
CHAPTER

....

..".... 5.1 What This Chapter Is About

5

The 1l-ee
Data Model

There are many situations in which infornlation has a hierarchical or ncsted struc-
tole like that found in family trees or organization charts. The abstraction that
modele hierarchical structure is called a t~ and this data rnodel is among the m~t
fundamental in computer science. It is the model that underlies several program-
ming languages, iocludiog Lisp.

Trees of various types appear in many of the chapters of this book. For in-
stance, in Section 1.3 we saw how directories and files in sorne computer systems
are organized ioto a tree structure. In Section 2.8 we used trees to show how lists
are split recursively and tben recombioed in tbe merge sort algorithrn. lo Section
3.7 we used trees to illustrate how simple statements in a program can be combined
to fornl progressively more complex statements.

The following them~ forro the major topics of thia chapter:

. The terms and concept8 related to t~ (Section 5.2).

. The basic data structures used to rep~nt t~ in programs (Section 5.3).

. Recuraive algoritbms that. operate on the nodes of a tree (Section 5.4).

. A method Cor making inductive proofs about trees, calle<! structural induction,
where we proceed from small trees to progressively larger ones (Section 5.5).

. The binary tree, which is a variant of a tree in which nodes have two "slot8"
Cor children (Section 5.6).

. The binary ~arch tree, a data structure for m&Íntaining a ~t of elemen~ from
which in8ertioDS and deletions are made (Sections 5.7 and 5.8).

223

224 THE TREE

... The priority queue, which is a set to which elements can be added, but from
which only the maximum element can be deleted at any one time. An efficient
data structure, called a partially ordered tree, is introduced for implementing
priority queues, and an O(nlogn) algorithm, called heapsort, for sorting n
elements is derived using a balanced partially ordered tree data structure, called
a heap (Sections 5.9 and 5.10).

+: + 5.2 Basic Terminology

Nodes and

edges

Root

Trees are sets oí points, called node8, and liDes, called edge8. An edge connects two
distinct nades. To be a tree, a collection oí nades and edges must satisfy certain
properties; Figo 501 is an example oí a tree.

lo In a tree, one nade is distinguished and called the root. The root oí a tree is
generally drawn at the topo In Figo 5.1, the root is ni.

20 Every nade c other than the root is connected by an edge to 8Orne one other
nade p called the parent oí Co We also call c a child oí p. We draw the parent
oí a node above that node. For example, in Fig. 5.1, n¡ is the parent oí n2, n3,
and n4, while n2 is the parent oí ns and n6. Said another way, n2, n3, and n4
are children oí n¡, while ns and n6 are children oí n2o

3. A tree is connected in the sense that if we start at any nade n other than the
root, rnove to the parent of n, to the parent oí the parent of n, and 80 on, we
eventually reach the root of the treeo For instance, starting at n7, we move to
its parent, n4, and íroro there to n4 '8 parent, which is the root, n¡o

Parent and
child

AIl nades are
connected to
the root

An Equivalent

It is alBO possible to define
structs larger trees out oí smaller ones.

BASIS. A single nade n is a tree. We say tbat n is tbe root of tbis one-node tree.

INDUCTION. Let r be a new node and let T¡! T2!. .., TIr be one or more trees witb
roots CI, C2, . . ., C¡" ~pectively. We require that no nade appear more than once in
the Ti 's; and of course r, being a "new" node, cannot appear in any of these trees.
We form a new tree T from r and TI, T2'... ,T¡, as follows:

DATA MODEL

Fig. 5.1. 'free with leven nodes.

ol TreesRecursive Deftnition

trees recursively with an inductive definition that con-

Pa

+

Path length

SEC. 5.2 BASIC TERMINOLOGY 225

a) Make r the root of tree T.

b) Add an edge from r to ead1 of CI, C2,.", c." thereby making each of these
nodes a child of tbe root r. Another way to view tbia step is that we have
made r tbe parent of each of the roots of the trees TI, T2,... ,Tk.

Example 5.1. We can use this recursive definition to construct tbe tree in Fig.
5.1. This construction aIso verifies that the structure in Fig. 5.1 ia a tree. The nodes
RS and R6 are each trees tbemselves by the basis rule, which says that a single node
can be considered a tree. Then we can apply the inductive rule to create a new
tree witb R2 as tbe root r, and tbe tree TI, consisting oí R5 alone, and the tree T2,
consisting of R6 alone, as children oí tbis new root. Tbe nodes CI and C2 are RS and
R6, respectively, sÍDce tbese are tbe roots of tbe tft)e8 TI a.nd T2. As a result, we
can conclude tbat the structure

A
is a tree; its root is n2.

Similarly, n7 alone is a tree by tbe basis, and by the inductive rule, the structure

~
9

is a tree; its root ia R4.
Node Ra by itself is a tree. Finally, if we take the node Rl as r, and R2, R3, and

R4 as the roots of the three trees just mentioned, we create the structure in Fig.
5.1, verifying that it indeed is a tree. ..

Paths, Ancestors, and Descendants

The parent-child relationship can be extended naturally to ancestors and descen-
danta. Informally, the ancestors of a node are found by following the unique path
from the node to ita parent, to ita parent 's parent, and 80 oo. Strictly speaking,
a node is also its own ancestor. The descendant relationship is the invene of the
ancestor relationship, just as the parent and child relationships are inverses of each
other. That is, node d is a deecendant of node a ir and only if a is an ancestor of d.

More formally, suppoee mi, m2, . . ., m. is a sequence of nodes in a tree such
that mi is the parent of m2, which is the parent of m3, and 80 on, down to mk-i,
which is the parent of mk. Then mi, m2, . . . I mk is called a path from mi to mk in
the tree. The length of the path is k - 1, one leM than the number of nades on the
path. Note that a path may consist of a single node (if k = 1), in which case the
length of tbe patb ia O.

226 THE TREE DATA MODEL

5.2. In Fig. 5.1, n¡. n2. n6 is a path of length 2 froro the root n¡ to+ Example
the nade n6i n¡ is a path oí

If mI, m2, . . ., m/c is a patb in a tree, node mI is called an ancestor of m/c and
node m/c a descendant of mI. If tbe patb is of lengtb 1 or more, tben mI is called a
proper ancestor of m/c and m/c a proper descendant of mI. Again, remember tbat
tbe case of a patb of lengtb O is possible, in which case the patb lets us conclude
that mI is an ancestor of itself and a descendant of itself, although not a proper
ancestor or descendant. Tbe root is an ancestor of every node in a tree and every
node is a descendant of the root.

Proper ancestor
and descendant

Example 5.3. In Fig. 5.1, all seven nades are descendants of nI, and nI is an
ancestor of all nades. Also, all nades but nI itself are proper descendants of ni,
and nI is a proper ancestor of all nades in the tree but itself. The ancestors of n5
are ns, n2, and nI. The descendants of n4 are n4 and n7. +

...

Nodes that have the same parent are sometimes called siblings. For example,
in Fig. 5.1, nodes n2, n3, and n4 are siblings, and n5 and n6 are siblings.

Subtrees
In a tree T, a node n, together with all oí its proper descendants, if any, is called
a subtree of T. Node n is the root oí this subtree. Notice that a subtree satisfies
the three conditions for being a tree: it has a root, all other nodes in the subtree
have a. unique parent in the subtree, and by following parents from any node in the
subtree, we eventually reach the root of the subtree.

Sibling

+ Example 5.4. Referring again to Fig. 5.1, node ns by itself is a subtree, since
n3 has no descendants other than itself. As another example, nades n2, n&, and n6
form a subtree, with root n2, since these nades are exactly the descendants of n2.
However, the two nades n2 and n6 by themselves do not form a subtree without
node n&. Finally, the entire tree of Fig. 5.1 is a subtree of itself, with root nI. +

Leaves and Interior N odes

A leal is a node oí a tree that has no children. An interior nade is a node that
has one or more children. Thus, every node oí a tree is either a leaf or an interior
node, but not both. The root oí a tree is normally an interior node, but ií the tree
consista oí only one node, then that node is both the root and a leaf.

.. Example 5.5. In Fig. 5.1, the leaves are R5. R6, R3. ud R7. The nooes R¡, R2.
and n4 are interior. ..

Height and
In a tree, the height of a node n is the length
The height o/ the tree is the height of the root.
the length of the path from the root to n.

LeveI

leogth zero froro ni to itself. ...

Depth
of a
The

path Croro n to a leaf.
or level, of a node n is

+

+ Example 5.7. In Fig. 5.1, the nodes of the subtree rooted at n2 - that is, n2,
n5. and n. - are all to the left of the nades of the subtrees rooted at n3 and n4-

Thus. n2. n5, and n. are all to the left of n3, n4. and n7. +

.
I
...

d
s
e
e

e
6
!.
:t

~t

Ir

-e

2.

+ Example 5.8. Since no leaf can be an ancestor of another leaf, it follows that
all leaves can be ordered "Croro the left." For instance, the order of the le~ves in
Fig. 5.1 is n5, n6, n3, n7. ..

f.
is

BASIC TERMJNOLOGY 227SEC. 5.2

Example 5.6. In Fig. 5.1, node "1 has height 2, "2 has beight 1, and leaf"3
has heigbt O. In fact, aoy lea! has height o. Tbe tree in Fig. 5.1 has height 2. The
depth Of"1 is O, tbe deptb of "2 is 1, and the depth Of"5 is 2. +

Ordered Trees

Optionally, we can assign a left-to-rigbt arder to tbe children of any node. For
example, tbe arder of tbe cbildren Oí"1 in Fig. 5.1 is "2 leftm~t, then "3, tben "4.
This left-to-rigbt ordering can be extended to arder aIl the nodes in a tree. If m
and " are siblings and m is to the left of", then all of m's descendants are to tbe
left of aIl of "'8 descendants.

In a tree, take any two nodes .r and y neither of which is an ancestor of tbe
otber. As a consequence of the definition of "to tbe left," one of .r and y will be
to the left of the other. To tell which, follow the patbs from .r and y toward tbe
root. At some point, perhaps at the root, perhaps lower, the paths will meet at
some Bode z as suggested by Fig. 5.2. The paths from .r and y reach z from two
dift'erent nodes m and n, respectively; it is possible that m = .r andjor n = y, but
it must be that m # n, or else tbe paths would have converged somewhere below z.

