for tbe first time. We have juat initialized
Since the ara and the patbs consisting of a ood.
the basis holds.

INDUCTION. Assume S(k), and consider what
iteration oí the loop witb u = k + 1. Suppoee ]
to w. Tbere are two c~, depending on whetbE

l. If Pisa k-path, that is, P does not actual
the inductive hypothesis, dist (v) (.) airea.
kth iteration. We cannot change diat (uJ (
pivot, becauae tbere are no short.er (k + 1)-1

2. If P is a (k + l)-patb, we can assume tba~
once, becau8e cycles can never decreaae di!
to be nonnegative). Thus, P is compose<i o
followed by a k-path R from node k + 1 to t
inductive bypothesis, diat (v) (k+l) and d:
paths Q and R, respectively, after the kth

Fig.9.59.

Let us begin by obeerving that 4ist [y] [k
changed in the (k + l)st iteration. The reason is
and 80 aIl lengths oc paths are nonnegative; th
must Cail when u (i.e., nade k + 1) is one oí VOl

Thus, when we apply the test oí line (7) Cor
the values oí 4ist [y] [k+1] and 41st [k+1] [v]

the kth iteration. That is to say, the test oí 1
sbortest k-patb, witb tbe sum oí tbe lengths oí f
and íram k + 1 to w. In case (1), wbere patb
Corroer will be the sborter, and in case (2), wl
latter wiU be the sum oí tbe lengths oC the patl
the sborter.

We conclude tbat the (k + l)st iteration -
shortest (k + l)-path, Cor aIl nod5 v and w. 1
80 we conclude tbe induction.

To finisb our proof,. we Jet k = n-l. Tba
n iteratioDS, di-.t [y] [w] is tbe minimum dist
w. But since any paa.b is an (n - l)-patb, we
minimum dist.ance &long any patb from v to w

1
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EXERCISES

9.9.1: A~uming all arcs in Fig. 9.5 (see the exercises íor Section 9.2) have label 1,
use Floyd's algoritbm to find the length oí the shortest path between each pair oí
nades. Show the distance matrix after pivoting with each nade.

9.9.2: Apply Warshall's algorithm to the graph oí Fig. 9.5 to compute its reflexive
and transitive closure. Show the reachability matrix after pivoting with eacb nade.

9.9.3: Use Floyd's algorithm to find the shortest distances between each pair oí
cities in the graph of Micbigan in Fig. 9.21 (see the exercises for Section 9.4).

9.9.4: Use Floyd's algoritbm to find tbe shortest possible time between eacb of tbe
hominid species in Fig. 9.48 (see the exercises for Section 9.8).

9.9.5: Sometimes we want to consider only paths oí one or more arcs, and exclude
single nades as paths. How can we modify the initialization of tbe arc matrix so
that only paths of length 1 or more will be considered when finding the shortest
path from a nade to itself?

9.9.6.: Find all tbe acyclic 2-paths in Fig. 9.10.

9.9.7.: Why does Floyd's algorithm not work when there are both positive and
negative costs on the arcs?

9.9.8..: Give an algoritbm to find the longest acyclic patb between two given
nades.

9.9.8*.: Suppose we ron Floyd's algorithm on a graph G. Tben, we lower tbe label
oí the arc u -+ v to O, to construct the new grapb G'. For wbat pairs of nades s and
t will dist[s] [t] be the same at each round when Floyd's algorithm is applied to
G and G'?

Graph theory is the branch of mathematics concerned with properties of graphs.
In the previous sections, we have presented the basic definitions of graph theory,
along with some fundamental algorithms that computer scientists have developed to
calculate key properties of graphs efficiently. We have seen algorithms for computing
shortest paths, spanning trees, &ud depth-first-search trees. In tbis section, we shall
present a few more important concepts from graph theory. .
Complete Graphs
An undirected graph that has an edge between every pair oí distinct nades is called
a complete graph. The complete graph with n nades is called Kn. Figure 9.60'shows
the complete graphs K 1 through K4.

The number oí edges in Kn is n(n - 1)/2, or (~). To see why, consider an edge
{u, v} oí Kn. For u we can pick any oí the n nades; íor v we can pick any oí the
remaining n,- 1 nades. The total number oí choices is thereíore n( n - 1). However,
we count each edge twice that way, once as {u, v} and a second time as {v ,u}, so
that we must divide the total number oí choices by 2 to get the correct number oí
edges.
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There is alBo a notion of a complete directed graph. This graph has an arc
from every nade to every other nade, including itself. A complete directed graph
witb n nod5 bas n2 &rCS. Figure 9.61 SbOW8 tbe complete directed grapb with 3
nades and 9 &rCS.

Complete
directed graph

Planar Graphs

An undirected graph is said to be planar if it is possible to place its nod~ 00 a
plane and then draw its edg~ 88 continuous liDes M) that no two edges Cf(8.