~~

Fig. 6.2. Node z: is to the left of node 11.

Suppoee m Í8 to the left of n. Then sinre Z' is in the subtree rooted at m and
y is in the subtree rooted at n, it follow8 that Z' is to the left of y. Similarly, if m
were to the right of n, then Z' would be to the right of y.

228 THE TREE DATA MODEL

Labeled 'li-ees

A labeled tree is a tree in which a label or value is associated with each nad,
tree. We can think of the label as the information associated with a givel
The label can be something as simple, such as a single integer, or complex,
the text of an entire documento We can change the label of a nade, but we
change the name of a nade.

Ir the name of a nade is not important, we can represent a nade by it
However, the label does not always provide a unique name for a nade, since
nades may have the same label. Thus, many times we shall draw a nade wil
its label and its name. The following paragraphs illustrate the concept of a
tree and offer some samples.

Expression 'li-ees - An Important Class oí 'li-ees

Arithmetic expressions are representable by labeled trees, and it is often quil
fui to visualize expressions as trees. In fact, express ion trees, as they are son
called, specify the association of an expression 's operands and its operatc
uniform way, regardless of whether the association is required by the placel
parentheses in the expression or by the precedence and associativity rules
operators involved.

Let us recall the discussion of expressions in Section 2.6, especially E
2.17, where we gave a recursive definition of expressions involving the usua
metic operators. By analogy with the recursive definition of expressions,
recursively define the corresponding labeled tree. The general idea is th¡
time we form a larger expression by applying an operator to smaller exprl
we create a new nade, labeled by that operator. The new nade becomes the
the tree for the large expresion, and its children are the roots of the trees
smaller expresions.

For instance, we can define the labeled
the binary operators +, -, x, and /, and the

BASIS. A single
2.6) is an expression, and its tree is a single nade, labeled by that operando

&

trees for arithmetic expressioI
unary operator -, as follows.

an integer, or a real, as in :atomic operand (e.g'I a

0

~ ¿
(a) (El + &) (b) (-El)

Expre88ÍOl1 trees fOl" (El +~) and (-El).Fig. 5.3.

...

1
1

SEC. 5.2 BASIC TERMlNOLOOY 229

INDUCTION. IC El and E2 are expreMiona repreaented by trees TI and T2, re-
spectively, tben tbe expreMion (El + E2) is represented by tbe tree oC Fig. 5.3(a),
wbose root is labeled +. Tbis root has two cbildren, which are tbe roots oC TI and
T2, respectively, in that order. Similarly, the expre8ions (El - E2), (El x E2),

and (EIIE2) have expr~ion trees with roots labeled -, x, and l. respectively,
and subtrees TI and T2. Finally, we mar apply tbe unary minus operator to one
expression, El. We introduce a root labeled -, and its one child is tbe root oCTI;
the tree COl (-El) is shown in Fig. 5.3(b).

Example 5.9. lo Example 2.17 we diacussed tbe recursive constructioo of a
sequence of six expressioos from the basis and inductive roles. These expressions,
listed in Fig. 2.16, were

i) . iv) (-(z + 10»)
ii) 10 17) Y

iii) (z+10) vi) (y X (-(z+10)))

Expressions (i), (ii), aod (v) are single operaods, aod 80 the basis rule tells us tbat
the trees of Fig. 5.4(a), (b), and (e), respectively, represent these expressions. Note
tbat each of these trees oonaists of a single node 10 wbich we have given a name-
nl, n2, and ns, respectively - aod a label, which is tbe operand in the circle.

0"1 @n2 ~3
~1 @n2

(b) For 10. (c) For (z + 10).(a) For z.

G)n5

"2

(f) Por (,)((-(~ + 10))).(d) For (-(z + 10)). (e) For y.

Fig. 5.4. of exPJ'e88ion trees.

Expression (iii) is formed by applying the oper&tor + to the operandsz and
10, and 80 we see in Fig. 5.4(c) the tree for this expression, with root labeled +,
and the roots of the trees in Fig. 5.4(&) and (b) as its children. Expression (iv) is

230 THE TREE DATA MODEL

Cormed by applying unary - to expre88Íon (iii), 80 that the tree rOl (-(z + 10»),
shown in Fig. 5.4(d), has root labeled - above the tree rOl (z + 10). Finally, the

tree rOl the expression (y x (-(z + 10»)), shown in Fig. 5.4(C), has a root labeled

x, whose children are the roots oCthe trees ofFig. 5.4(e) and (d), in that order. ...

EXERCISES

5.2.1: In Fig. 5.5 Vfe see a tree.
phrases:

a) The root of the tree
b) The leaves of the tree
c) The interior nodes of the tree
d) The siblings of node 6
e) The subtree with root 5
f) The ancestors of node 10
g) The descendants of node 10
h) The nodes to the left oí node 10
i) The nodes to the right oí node 10
j) The longest path in the tree
k) The height oí node 3
1) The depth of node 13
m) The height of the tree

5.2.2: Can a leaf in a tree ever have any (a) descendants? (b) proper descendants?

5.2.3: Prove that in a tree no leaf can be an ancestor oí another leaf.

Fig. 5.5. Thee for Exercise 5.2.1.

Tell what is deacribed by each of the following

5.2.5: Suppose we bave a grapb consisting of four nades, r, a, 6, and c. Nade r is
an isolated nade and has no edges connecting it. Tbe remaining tbree nades forro
a cycle; tbat is, we bave an edge connecting a and 6, an edge connecting 6 and c,
and an edge connecting c and a. Wby is tbis grapb no~ a ~ree?

5.2.6: In many kinds of trees, tbere is a significant distinction between tbe interior
nades a.nd the leaves (or ratber tbe Ia.bels of these two kinds of nades). For example,
in an expreMion tree, tbe interior nades repreaent operators, and tbe leaves repreaent
atomic operands. Give tbe distinction between interior nades and leaves for each of
the íollowing kinds of trees:

a) Trees representing directory structures, as in Section 1.3
b) Trees representing the splitting and merging of lists for merge sort, as in Section

2.8
c) Trees representing the structure of a function, as in Section 3.7

5.2.7: Give expreMion trees for the following expressions. Note tbat, as is cus-
tomary with expressions, we bave omitted redundan~ parentbeses. You must first
restore ~be proper pairs of parentbeses, using tbe customary rules for precedence
and associativity oí operators.

a) (z + 1) x (z - y + 4)
b) 1 + 2+3+4 + 5+6
c) 9 x 8 + 7 x 6 + 5

5.2.8: Show that if z and y are two distinct nades in an ordered tree, then exactly
one of tbe following conditions must hold:

a) z is a proper ancestor oí y
b) z is a proper descendant of y
c) z is to tbe left of y
d) z is to tbe rigbt oí y

++++ 5.3 Data Structures for Trees

SEC. 5.3 DATA STRUCTURES FOR TRE~ 231

5.2.4*: Prove that the two definitions of trees in tbis eection are equivalent. Hint:
To show that a tree according the nonrecursive definition is a tree according the
recursive definition, use induction on the number of nades in the tree. In the
opposite direction, use induction on the number of rounds used in the recursive
definition.

Many data structures can be used to represent trees. Which one we should use
depends on the particular operations we want to perform. As a simple example, if
all we ever want to do is to locate the parenta of nodes, then we can represent each
Bode by a structure consisting of a label plus a pointer to the structure representing
the parent of that node.

As a general rule, the nodes of a tree can be represented by structures in which
the fields link the nodes together in a manner similar to the way in which the nodes
are connected in the abetrad tree; the tree itaelf can be represented by a pointer to
the root's structure. Thus, when we talk about representing trees, we are primarily
interested in how the nodes are represented.

232 THE TREE DATA MODE

One distinction in representations concerns where the structures for the nod
"live" in the memory of the computer. In C, we can create the space for stru
tures for nades by using the function malloc from the standard library stdlib.
in which case nades "float" in memory and are accessible only through pointer
Alternatively, we can create an array of structures and use elements of the array 1

~

In C this data structure can be represented by the type declaration

typedef struct NODE *pNODE;

struct NODE {

int info;

pNODE children[BF];
};

Here, the field info represents the information that constitutes the label of a no;
and BF is the constant defined to be the branching factor. We shall see maJ
variants of this declaration throughout this chapter.

In this and most other data structures for trees, we represent a tree by a point
to the root node. Thus, pNODE algo serves as the type of a tree. We could, in fa<
use the type TREE in place of pNODE, and we shall adopt that convention when ,
talk about binary trees starting in Section 5.6. However, for the moment, we sh~
use the llame pNODE for the type "pointer to node," since in some data structure
pointers to nodes are used for other purposes besides representing trees.

The array-of-pointers representation allows us to access the ith child of al
node in 0(1) time. This representation, however, is very wasteful of space WhE
only a few nodes in the tree have many children. In this case, most of the pointe
in the arravR will h~ NtJLI~

Po I Pl 1 I . . . I 1

+

Trie

As another example, Suppoee we want to determine whether hia is in the seto
We follow the path from the root to n2 to ni, which represents the prefix hi; but
at n5 we find no child corresponding to the letter a. We conclude that hia is not
in the seto Finally, if we search for the word her, we find our way from the root to
nade n7. That nade exists but does not have a l. We therefore conclude that her
is not in the set, althoUgh it is a proper prefix of a word, her8, in the seto

SEC. 5.3 DATA STRUCTURES FOR TREES 233

Try to Remember Trie

Tbe term "trie" comes from tbe middle oí tbe word "retrieval." It was originaUy
intended to be pronounced "tree." Fortunately, common parlance has 8witcbed to
the distinguishing pronunciation "try."

Example 5.10. A tree can be used to represent a collection of words in a way
that makes it quite efficient to check whether a given sequence of characters is a
val id word. In this type of tree, called a tne, each node except the root has an
associated letter. The string of characters rep~nted by a node n is the sequence
of letters along the path from the root to n. Given a set of words, the trie consists
of nodes for exactly th~ strings of characters that are prefixes of some word in
the seto The label of a node consists of the letter represented by the node and
also a Boolean telling whether or not the string from the root to that node forros a
complete word; we shall use for the Boolean the integer 1 if so and O if not.)

For instance, suppose our "dictionary" consists ofthe tour words he, her8, bis,
she. A trie for these words is shown in Fig. 5.7. To determine whether the word he
is in the Et, we start at tbe root "1, move to the child "2 labeled h, and then from
that nade move to its child "4 labeled e. Since these nodes all exist in the tree, and
n4 has 1 as part of its label, we conclude that he is in the seto

and .he.Fig.5.1. Trie for worda be, bers, bis,

I In the previous IeCtion we acted u i(the label - a sinlle vaJue. However, vaJues can be
o(any type, and labels can be structUre8 consistins o(two or more fielda. In this case, the
label hu one field that is a let&« and a aecond tha& ia an inteser that ia either O or 1.

234 THE TREE DATA MODEL

Nades in a trie bave a branching factor equal to tbe number of dift'erent char-
acters in tbe alpbabet froro wbich the words are fonned. For example, if we do not
distinguish between upper- and lower-caee, and words contain no special characters
such 88 apostropbes, tben we can take the branching factor to be 26. The type of
a nade, including the two label fields, can be define<! 88 in Fig. 5.8. In the array
children, we assume that the letter a is repreaented by index O, the letter b by
index 1, and 80 on.

typedef .truct .ODE .pNODE;

struct NODE {

char letter;
int isVord;
pNODE children(BF];

};

The abstract trie oí Fig. 5.7 can be represented by the data structure oí Fig.
5.9. We represent nades by showing the first two fielde, letter and isVord, along
with th~ elements oí the array children that have non-1ULL pointers. In the
children array, íor each non-RULL element, the letter indexing the array isehown
in the entry above the pointer to the child, but that letter is not actually present
in the structure. Note that the letter field oí the root is irrelevant. +

Fig. 5.8. Defuút.ion af an alphabet.ic t.rie.

Data structure for the trie of VIg. 5.7.Fig. 5.9.

Right sibling

+

SEC. 5.3 DATA STRUCTURES FOR TREES 235

Leftmost-Child-Right-Sibling Representation of Trees

Using arrays of pointers for nades is not neceaarily space-efficient, because in typical
cases, the great majority of pointers will be NULL. That is certainly the case in Fig.
5.9, where no nade has more than two non-NULL pointers. In fact, if we think about
it, we see that the number of pointers in any trie based on a 26-letter alphabet will
have 26 times as many spaces for pointers as there are nades. Since no nade can
have two parents and the root has no parent at all, it follows that among N nades
there are only N - 1 non-NULL pointers; that is, less than one out of 26 pointers is

useful.
One way to overcome the space inefficiency of the array-of-pointers repreaen-

tation of a tree is to use linked lists to represent the children of nades. The space
occupied by a linked list for a node is proportional to the number of children of that
node. There is, however, a time penalty with this representation; acceaing the ith
child takes O(i) time, becauae we must travene a list of length i - 1 to get to the

ith nade. In comparison, we can get to the ith child in O(1) time, independent of
i, using an array of pointers to the children.

In the representation of trees called leftmost-child-right-sibling, we put into
each nade a pointer only to its leftmost child; a nade does not have pointers to any
of its other children. To find the second and subeequent children of a nade n, we
create a linked list of those children, with each child c pointing to the child of n
immediately to the right of c. That nade is called the right sibling of c.

Example 5.11. In Fig. 5.1, n3 is the right sibling o(n2. n4 is the right sibling
o(n3. and n4 has no right sibling. We would find the children o(nI by following
its leftmost-child pointer to n2, then the right-sibling pointer to n3. and then the
right-sibling pointer o(ns to n4. There. we would find a IULL right-sibling pointer
and know that nI has no more children.

Figure 5.10 contains a sketch.of the le(tm~t-child-right-sibling representation
for the tree in Fig. 5.1. The downward arrOW8 are the leftm~t-child lino; the
sideways arrows are the right-sibling links. +

~

Leftmost-dilld-right-sibling representation for tbe tree in Fig. 5.1.Fig. 5.10.

representation of a tree, nades can be definedIn a l~
as follows:

236 THE TREE DATA MODEL

typedef 8truct NUDE .pNODE;
atruct IODE {

int info;

plODE leftao8tChild. rightSibling;
};

The field info holds the label 888OCiated with the nade and it can have any
type. The fields leftao8tChild and rightSibling point to the leftm~t child
and rigbt sibling of the nade in question. Note that while leftao8tChild gives
information about the nade itself, the field rightSibling at a nade is really part
of tbe linked list of children of that nade's parent.

Example 5.12. Let us represent the trie ofFig. 5.7 in the leftmost-child-right-
sibling formo First, the type of nades is

typedet 8truct NODE .pNODE;
.~ruct IODE {

char letter;
int isVord;
pBODE lettao8tChild, righ~Sibling;

};

The first two fields represent information, according to the scheme described in
Example 5.10. The trie of Fig. 5.7 is represented by tbe dat.& structure shown
in Fig. 5.11. Notice that each leaf has a IULL leftmost-child pointer, and each
rigbtmost child has a 8ULL rigbt-sibling pointer.

...

Fig. $.11. Cor tbe trie oí Fig. 5.7.

SEC. 5.3 DATA STRUCTURES FOR TREES 237

As an example of bow one ~ the leftmO8t-child-rigbt-sibling rep~tation,
we see in Fig. 5.12 a function 8eek(let. n) tbat takes a letter let and a pointer
to a Bode n as arguments. It returns a pointer to tbe child of n tbat has let in its
letter field, and it returns NULL if there is no such nade. In tbe while loop of Fig.
5.12, each child of n is examined in turno We reach line (6) if either let is found or
we have examined all tbe children and thus have fallen out of tbe loop. In either
CaBe, c holds the correct value, a pointer to the child holding let if there is one, and
NULL if noto

Notice tbat 8eek takes time proportional to the number of children that must
be examined until we find the child we are looking for, and if we never find it, then
tbe time is proportional to the number of children of nade n. In comparison, using
the array-of-pointers representation of trees, 8eu could simply return the value of
the array element rOl letter let, taking 0(1) time. +

pRDDE .eek(char let. p80DE n)
{

(1) c = n->leftao8tChild;
(2) vhile (c != NULL)
(3) if (c->letter = let)

(4) break;

(1)

~~
(4)

.1..
(5)
(6)

= c->rightSibling;c
return c;

}

Fig. 5.12. Finding the child for a desired letter.

Parent Pointers

Sometimes, it is useful to include in the structure for each node a pointer to the
parent. The root has a NULL parent pointer. For example, tbe structure of Example
5.12 could become

typdef struct BODE .pBODE;

atruct NaDE {
char letter;

int iaVord;

pNODE left8ostChild, rightSibling,
, parent;

With this structure, it becomes possible to determine what word a given node
represents. We repeatedly follow parent pointers until we come to the root, which
we can identify because it alone has the value of parent equal to IULL. The letter
fields encountered along the way spell the word, backward.

EXERCISES

5.3.1:
sibling.

For each node in the tree oí Fig. 5.5, indicate the leftmoet child and rigbt

238 THE TREE DATA MODEL

Comparison of Tree Representations
We summarize tbe relative merits of tbe array-of-pointers (trie) a.nd tbe leftm~t-
child-rigbt-sibling representations for trees:

+ Tbe array-of-pointers representation oft"ers faster ~ to children, requiring
0(1) time to reach any child, no matter how many children there are.

+ Tbe leftm~t-cbild-rigbt-sibling representation uses le88 space. For instance,
in our running example of the trie of Fig. 5.7, each node cont&Íns 26 pointers
in the arfar representation and two pointers in the leftmost-child-right-sibling
representation.

+ The leftm~t-child-right-sibling representation does not require that there be
a limit on the branching factor of podes. We can represent trees with any
branching factor, without changing the data structure. However, if we U8e the
array-of-pointers representation, once we choose the size ofthe array, we cannot
rep~nt a tree with a larger b~ing factor.

5.3.2: FLepresent the tree of Fig. 5.5

a) As a trie with brandúng factor 3
b) By leftmost-child and right-sibling pointers

How many bytes of memory are required byeach representation?

5.3.3: Consider the following set of singular pe~nal pronouns in English: 1, my,
mine, me, you, your, yours, he, bis, him, she, her, hers. Augment the trie of Fig.
5.7 to include all thirteen of these words.

5.3.4: Suppose that a complete dictionary of En'glish contains 2,000,000 words and
that the number of prefix~ of W'OI'd8 - that ÍB, strings ofletters that can be extended
at the end by zero or more additionalletters to form a word - is 10,000,000.

a) How many nod~ would a trie for thi8 dictionary have?

b) Suppose that we use the structure in Example 5.10 to represent nades. Let
pointers require four byteB, and 8UPpose that the information fields letter
and i.Vord. each take one byte. How many bytes would the trie require?

c) Of the space calculated in part (b), how much Í8 taken up by RULL pointers?

5.3.5: Suppose we represent the diction&ry described in Exercise 5.3.4 by u8ing the
structure of Example 5.12 (a leftmost-cbild-right-sibling representation). Under
the same 888umption8 about space required by pointers and information field8 as in
Exercise 5.3.4(b), how much &pace does the tree for the diction&ry require? What
portion of that space is RULL pointers?

5.3.6: In a tree, a nade c is the lowest common ance.tor of nodes z and !I if c Í8 an
ancestor of both z and 1/, and no proper descendant of c is an ancestor of z and 1/.
Write a program that will find the lowest common ancestor of any pair of nod~ in
a given tree. What is a good data structure for trees in 8uch a program?