Example 9.29. Tbe graph K4 was drawn in Fig. 9.60 in such a way that its
two diagonal edges crossed. However, K4 is a plaoar graph, as we can see by the
drawing in Fig. 9.62. There, by redrawing one oí the diagonals on the outside, we
avoid having aoy two edges crCB. We say that Fig. 9.62 is aplane pre6entation
oí the graph K4, while the drawing in Fig. 9.60 is a nonplaoe presentation oí K4.
Note that it is pennissible to have edges tbat are not straight liDes in aplane
presentation. +

+

Plane

preseotation

In Figure 9.63 we see what are in a eenee the two simplest nonplGnar graphs,
that is, graphs that do not have any plane presentation. One is K5, the complete
graph with five nades. Tbe other is ~metimes called K3,3; it is formed by taking
two groupe of three nades and connecting each nade of one group to each nade of
the other group, but not to nades of the same group. Tbe reader should try to

Nonplanar
graph

J;,

~
~

~
~ Ae

Ka K4K2K.

grapbs.Flg. 9.60. The fust four

Fig. 9.61. The complete directed graph with tbree nades.
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~

Fig. 9.62. presentation of K4.Aplane

K$ K".3

Fig. 9.63. The two simplest nonplanar graphs.

redraw each of these graphs so that no two edges cross, just to get a feel for why
they are not planar.

A famous theorern by Kuratowski states every nonplanar graph contains a
"copy" of at least one of these two graphs. We rnust be a little careful in interpreting
the notíon of a copy, however, since to see a copy of Ks or K3.3 in an arbitrary
nonplanar graph G, we rnay have to assocíate sorne edges in the graphs of Fig. 9.63
with paths in the graph G.

Applications of Planarity

Planarity has considerable importance in computer science. For example, many
graphs or similar diagrams need to be presented on a computer screen or on paper.
For clarity, it is desirable to make aplane presentation oí the graph, or ií the graph
is not planar, to make as íew crossings oí edges as possible.

The reader may observe that in Chapter 13 we draw some íairly complex dia-
grams oí circuits, which are really graphs whose nodes are gates and junction points
oí wires, and whose edges are the wires. Since these circuits are not planar in gen- .
eral, we had to adopt a convention in which wires were allowed to cross without
connecting, and a dot sigoals a connection oí wires.

A related application conceros the design of integrated circuits. Integrated
circuits, or "chips," embody logical circuits such as those discussed in Chapter 13.
They do not require that the logical circuit be inscribed in aplane presentation,
but there is a similar limitation that allows us to assigo edges to several "levels,"
often three or four levels. On one level, the graph of the circuit must have aplane
presentation; edges are not allowed to cross. However, edges on different levels may
cross.
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Grapb Coloring
The problem of groph coloring for a graph G is to 88ign a "color" to each nade
so that no two nades that are connected by an edge are a8igned the &ame color.
We mar then ask how many distinct colors are required to color a graph in this
sense. The minimum number of colors needed lor a graph G is called the chromatic
number of G, often denoted X(G). A graph that can be colored with no more than
k colora is called k-coloroble.

Chromatic
number

k-colorability

Example 9.30. If a graph is complete, then its chromatic number is equal to
the number of nodes; tbat is, X{Kn) = n. In proof, we cannot color two nodes u
and v with the same color, beca~ there i8 surely an edge between tbem. Thus,
each node requires its own color. Kn is k-colorable for each k ?: n, but Kn is not
k-colorable if k < n. Note that we say, for instance, tbat K. is 5-colorable, even
though it is impoesible to use all five colora on the four-node graph K.. However,
formally a graph is k-colorable if it can be colored with k or fewer colora, not only
if it is colorable with exactly k colora.

As another example, the graph K3.3 shown in Fig. 9.63 has chromatic number
2. For example, we can color the three nodes in the group 00 the left red and color
the tbree nodes on the rigbt blue. Tben all edges go between a red and a blue node.
K3.3 is an example of a bipartite groph, which is another name for a graph that can
be colored with two colora. AII sucb grapba can bave their nodes divided into two
groups such tbat no edge runs between membera of tbe same group.

As a final example, the chromatic number for the six-node graph of Fig. 9.64
is 4. To see wby, note that the node in the center cannot have the same color as
any other node, since it is connected to all. Thus, we ~rve a color for it, say, red.
We need at least two other colora for the ring of nodes, lince neighbora around the
ring cannot get the same color. However, if we try altemating colora - say, blue
and green - as we did in Fig. 9.64, then we ron into a problem that the fifth node

has both blue and green neighbora, and therefore needs a fourth color, yellow, in
our example. ...

+

Bipartite graph

Applications of Grapb Coloring

Finding a good graph coloring is another problem that has many uses in computer
science. For example, in, our introduction to tbe first chapter, we considered as-
signing courses to time slote 80 that no pair oí courses in tbe same time slot bad a
student taking both COUr8e8. Tbe motivation was to schedule final exama 80 tbat
DO student had to take two ex&ms at tbe same time. We drew a grapb wb~

,

Fig.9.64. A grapb with dlromatic number 4.
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nades were the courses, with an edge between two courses ií they had a student in
common.