Lowest common
ancestor

++++
5.4 Recursions on Trees

+Preorder

SEC. 5.4 RECURSIONS ON TREES 239

The u8eful~ of trees is highlighted by the number of recursive operation8 on trees
that can be written naturally and cleanly. Figure 5.13 suggests the general rorro of a
recursive function F(n) that takes a nade n of a tree as argumento F first performs
IOme stepe (perhape Done), which we repre8ent by action Aa. Then F calls itself
on the first child, CI, of n. During this recursive call, F will "explore" tbe subtree
rooted at CI1 doing whatever it is F does to a tree. When that call returns to the
call at nade n, IOrne other actioo - say Al - is performed. Then F is called 00
the second child of n, resulting in exploratioo of the secood subtree, and lO 00, with
actioos at n alternatiog with calls to F 00 the childreo of n.

.
.-:::;::;;.7 ~--, e, ... e.

~"_i..,~_.,,¡:. T"\. ,¡, ..J..." "~m:
~~ L" . ~,~

,!: c
(a) General form of a t.rft.

F(n)
{

actioD Ao;

F(Cl);
actioD Al;

F(C2);
ac~ioD A2¡

F(c.);
action A/c;

}

(b) General form of ~ve functioo F(n) 00 a trft.

Fig. 5.13. A recunive function on a trft.

Example 5.13. A simple recursion on a tree produces what is known as the
preoroer li8ting oí the node labels oí the tree. Here, action Aa prints the label of the
node, and the other actions do nothing other than some "bookkeeping" operations
that enable us to visit each child of a given Bode. The eft'ect is to print the labels
as we would first meet them ir we started at the root and circumnavigated the
tree, visiting all the nodes in a counterclockwise tour. Note that we print the
label of a node only the first time we visit that Rodeo The circumnavigation is
suggested by the aITOW in Fig. 5.14, and the order in which the nodes are visited is
+0+. -b-c- .d.+. The preorder listing is the sequence ofnode labels +o.-bcd.

Let us suppose that we use a leftmost-child-right-sibling representation of nodes
in an expre8ion tree, with labels consisting oí a single character. The label of an

240 THE TREE DATA MODEL

interior nade is the arithmetic operator at that nade,
a letter standing for an operando
follows:

typedef .truct RODE .pRODE;
struct RODE {

char nodeLabel;

pRODE left8o8tChild. rightSibling;,
};

Tbe fundían preorder ís sbown in Fig. 5.15. In the explanatíon that folloW8, it is
convenient to tbink of pointers to nades as if they were the nades tbemselvea.

(1)
(2)
(3)
(4)
(5)

Action .. Ao" consists of the following parta of the program in Fig. 5.15:

Printing tbe label of nade n, at line (1),

Initializing c to be the leftm~t child of n, at line (2), ud

Performing tbe fint test for c != ROLL, at line (3).

l.
2.
3.

Fig. 5.14. An exp~ion tree and its circumnavigation.

aod tbe label of a leaf is
Nodes and pointers to nodes can be defined as

.oid preorder(pRODE n)
{

pNODE c; /. a child of node n ./

printf("Xc\n". n->nodeLabel);
c = n->leftaoatChild;

.hile (c ! = RULL) {

preorder(c);
c = c->rightSibling;

}
}

~

SEC. 5.4 RECURSIONS ON TREES 241

Line (2) initializes a loop in which c becom~ each chi!d of n, in turno Note that if
n is a leal, then c is aMigned the value RULL at line (2).

We go around the while-loop of lin~ (3) to (S) until we ron out of children
of n. For each child, we call the fundion preorder recursively on that child, at
line (4), and then advance to the next child, at line (S). Each of the actions Aj,
for i ~ 1, consists of line (S), which mov~ c through the children of n, and the
test at line (3) to see whether we have exhausted the children. Theae actions are
for bookkeeping only; in comparison, line (1) in action Aa do~ the significant step,
printing t.he label.

The sequence of events for calling preorder on the root of the tree in Fig. S.14
is summarized in Fig. S.16. The character at the left of each line is the label of the
node n at which the call of preorder(n) is currently being executed. Because no
two nod~ have the same label, it is convenient here to use the label of a node as
its name. Notice t.hat t.he characters printed are +0 * -bcd, in that order, which is
the same as the order of circumnavigation. +

call preorder(+)
(+) print +
(+) call preorder(o)
(4) print o
(+) call preorder(.)
(*) print *
(*) cal! preorder(-)
(-) print -
(-) call preorder(b)
(.) print 6

(-) cal! preorder(c)
(e) print c
(*) call preorder(d) .

(d) print d

Fig. 5.16. Action of recunive fWlction preorder on tree of Fig. 5.14.

+ Example 5.14. Another common way to order the nod~ of the tree, called
Postorder IX>storder, corresponds to circurnnavigat.ing the tree as in Fig. S.14 but listing a

Bode the last time it is visited, rather than the first. For instance, in Fig. S.14, the
postorder listing is ahc - d * +.

To produce a postorder listing of the nod~, the last action does the printing,
and 80 a node's label is printed alter the postorder listing fundion is called on all
of its children, in order from the left. The ot.her actions initialize the loop through
t.he children or move to t.he next child. Note that if a node is a leaf, all we do is list
the label; t.here are no recursive calls.

If we use the repreaentation of Example S.13 for nod~, we can create poetorder
listings by the recursive funct.ion postorder of Fig. S.17. The action of this funct.ion
when called on the root of the tree in Fig. S.14 is shown in Fig. S.18. The same
convention regarding Bode nam~ is used here as in Fig. S.16. +

242 THE TREE DATA MODEL

void poat
{

pRODE c; /* a child of Dode D */

c = n->leftaostChild;

.hile (c != RULL) {
(1)
(2)
(3)
(4)

(5)

po8torder(c);
c = c->rightSibling;

}
priDtf("~c\nH. n->nodeLabel);

}

callpo8torder(+)
cal} po8torder(a)(+)

(o)
(+)
(.)
(-)
(6)

(-)
(c)

(-)
(.)
(d)
(.)
(+)

print a
callpo8torder(.)

cal1 poatorder(-)
cal) poa~ord.r(6)

print 6
cal) poatorder(c)

print c
print -

cal) poa~ord.r(d)
print d

print *
print +

Fig. 5.18.

+ Example 5.15. Our next example requif5 U8 to perform significant actions
among all oí the recursive calla on subtrees. Suppoee we are given an expression
tree with iotegers as operands, and with binary operators, and we wish to produce
the oumerical value oí the expressioo rep~oted by the t~. We can do ~ by
executing tbe íollowing recursive algoritbm on the expre8ion tree.

BASIS. For a lea! we produce the integer value of the node as the value of the tree.

INDUCTlON. Suppoee we wish to compute the value of the expre8ion formed by
the subtree rooted at some node n. We evaluate the subexpre8ions íor the two
subtrees rooted at the children oí ni these are the values of the operands for the
operator at n. We then apply the operator labeling n to the values of these two
subtrees, and we have the value oí the entire subtree rooted at n.

EvaIuating sn
expression tree

We define a pointer to a

(pIODE n)

Recursive poetorder function.Fig.5.17.

Action of ~ve function poatorder on tree of Fil. 5.1..

&lid a node as follows:

Inftx expression

SEC. 5.4 RECURSIONS ON TREES 243

Preftx and Postftx Expressions
When we list t,he labels of an exp~ion t,ree in preorder, we get, t,he prefiz u-
pression equivalent to the given expression. Similarly, the list oí the labels of an
expression tree in postorder yields tbe equivalent lX>,tfiz ezpre,lÍon. Exp~ions in
the ordinary notation, where binary operators appear between their operands, are
called infiz expreuion,. For instance, the expreMion tree oí Fig. 5.14 has the infix
expression 0+ (6 - c) . d. As we saw in Examples 5.13 and 5.14, the equivalent
prefix expression is +0. -bcd, and tbe equivalent postfix exp~ion is obc - d. +-

An interesting fact about prefix and postfix notations is that, as long as each
operator has a unique number of arguments (e.g., we cannot, use tbe same symbol
for binary and unary minus), then no parentheses are ever needed, yet we can still
unambiguously group operators with their operands.

We can construct an infix expression from a prefix expreMion as follows. In
the prefix expression, we find an operator that is íollowed by tbe required number
of operands, with no embedded operators. In the prefix expression +0. -bcd, for
example, the subexpression -6c is such a string, since the minus sigo, like all oper-
atora in our running example, takes two operands. We replace tbis subexpression
by a new symbol, say z = -6c, and repeat the process of identifying an operator
followed by its operands. In our example, we now work wit,h +0 . zd. At tbis point
we identify tbe subexpression y = *zd and reduce tbe remaining string to +ay.
Now the remaining string is just an instance of an operator and its operands, and
so we convert it to the infix expression o + y.

We mar now r~nstruct tbe remainder of t,he infix expreMion by retracing
these steps. We observe that the subexpressioD y = .zd in infix is z * d, and so we
mar substitute rOl y in o + y to get a + (z . d). Note tbat in general, parenth~
are needed in infix expreSBions, although in tbis case, we can omit them because
of the convention that . takes precedence over + when grouping operands. Tben
we substitute rOl z = -bc the infi~ expression 6 - c, and so our final expression is
a + ((6 - c). d), whicb is the same as that represented by tbe tree oí Fig. 5.14.

For a postfix expression, we can use a similar algorithm. Tbe only difference is
that we look rOl an operator preceded by the requisite number of operands in arder
to d~mpoee a postfix exp~ion.

tJpedet atruct .DOE .p.ODE;

struct BODE {
char op;
int value;
pRDDE lettaoatChild. rightSibling;

};

Tbe field op will hold either the character for an arithmetic operator, or t,he char-
acter i, which stands for "integer" and identifies a node as a leaf. lf tbe Dode is a
leal, then the value field balda the integer represented; Talue is not used at interior

nodes.
This notation allows operators witb any number of arguments, altbough we

sball write code on tbe simplifying aMUmption tbat ala operators are binary. The

code appears in Fig. 5.19.

244 THETREE DATA MODEL

int eval(pRODE n)

{
int Yall, Yal2; l. yalu.s of first and s.cond subtr..s .1

if (n->op) == 'í') l. n poiDts to a leaf .1

return n->value;

.ls. {l. n points to an interior Bode .1
Yall = eval(n->left80stChíld);

val2 = eyal(n->lettaostChild->rightSibling);

s.itch (n->op) {
cas. ,+': r.turD vall + val2;
case ,_': return Yal! - val2;

case '. ': return vall . val2;

cas. '/': return val! I val2;

}

(1)
(2)

(3)
(4)
(5)
(6)
(7)
(8)
(9)

}
}

If the node n is a leaf, then the test of line (1) succeeds and we retum the
integer label of t,hat leaf at line (2). If the node is not a leaf, then we evaluate its
left operand at line (3) and its right operand at line (4), storing the results in .&11
and va12, respectively. Note in connection with line (4) that the 8«:Ond child of a
node n is the right sibling of the leftmost child of the Bode n. Lines (5) through (9)
forro a switch statement, in whidl we decide what the operator at n is and apply
the appropriate operation to the values of the left and right operands.

For inatance, consider the expression tree oí Fig. 5.20. We see in Fig. 5.21
the sequence of calls and retorna that are made at each Bode during the eva.luation
of this expression. As before, we have taken advantage oí the fact that JabeJa are
uBique and have named nades by their Jabels. +

+ Example 5.16. Sometimes we need to

an aritbmetic expre88ion.Fig. 5.19.

Fig.5.20. An expression tree with integer operU1d8.

of each nade in adetermine tbe beigbt

Computing the
helght of a tree

SEC. 5.4 RECURSIONS ON TREES 245

cal) ..&1(+)
call ..&1(5)

return 5
call..&1(.)

can e.&1(-)
call ..&1(10)

return 10
call ..al(3)

retum 3

(+)

(5)

(+)

(.)

(-)

(.18)

(-)

(3)

(-)

(.)

(2)

(.)

(+)

retum 7
call ..&1(2)

retum 2
retum 14

return 19

Fig. 5.21. Actioos of function eyal at each Bode on tree of Fig. 5.20.

tree. The height oí a node can be defined recursively by the íollowing íunction:

BASIS. The heigbt oí a lea! is O.

INDUCTION. The height oí an interior nade is 1 greater than the largest oí tbe

heights of its children.

We can translate this definition into a recursive
of each node into a field height:

BASIS. At a leaf, set the heigbt to O.

that computes the heightprogram

INDUCTlON. At an interior nade, recursively compute the heights of the children,
result joto the height field.find the maximum, add 1, and atore tbe

We 888Ume that nodes are structures ofThis program is shown in Fig. 5.22.
the forro

tJP8d8f 8truCt RonE *paODE;
atruct NaDE {

J.DlO neJ.gDlO¡

pRDDE leftaoatChild. rightSibling;

};

Tbe function coaputeHt takes a pointer to a node as argument &ud computes tbe
heigbt of tbat node in tbe field height. If we call tbis function on the root of a
tree, it will compute the heights of all the nod5 of tbat tree.

At line (1) we initialize the heigbt of n to O. If n is a leaf, we are done, becaU8e
tbe test of line (3) will faíl immediately, &ud 80 the beight of any leaf is computed
f.o be O. Line (2) seta c to be (a pointer to) tbe leftmost child of n. As we go &l:ound
the loop of liDes (3) through (7), c becomes each child of n in turno We recursively
compute the height of c at line (4). As we proceed, the value in n->height will

246 THE TREE DATA MODEL

"

Still More Defeosive Programming

Several aspects ofthe program in Fig. 5.19 exhibit acarel~ programmingstyle that
we would avoid were it not our aim to illustrate some points conci8ely. Specifically,
we are following pointera without checking first whether they are NULL. Thus, in
line (1), n could be NULL. We really should begin the program by saying

it (n !=.uLL) /* then do line. (1) to (9) */

el.e /* print an error .es.age */

Even if n is not .uLL, in line (3) we might find that its 1.ttao8tChild field is
.uLL, and so we should check whether n->lettao.tChild is.uLL, and ifso, print
an error message and not call eval. Similarly, even if the leftmost child of n exists,
tbat nade might not bave a right sibling, and 80 before line (4) we need to check
that

n->leftao8tChild->rightSibling != IULL

It is alBO tempting to rely on the 888umption that the information contained
in the nades of the tree is correcto For example, if a nade i8 an interior nade, it
is labeled by a binary operator, and we have 888umed it hu two children and the
pointers followed in liDes (3) and (4) cannot possibly be NULL. However, it mar be
possible that the operator l&bel is incorrecto To handle this situation properly, we
should add a default case to the switch statement to detect unanticipated operator
l&bels.

As a general rule, relying on the assumption that inputs to programs will always
be correct is simplistic at best; in reality, "whatever can go wrong, will go wrong."
A program, if it is used more tban once, is bound to see data that is not of tbe
form the programmer envisioned. One cannot be too careful in practice - blindly
following NULL pointers or assuming that input data is always correct are common
programming errara.

(1)
(2)
(3)
(4)
(5)
(6)
(7)

Fig. 5.22. Procedure Lo compute the height oí all tbe nodes of a t~.

be 1 greater than the beight of tbe highest child ~D 80 fal'. but O if we have Dot

yoid coaputeHt(pNODE n)
{

pNODE c;

n->height = o;

c = n->leftmo8tChild;

.hile (c != RUu.) {

coaputeHt(c);
if (c->height >= n->height)

n->height.1+c->height;
c = c->rightSibling;

)
}

SEC.5.4 RECURSIONS ON TREES 247

seen any children. Tbus, liDes (5) and (6) allow us to increase tbe beigbt of n if we
find a new child that is bigher than any previous child. Also, for the first child, the
test of line (5) will surely be satisfied, and we set n->height to 1 more tban the
heigbt of the first child. When we fall out oí tbe loop because we have seen all tbe
children, n->heigh~ has been set to 1 more than the maximum height of any of n's
children. +

EXERCISES

5.4.1: Write a recursive program to count the number oí nades in a tree that is
represented by left.m~t-child and right-sibling pointers.

5.4.2: Write a recursive program to find the maximum label of the nades of a tree.
Assume that the tree has integer labels, and that it is represented by leftm~t-child
and right-sibling pointers.

5.4.3: Modify the program in Fig. 5.19 to handle trees containing unary minus
nades.

5.4.4.: Write a recursive program that computes for a tree, represented by leftm~t-
child and rigbt-sibling pointers, the number of left-right pairs, tbat is, pairs of nades
n and m such tbat n is to the left of nade m. For example, in Fig. 5.20, nade 5 is to
the left. of tbe nades labeled *, -, 10,3, and 2; Bode 10 is to tbe left of nades 3 and
2; and nade - is to the left of nade 2. Tbus, tbe answer for tbis tree is eight pairs.
Hint: Let your recursive function return two pieces of information when ca.lled on
a nade n: tbe number of left-right pairs in the 8ubtree rooted at n, and alBO the
number of nodes in the 8ubtree rooted at n.

5.4.5: List the nades of tbe tree in Fig. 5.5 (see tbe Exerciaes for Section 5.2) in
(a) preorder and (b) postorder.

5.4.6: For each of the exp~ion8 .

i) (z + y) * (z + z)
ii) (% - ,) . z + (, - VI» . %

iii) ((((O. z + b) . z + c) . z + d) . z + e) . z + I

do the following:

a) Construct the expre88ioD tree.
b) Find tbe equivalent prefix expreesion.
c) Find tbe equivalent postfix expression.

5.4.7: Convert the expression ab + c. de - / f+ írom postfix to (a) infix and (b)

preftx.

5.4.8: Write a íunction that "circumnavigates" a tree, printing the name oí a nade
each time it is pa88ed.

5.4.9: Wbat are tbe actioos Ao, Al, and 80 fonb, for the postorder function in Fig.
5.17? ("Act.ions" are as iodicated in Fig. 5.13.)

248 THE TREE DATA MODEL

... 5.5 Structural Induction.
In Cbapters 2 and 3 we saw a number of inductive proofs of propertis of integers.
We would aMume tbat some statement is true about n, or about all integers leas
than or equal to n, and uae tbis inductive bypotbesis to prove tbe same statement
is true about n + 1. A similar but not identical form of proof, called "structural
induction," is useful for proving properties about trees. Structural induction is
analogous to recursive algoritbms on trees, and tbis form of induction is generally
the easiest to use when we wisb to prove sometbing about trees.

Suppose we want to prove tbat a statement S(T) is true for all trees T. For
a basis, we sbow tbat S(T) is true wben T consista of a single nade. For tbe
induction, we suppoee tbat T is a tree witb root r and children Cl, C2,' . . ,C., for
somek?; 1. LetTl,T2,...,T. betbesubtreesofTwb~rootsarecl,c2,...,C.,
respectively, as suggested by Fig. 5.23. Tben tbe inductive step is to ~ume tbat
S(T1), S(T2), ..., S(T.) are all true and prove S(T). If we do so, tben we can
conclude tbat S(T) is true for all trees T. Tbis forro of argument is called strocturol
induction. Notice that a structural induction does not make reference to the exact
number of nod~ in a tree, except to distinguisb tbe basis (one nade) from the
inductive step (more than one nade).