The question oí how many time slots we need in which to schedule exams can
thus be poeed as the question oí what is the chromatic number oí this graph. AlI
nades oí the same color can be scheduled at the same time since they have no edges
between any two oí them. Conversely, ií we have a schedule that does not cause
conflicts for any student, then we can color all the courses scheduled at the same
time with the same color, and thus produce a graph coloring with as many colors
as there are exam periods.

In Chapter 1 we discussed a heuristic based on finding maximal independent
sets to schedule the exams. That is a reasonable heuristic for finding a good coloring
of a graph as well. One might expect that one could try all possible colorings íor a
graph as small as the five-node graph in Fig. 1.1, and indeed that is true. However,
the number of possible colorings of a graph grows exponentially with the number of
nodes, and it is not íeasible to consider all possible colorings for significantly larger
graphs, in our search íor the least possible number oí colors.

Cliques

A clique in an undirected graph G is a set oí nodes such tbat tbere is in G an edge
between every pair oí nades in the seto A clique of k nades is called a k-clique. Tbe
size oí tbe largest clique in a graph is called the clique number oí that graph.

Example 9.31. As a simple example, every complete graph Kn is a clique
consisting oí all n nades. In íact, Kn has a k-clique íor al! k .$ n, but no k-clique
ií k > n.

The graph oí Fig. 9.64 has cliques oí size three, but no greater. The 3-cliques
are each shown as triangles. There cannot be a 4-clique in this graph, because it
would have to include sorne oí the nodes in the ring. Each ring node is connected
to only three other nades, so the 4-clique would have to include some node v on the
ring, its neighbors on the ring, and the central node. However, the neighbors oí v
on the ring do not have an edge between them, so we do not have a 4-clique. +

...

As an example application of cliques, suppose we represented conflicts among
cour&es not as in Fig. 1.1, but rather by putting an edge between two nades ifthey
did not have a student enrolled in both coUr&es. Thus, two courses connected byan
edge could have their exams scheduled at the same time. We could then look for
manmal cliques, that is, cliques that were not subsets of larger cliques, and schedule
the exams for a maximal clique of cour&es at the same periodo .

EXERCISES

For the graph oí Fig. 9.4,9.10.1:

a) Whatjs the chromatic number?
b)' What is the clique number?
c) Give an example oí ORe largest clique.
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9.10.2: What are the chromatic numbers of the undirect.ed versions of the graphs
shown in (a) Fig. 9.5 and (b) Fig. 9.267 (Treat arcs 88 edges.)

9.10.3: Figure 905 Í8 not p~nted in aplane mannero Is the graph planar? That
is, can you redraw it 80 there are no crossing edges?

9.10.4.: Three quantities &88OCÍated with an undirected graph are its degree (max-
imum number of neighbors of any node), its chromatic number, and its clique num-
ber. Derive inequalities that must hold between these quantities. Explain why they
must boldo

9.10.5..: ~gn an aIgorithm that will take any graph of n nodes, with m the
larger of the number of nodes and edges, and in O(m) time will tell whether the
graph is bipartite (2-colorable).

9.10.6.: We can generalize the graph of Fig. 9.64 to bave a central node and .
nodes in a ring, each node connected only to its neighbors around the ring and to
tbe central node. As a function of k, whaL is the chromatic number of this graph?

9.10.7.: What can you say about the chromatic number of unordered, unrooted
trees (as discusaed in Section 9.5)7

9.10.S..; Let KiJ be the graph formed by taking a group of i nodes and a group
of j nod~ and placing an edge from every member of one group to every member
of the other group. We obeerved that if i = j = 3, then the resulting graph is not

planar. For what values of i and j is tbe graph KíJ planar7

iilt

.:. 9.11 Summary oí Chapter 9

The table of Fig. 9.65 summarizes the various problems we have addre88ed in this
chapter, tbe algoritbms for solving tbem, and the running time oí the algorithms.
In this table, n is the number of nodes in tbe graph and m is the larger of the
number of nodes and the number of arcsfeAiges. Un lea otherwiae noted, we 88Ume
graphs are represente<! by adjacency lists.

In addition, we have introduced tbe reader to m<»t of the key concepts of grapb
th«>ry. Th~ include

+ Patba and shortest patba

+ Spanning trees

+ Deptb-first search trees and forests

+ Grapb coloring and tbe chromatic number

+ Cliques and clique numbers

+ Planar gra,ba.

,

Is the graph planar? That



.:. 9.12 Bibliograpbic

:1
SEC.9.12 BIBLIOGRAPHIC NOTES FOR CHAPTER 9 527

Fig. 9.65. A summary oí graph algorithms.

Notes for Chapter 9

For additional material on graph algorithms, see Aho, Hopcroft, and Ullman [1974,
1983]. Depth-first search was first used to create efficient graph algorithms by
Hopcroft and Tarjan [1973]. Dijkstra's algorithm is from Dijkstra [1959], Floyd's
algorithm from Floyd [1962], Kruskal's algorithm from Kruskal [1956], and War-
shall's algorithm from Warsball [1962].

Berge [1962] covers the matbematical thMry of grapbs. Lawler [1976], Pa-
padimitriou and Steiglitz [1982], and Tarjan [1983] present advanced graph opti-
mization techniques.
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