.
~~~-;? ,~ Cl C2 ..,: .' C.

L~!!~:::~ ~~~~~~~ L~!:~~

it (n->op) == 'i') /* n point8 to a leal */
return n->value;

elae {/* n point8 to 8D interior node */
va11 = eval(n->lettaoatChild);
val2 = eval(n->lett80atCbild->rightSibliDg);

switch (n->op) {
caae '+': return val1 + val2;
case '-': return val1 - val2;

case '*': return va11 * val2;
case' / ': re~urn val1 / val2;

(1)
(2)

(3)
(4)
(5)
(6)
(7)
(8)
(g)

)

Fig.5.24.

A tree and its subt.rees.Fig.5.23.

}

The body of the function eyal(n) from Fig. 5.19.



Example 5.17. A structural induction is generally needed to prove the cor-
rectness oí a recursive program that acta on trees. As an example, let U8 reconsider
the function eval oí Fig. 5.19, the body oí which we reproduce as Fig. 5.24. This
íunction is applied to a tree T by being given a pointer to the root oí T as the value
oí ita argument n. It then computes the value oí the expre.ion repreaented by T.
We shall prove by structural induction the following statement:

STATEMENT S(T): The value returned by eval when called on the root oí T
equals the value of the arithmetic expression represented by T.

Example 5.17.+

BASIS. For the basis, T consists of a single node. That is, the argument n is a
(pointer to a) lea!. Since the op field has the value . i' when the node represents

an operand, the test of line (1) in Fig. 5.24 succeeds, and the value oí that operand
is returned at line (2).

INDUCTION. Suppoee the nade n is not a (pointer to a) lea!. Tbe inductive
hypothesis is that S(T) is true for each tree T rooted at one of the children of n.
We must use this reasoning to prove S(T) for tbe tree T rooted at n.

Since our operators are assumed to be binuy, n has two subtrees. By the
inductive hypothesis, the values of vall and val2 computed at liDes (3) and (4)
respectively, are the values ofthe left and right 8ubtrees. Figure 5.25 suggests theae
two subtrees; vall holds the value of Ti and v.12 holds the value of T2.

Fig. 5.25. The can eval(n) returns the sum of the values of TI and T2.

If we examine the switch statement oí lin~ (5) through (9), we see that what-
ever operator appears at the root n is applied to t,he t,wo valu~ vall and val2. For
example, if the root, holds +, as in Fig. 5.25, t,hen at line (5) t,he value returned is
vall + val2, as it, should be for an expression t,hat is the sum of the expressions of
t~ Tl and T2. We have now completed the inductive st.ep.

We conclude that S(T) holds for all expre88ion t~ T, &ud, therefore, the
function 8..a! correctly evaluat.es trees that represent expressions. +

Example 5.18. Now let us consider the function cO8puteHt of Fig. 5.22, the
body ofwhich we reproduce as Fig. 5.26. This function takes as argument a (pointer
to a) nade n and computes the height of n. We shall prove the following statement
by structural induction:

+

SEC. 5.5 STRUCTURAL INDUCTION 249

Fig.5.25.

(9), we &ee that what-

sion tbat is tbe suro oí tbe expressions oí
the inductive step.

°"
1.'

I
I ¡

~



250 THE TREE DATA MODEL

(1)
(2)
(3)
(4)
(5)
(6)
(7)

Fig. S.26.

STATEMENT S(T): When coaputeRt. Í8 called 00 a pointer to the root of tree
T, the correct beight of each nade in T is stored in tbe height field of tbat
nade.

BASIS. If the tree T is & single node n, then at line (2) of Fig. 5.26, c will be given
the value NULL, since n has no children. Thus, the test of line (3) fails immediately,
ud the body of the while-loop is never executed. Since line (1) seta n->height to
O, which is the correct value for a leaf, we conclude that S(T) holda when T has a
single node.

INDUCTION. Now Suppoee n is the root oí a tree T tbat is not a single nade. Tben
n has at least one child. We may assume by the inductive hypothesis that when
coaputeHt(c) is called at line (4), the corred height is installed in the height field
oí each nade in the subtree rooted at c, including c itself. We need to show that
the while-loop oí liDes (3) through (7) correctly eets n->height to 1 more than
the maximum oí the heights oí the children oí n. To do BO, we need to perform
another induction, which is nested "inside" the stru~ural induction, just as one loop
might be nested within another loop in a programo This induction is an "ordinary"
induction, not a structural induction, and its statement is

STATEMENT S'(i): After the loop of liDes (3) Lo (7) has been executed i times,
the value of n->height is 1 more than the largest of the heights of the first
i children of n.

BASIS. The basis is i = l. Since n->height is set to O outside the loop - at line
(1) - and 8urely no height can be l~ than O, the test of line (5) will be satisfied.
Line (6) eets n->height to 1 more than the height of its first child.

INDUCTION. A88ume tbat 5'(i) is true. Tbat is, alter i iterations of tbe loop,
n->height is 1 larger than tbe largest height among the first i cbildren. If tbere is
ao (i + 1 )st child, tben tbe test of line (3) will succeed and we execu te the body an
(i+ l)st time. The test ofline (5) compares the new heigbt with tbe largest oftbe
previous beigbts. If tbe new heigbt, c->height, is less tban 1 plus the largest of
tbe first i heigbts, no change to n->height will be made. Tbat is correct, BÍnce the
maximum height of the first i + 1 children is the same 88 tbe maximum beigbt of the
first i children. However, if tbe new beight is greater tban the previous maximum,

n->height = o;

C = n->lettmoatChild;

vhile (c != RULL) {

coaputeBt(c);
it (c->height >= n->height)

n->height = l+c->height;

c = c->rightSibling;

}

The body of tbe function (n) from Fig. 5.22.



SEC. 5.5 STRUCTURAL INDUCTION 251

A Template far Stroct oral Ind octian

The following is ao outline for building corred structural inductioDS.

l. Specify the statement S(T) to be proved, where T is a tree.

2. Prove the basis, that S(T) is true whenever T is a tree with a single nade.

3. Set up the inductive 8tep by letting T be a tree with root r aod k ?; 1 subtrees,
TI, T2. . . ., T.. State that you aMume the inductive hypothesis: that S(Ti) is
true for each of the subtrees Ti, i = 1,2, . . . , k.

4. Prove that S(T) is true under the aasumptions mentioned in (3).

then the test of line (5) will succeed, aod n->beigbt is set to 1 more than the height
of the (i + 1 )st child, which is correcto

We can now return to the structural induction. When the test of line (3) (ails,
we have coDsidered all tbe children o( n. Tbe inner induction, S'(i), tells us that
wben i is the total Dumber of children, n->height is 1 more tban the largest beigbt
o( any child of n. That Í8 tbe correct beight (or n. The inductive hypoth~Í8 S
applied to each o( tbe cbildren o( n tells us tbat the correct beight has been stored
in each of their height fields. Since we just saw tbat n's beigbt has also been
correctly computed, we conclude that all the nodes in T have been assigned their
correct beight.

We have now completed the inductive step of the structural induction, and we
conclude that coaputeRt correctly comput.es the height of each nade of every tree
on which it is called. +

Why Structural Ioduction Works
Tbe explanation for why structural induction is a valid proof method is similar to
the reason ordinary inductions work: if the conclusion were false, there would be
a smallest counterexample, and that counterexample would violate either the basis
or tbe induction. Tbat is, suppose tbere is a statement S(T) for wbich we have
proved the basis and tbe strudural indudion step, Jet there are one or more trees
for which S is falseo Let To be a tree 8Uch that S(To) is false, but let To have as few
nod~ as any tree for which S is false.

There are two~. First, suppoee tbat To consists of a single nade. Then
S(To) is true by the basis, and 80 this case cannot occur.

Tbe only other pc.ibility is that To has more than oRe nade - say, m nods-

and therefore To consists of a root r with ORe or more children. Let the trees rooted
at th~ children be TI, T2," .,Tk,. We claim that Done ofTI' T2,'. .,Tk, can bave
more than m - 1 nod~. For if one - say Ti - did have m or more nod~, tben To,

which consiats of Ti and the root nade r, pc.ibly along with otber subtrees, would
have at least m + 1 nod~. That contradicts our 888umption that To has exadly m
nod~.

Now since each of the subtrees TI, T2"'" Tk, has m - 1 or fewer nod~, we
know that tb~ trees cannot violate S, becauae we ch~ To to be as smallas any



252 THE TREE DATA MODEL

A Relationship between Structural and Ordinary Induction

There is a sen8e in which structural induction really offers nothiog new. Suppoee we
have a statement S(T) about trees that we want to prove by structural ioduction.
We could instead prove

STATEMENT 8'(i): For all trees T of i nodes, S(T) is true.

5'(i) has the Conn of an ordinary inductioo 00 the integer i, witb basis i = l. It can
be proved by complete induction, where we a&8ume 8'(j) Cor all j .$ i, and prove
S' (i + 1). Tbis prooC, however, would look exactly like tbe prooC of S(T), if we let
T stand Cor an arbitrary tree of i + 1 nodes.

tree making S falseo TbU8, we know that S(T1), S(T,),..., S(T~) are a1\ true. The
inductive step, wbich we 88Sume proved, telas U8 that S(To) ia a1ao true. Again we
contradict tbe assumption tbat T o violates S.

We have considered tbe two pO88ible cases, a tree of one node or a tree with
more tban one node, and have found that in eitber case, To cannot be a violation
of S. Tberefore, S has no violations, and S(T) must be true for a1\ trees T.

EXERCISES

5.5.1: Prove by stmctural induction tbat

a) The preorder traversal function of Fig. 5.15 prints the labels of the tree in
preorder.

b) Tbe postorder function in Fig. 5.17lists tbe labels in postorder.

5.5.2*: Suppose tbat a trie with branching factor 6 is repreeented by nades in the
format of Fig. 5.6. Prove by stmctural indudion that if a tree T has n nodes, then
there are 1 + (6 - l)n IULL pointers among its nodes. How many non-1ULL pointers
are there?

5.5.3*: The degree of a node is the number oí children that node has.2 Prove by
structural induction that. in any tree T, the number oí nodes is 1 more than the
sum of the degrees of the nodes.

5.5.4*: Prove by structural induction tbat in any tree T, tbe number of leaves is 1
more tban tbe number of nodes that bave rigbt siblings.

5.5.5*: Prove by structural induction tbat in any tree T rep~nted by the leítm~t-
child-rigbt-sibling data structure, the number oí IULL pointers is 1 more tban the
number oí nodes.

5.5.6*: At tbe beginning oí Section 5.2 we gave recursive and nonrecursive defini-
tions oí trees. Use a structural induction to show that every tree in tbe recursive
sense is a tree in tbe nonrecursive ~nae.

Degree of a

node

2 The brandtinl factor and the delree ~ related concepta, but not the aame.

factor ia the maximum degree of &Oy node in the tree.
The branching



A Fallacious Form oí Tree Induction

It often is tempting to perform inductions on the number of nades of the tree, where
we 88ume a statement for n-nade trees and prove it for (n + 1 )-node trees. This
proaf will be fallacious if we are not very careful.

When doing inductions on integers in Chapter 2, we suggested the proper
metbodology, in wbich we try to prove statement S(n + 1) by using S(n); call tbis
approach "leaning back." Sometimes one migbt be tempted to view this process as
starting with S(n) and proving S(n + 1); call this approach "pushing out." In the
integer case, these are e88entially the sarne idea. However, with trees, we cannot
st.art by &guming the statement for an n-nade tree, add a nade somewbere, and
claim that the result is proved for al) (n + l)-node trees.

For example, consider the claim S(n): "all n-nade trees have a path of lengtb
n-l." It is surely true for the basis, n = 1. In a falee "induction," we might argue:
"Assume an n-nade tree T has a path of length n - 1, say to nade v. Add a child
ti to v. We now have &n (n + l)-node tree with a path of length n, proving the
inductive step."

This argument is, of COulse, f&llacious because it does not prove the result for
all (n+ l)-node trees, just some selected trees. A correct proofdoes not "push out"
from n to n + 1 nades, becauae we do not tbus reach &11 poesible trees. R&ther,
we must "lean back" by starting witb an arbitrary (n + l)-node tree ud carefully
selecting a nade to remove to get an n-nade tree.

5.5.1**; Show the converse of Exercise 5.5.6: every tree in the non~rsive een8e
is a tree in the recursive sense.

Danger:
erroneou8

argllment

..".... 5.6 Binary Thees

This section presents another kind of tree, called a binary free, which is different
from the "ordinary" tree introduced in Section 5.2. In a binary tree, a nade can
have at ~t two cbildren, and rather than counting children from the left, there
are two "slots," one for a left child and the other for a right child. Either or both
slots mar be empty.

Left and right
children

+ Example 5.19. Figure 5.27 SbOW8 two binary trees. Each has node n¡ as root.
The first has n2 as the left child oí the root and no right child. The second has no

SEC. 5.6 BINARY TREES 253

ft '~
é e

Fig. 5.27. The two binary t~ witb two nOOes.

I



254 THE TREE DATA MODEL

We shall define binary t~ recursively. as

BASIS. The empty tree is a binary tree.

INDUCTlON. If risa node, and TI and T2 are binary tre5, then there is a binary
tree with root r, left subtree Tt, and right subtree T21 as suggested in Fig. 5.28.
That is, the root of Tt is the left child of r, unlea Tt is the empty tree, in which
case r has no left child. Similarly, the root of T2 is the right child of r, unless T2 is
empty, in which case r has no right child.

Binary Tree Terminology
Tbe notions of patbs, ancestors, and descendantB introduced in Section 5.2 aIao ap-
ply to binary trees. Tbat is, left and rigbt children are botb regarded as "cbildren."
A patb is still a eequence of nodes m1, m2,' . ., m" sua tbat nIi+1 is a (left or rigbt)
child ofnli, for i = 1,2,..., k -l. This patb is said to be from mI to m". Tbe case
k = 1 is permitted, wbere tbe patb is just a single Bode.

The two children o( a Bode, if tbey exist, are siblings. A leal is a Bode with
neitber a left nor a rigbt childj equivalently, a lea! is a Bode wboee left and right
subtrees are botb empty. An interior node is a Bode tbat is not a leal.

Patb lengtb, beigbt, and deptb are defined exactly as for ordinary trees. Tbe
length of a patb in a binary tree is 1 leM tban tbe number of nodesj tbat is, tbe
length is the number of parent-child steps along the path. The height of a Bode n is
the lengtb of the longest path from n to a descendant leal. Tbe beight of a binary
tree is the beigbt of its root. Tbe deptb of a Bode n is tbe lengtb of tbe path from
the root to n.

Example 5.20. Figure 5.29 ShOW8 the five shapes that a binary tree of tbree
nodes can have. In ead1 binary tree in Fig. 5.29, n3 is a descendant of nI, and there
is a path from nI to ns. Node n3 is a lea! in each tree, while n2 is a leaf in the
middle tree and an interior node in the other four trees.

The height of n3 is O in each tree, while the height of nI is 2 in &11 but the
middle tree, where the height of nI is l. The heigbt of each t~ is the sarne 88 the
height of ni in that tree. Node n3 Í8 of depth 2 in &11 but the middle tree, where it
is ofdepth 1. +

.

Fig. 5.28. Recuraive COD8tnlction of a binary toree.



~

Data Structures for Binary Trees

Tbere is one natural way to represent binary trees. Nodes are represented by records
witb two fields, leftChild and rightChild, point,ing f.o tbe left and rigbt children
of tbe Bode, respectively. A IULL pointer in eitber oí tbese fields indicates tbat tbe
corresponding left. or rigbt 8ubt,ree is missing - tbat, is, t,bat t,bere is no left or rigbt

child, respect,ively.
A binary tree can be represented by a pointer f.o its root. Tbe empty binary tree

is rep~nted naturaUy by IULL. Tbus, tbe following t,ype declarations rep~nt
binary trees:

typedef struct MODE .TREE;
struct NODE {

TREE leftChild. rightChild;

};

Dere, we call tbe t,ype "pointer f.o node" by tbe name TREE, lince t,be m~t common
use for tbis type will be f.o represent trees and 8ubtrees. We can interpret tbe
leftChild and rightChild fields eitber as pointers to tbe children or as tbe left
and rigbt 8ubtrees tbemselveB.

SEC. 5.6 BINARY TREES 255

Tbe Difference Between (Ordinary) Trees and Binary Trees

It is important to understand that while binary treee require os to distinguish
wbetber a child is eitber a left child or a rigbt child, ordina.ry trees require no such
distinction. That is, bina.ry trees are not just trees all of wh<* nades bave two or
fewer children. Not only are tbe two trees in Fig. 5.27 different from each otber,
but tbey bave no relation to tbe ordinary tree consisting of a root and a single child
of tbe root:

I
There is another technical difference. While trees are defined to have at least one
nade, it is convenient to include the empty t~, the tree with no nades, among the
binary trees.

~
@ ~

Fig. 5.29. Tbe five binary treea witb tbree nodes.



256 THE TREE DATA MODEL

Optionally, we can add to tbe structure for IODE a label field or fields, and/or
we can add a pointer to the parent. Note that the type of the parent pointer is
.XODE, or equivalently TREE.

Recursions on Binary Thees

Tbere are many natural algoritbms on binary t~ tbat can be described ~ursively.
Tbe scheme for ~ursions is more limited than W&8 the scheme of Fig. 5.13 for
ordinary trees, mnce actions can only occur eitber before tbe left subtree is explored,
between the exploration of the subtrees, or alter both have been explored. The
scheme for recursions on binary trees is suggested by Fig. 5.30.

Example 5.21. ExpreMion trees with binary operators can be repreaented by
binary trees. Theee binary trees are special, becauae nodes have either two children
or Done. (Binary trees in general can bave nodes.with one child.) For instance, the
expreMion tree of Fig. 5.14, reproduced bere 88 Fig. 5.31, can be thought of 88 a
binary tree.

+

Fig. ~.31.

Supp~ we use the type

{
actioD Ao;
recursive call 00 left subtree;
actioD Al;
recursive call 00 rigbt subtree;
actioD A2;

}

Template of a recursive algorithm 00 a binary tree.Fig.5.30.

The expreMioD G + (b - c) . d represented by a binary tree.



for nodes and trees. Tben Fig. 5.32 SbOW8 a recursive function that lists the labels
of the nodes of a binary tree T in preorder.

void preorder(TREE t)
{

,., .- l. . _o, ,

Tbe bebavior of tbis function is similar to tbat of tbe fundion of tbe &ame name
in Fig. 5.15 tbat was designed to work on ordinary trees. Tbe significant difference
is tbat wben tbe function of Fig. 5.32 comes to a leaf, it calls itself on the (miMing)
left and rigbt children. These calls retum immediately, because wben t is NULL,
none of the body of tbe function except the test of line (1) is executed. We could
save the extra calla if we replaced lines (3) and (4) of Fig. 5.32 by

(3) 1t (t->lettChild != NULL) preorder(t->lettChild);
(4) 1t (t->rigbtChild != 8ULL) preorder(t->rigbtChild);

However, tbat would not protect U8 against a call to preorder from anotber func-
tion, witb NULL as the argumento Tbus, we would bave to leave tbe test of line (1)
in place for safety. +

EXERCISES

5.6.1: Write a function tbat prints an inorder listing of tbe (labels of tbe) nodes
of a binary tree. AMume tbat tbe nodes are represented by records with left-child
and rigbt-child pointers, as deacribed in tbis eection.

5.6.2: Write a fundion tbat takes a binary expression tree and prints a fully paren-
thesized version of the represented expression. Assume tbe &ame data structure as
in Exercise 5.6.1.

5.6.3*: Repeat Exercise 5.6.2 but print only the needed parentheses, assuming the
usual precedence and a80ciativity of aritbmetic operators.

5.6.4: Write a function tbat produces the beigbt of a binary tree.

5.6.5: Define a node of a binary tree to be a full if it has both a left and a rigbt
child. Prove by structural indudion that the number of full nodes in a binary tree
is 1 fewer tban tbe number of leaves.

SEC. 5.6 BINARY TREES 257

typedef atruct 8ODE .TREB;
atruct BODE {

char nodeLabel;
TREE leftChild, rightChild

};

(1)
(2)
(3)
(4)

(t != RULL) (
printt("Yoc\n". t->nodeLabel)
preorder(t->lettChild)j
preorder(t->rilbtChild)j

if

}

Preorder listing of binary torees.Fig. 5.32.



258 THE TREE DATA MODEL

Inorder Traversals

In addition to preorder and postorder listings of binary trees, there is another
ordering of nodes that makes sense for binary trees only. An ínorder listing of
the nodes of a binary tree is formed by listing each node after exploring the left
subtree, but before exploring the right subtree (i.e., in the position for action Al
of Fig. 5.30). For example, on the tree of Fig. 5.31, the inorder listing would be
a + b - c . d.

A preorder traversal of a binary tree that represents an expression produces
the prefix form of that expression, and a postorder traversal of the salDe tree pro-
duces the postfix form of the expression. The inorder traversal almost produces the
ordina.ry, or infix, form of an expression, but the parenth~ are missing. That is,
the tree of Fig. 5.31 represents the expre88ion a + (6 - c) . d, which is not the same
as the inorder listing, a + 6 - c . d, but only because the neceMarY parentheses are

missing from the latter.
To be BUfe that needed parentheses are present, we could parenthesize all op-

erators. In this modified inorder traversal, action Aa, the step performed before
exploring the left subtree, checks whether the label of the node is an operator and,
if so, prints . (', a left pacenthesis. Similarly, action A2, performed after exploring

both subtrees, prints a right parenthesis, ')', if tbe label iB an operator. Tbe result,
applied to the binary tree of Fig. 5.31, would be (a + «b - c) . d)), which has the
needed pair of parentheses around b - c, &long with two pairs of parentheses that
are redundant.

5.6.6: Suppose we represent a binary tree by the left-child, right-child record type.
Prove by strudural indudion that the number of IULL pointers is 1 greater thao
the number of nodes.

5.6.7..: Trees can be used to rep~nt recursive calls. ~h node rep~nts a
recursive call of some function F, and its children rep~nt the calle made by F.
In this exercise, we shall consider the recursion for (:;.) given in Section 4.5. baaed
on the recursion (,:'.) = (",::1) + (,:'.--11)' Each call can be represented by a binary
tree. If a node corresponds to the computation of (,:'.), and the basis cases (m = O
and m = n) do not apply, then the left child represents (",:;1) and the left child
rep~nts (,:'.--~). Ir the Bode represents a basis case, then it has neither left nor
right child.

a) Prove by structural induction that a binary tree with root corresponding to
(,:'.) has exactly 2(,:) - 1 nodes.

b) Use (a) to show that the running time of the recursive algorithm for (,:'.) is

O ( (r':a) ). Note that this running time is tberefore &l8O 0(2"), but tbe latter is

a smooth-but-not-tigbt bound.

...:... 5.7 Binary Search 'li-ees

A common activity found in a variety oí computer programa is the m&Íntenance of

r

F
t'



Structural loductions 00 Bioary Trees

A structural induction can be applied to a binary tree as well as to an ordinary
tree. There is, in fact, a somewhat simpler echeme to use, in whidt the basis is an
empty tree. Here is a summary of the technique.

l. Specify the statement S(T) to be proved, where T is a. binary tree.

2. Prove the baais, that S(T) is true if T is the empty tree.

3. Set up the inductive step by letting T be a. tree with root r and subtrees TL and
TR. State that you aMume tbe inductive hypothesis: that S(TL) and S(TR)
are true.

4. Prove that S(T) Í8 true under the aMumptions mentioned in (3).

a set of values from which we wish to

l. Insert elements into the set,
2. Delete elements from the set, and
3. Look up an element to see whether it is currently in the seto

One example is a dictionary of Englisb words, where from time to time we insert a
new word, such as fu, delete a word that has fallen ioto disuse, sucb as aegilop8,
or look up a string of letters to see whether it is a word (as part of a spelling-cbecker
program, for instance).

Because this example is 80 familiar, a set upon which we can execute the
operations insert, delete, and lookup, as defined above, is called a dictionary, no
matter what the set is used for. As anotber example of a dictionary, a professor
might keep a roll of the students in a cla8. Occasionally, a student will be added
to the class (an insert), or will drop the class (a delete), or it will be necessary to
tell whetber a certain student is registered for tbe claM (a lookup).

One good way to implement a dictionary is with a binary search tree, wbich
is a kind of labeled binary tree. We ~ume tbat the l&bels oí nades are ch~n
from a set with a "le8 tban" order, wbich we sball write as <. Examples include
the reals or integers witb tbe usualless tban arder; or character strings, with tbe
lexicograpbic or alpbabetic arder represented by <.

A binary search t~ (BST) is a labeled binary tree in wbich the following
property balda at every node % in the tree: all nodes in tbe left subtree of % have
labels less than tbe label of %, and all nades in the right subtree bave labels greater
tban tbe label of %. Tbis property is called tbe binary $eorch t~ property.

Binary search
tree property

+ Example 5.22. Figure 5.33 shows a binary 8earch tree Cor the set

{Hairy. Baahful. Gruapy. SleepJ. Sleazy. HapPJ}

where the < order is lexicographic. Note that the names in the left 8ubtree o( the
root are alllexicographically l~ than Hairy, while th~ in the right 8ubtree are
a.lllexicographica.lly greater. Tbis property holda at every node o( the tree. +

SEC. 5.7 BINARY SEARCH TREES 259



260 THE TREE DATA MODEL

Fig. 5.33.

Implementation oí a Dictionary as a Binary Search Tree

We can represent a binary search tree as any labeled binary tree. For example, we
might define tbe type IODE by

typedef struct laDE .TREE;

struct IODE {
ETYPE el_ent;
TREE leftChild. rightChildj

};

A binary search tree is represente<! by a pointer to tbe root node o( tbe binary search
tree. The type o( an element, ETYPE, should be set appropriately. Throughout the
programs of this section, we sball assume EnPE is int 80 tbat comparisons between
elements can be done simply using the aritbmetic companson operators <, = and
>. In the examples involving lexicograpbic comparisoos, we assume tbe compariaoos
in tbe programs will be done by the appropriate comparison (unctions lt, eq, and
gt as discussed in Section 2.2.

Looking U p an Element in a Binary Search Tree

Suppoee we want to look for an element z that mar be in a dictionary represented
by a binary search tree T. Ií we compare z with the element at the root of T, we
can take advantage of the BST property to locate z quickly or determine that z is
not presento If z is at the root, we are done. Otberwise, if z is lea than the element
at the root, z could be íound only in the left subtree (by the BST property); and if
z is greater, then it could be only in the right subtree (again, because oí the BST
property). Tbat is, we can express the lookup operation by the following recunive
algorithm.

BASIS. If the tree T is empty, then z is not presento If T is not empty, and z
appears at the root, then z ia presento

\ /
SleazyGrumpy

/
Happy

Binary search tree with six nodes labeled by strings.



SEC.5.7 BINARY SEARCH TREES 261

A bstract Data Types
A coIlection oí operations, such 88 insert, delete, and lookup, that may be performed
on a set of objects or a certain kind is sometimes called an abstmct data type or
ADT. The concept is also variously called a class, or a module. We shall study
several abstract data t.ypes in Chapter 7, and in this chapter, we shall see one more,
tbe priority queue.

An ADT can have more than one abstract implementation. For example, we
shall see in this section that the binary search tree is a good way to implement
tbe dictionary ADT. Lists are anotber plausible, though usually less efficient, way
to implement tbe dictionary ADT. Section 7.6 cayera hasbing, another good imple-
mentation of the dictionary.

Each abstract implementation can, in turn, be implemented concretely by sev-
eral different data structures. As an example, we sball use the left-child-rigbt-child
implementation of binary t.rees as a data structure implementing a binary search
tree. This data structure, along with the appropriate functions for insert, delete,
and lookup, becomes an implementation of the dictionary ADT.

An important reason for using ADT's in programs is that the data underlying
the ADT is accessible only tbrough the operations of the ADT, such as inserto
This restriction is a forro of defensive programming, protecting against accidental
aJteration oí data by functions tbat manipulate the data in unexpected ways. A

ve second important reason for using ADT's is that they allow us to redesign the data

strUctUfe8 and functions implementing tbeir operations, perhap6 to improve tbe
efficiency of operations, without having to worry about introducing errors into tbe
rest of the programo Tbere can be no new errors if tbe only interface to the ADT
is througb correctly rewritten functions for its operations.

:b INDUCTlON. 1fT is not empty but Z' is not at tbe root, let y be tbe element at the
le root of T. If z < y look up Z only in the left subtree of the root, and if z > y look
~ up z only in the right subtree of y. The BST property guarantees that z cannot be
.d in the subtree we do not ~arch.

u
id

+ Example 5.23. Suppose we want to look up Grumpy in the binary searcb tree
of Fig. 5.33. We compare Gruapy with Hairy at the root and find tbat Gruapy
precedes Hairy in lexicographic order. We thus call1ookup on the leCt subtree.

Tbe root of the left subtree is BuMul, and we compare tbis label with Gruapy,
¿ finding that the Corroer precedes the latter. We thus call1ookup recursively on the
ve right subtree ofBaaMul. Now we find Gruapy at the root ofthis subtree and return
is TROE. These steps would be carried out by a function modeled after Fig. 5.34 that
.rt dealt with lexicographic comparisons. ...
ir More concretely, tbe recursive function lookup(x. T) in Fig. 5.34 implements
T this algorithm, using the left-child-right-child data structure. Note that lookup
le returns a value of type BOOLEAJ', which is a defined type synonymous with int, but

with the intent that only defined values TROE and FALSE, defined to be 1 and O,
fe8pectively, wiU be used. Type BOOLEAI W88 introduced in Section 1.6. A~, note

x that lookup is written only for types that can be compared by =, <, and so oo. lt
would require rewriting Cor data like the character strings used in Example 5.23.

- ~.~ ~A~_'_~.'-'~~'- -. , - --.,



262 THE TREE DATA MODEL

At line (1), lookup determines whether T is empty. Ir not, then at line (3
lookup determines whether r. is stored at the current Bode. Ir r. is not there, ther
lookup recursively searches the left subtree or right 8ubtree depending on whethel
z is less than or greater than the element stored at the current nade.

BOOLEAN lookup(ETYPE x, TREE T)
{

(1) if (T == NULL)
(2) return FALSEó
(3) el.e if (x == T->el...nt)

(1)
(2)
(3)
(4)
(5)
(6)

(7) return lookup(x. T->rigbtChild);
}

Fig. 5.34. Function lookup(x. T) retums TRUE ir z: is in T, FALSE otherwise.

Inserting an Element into a Binary Search Tree
Adding a new element z: to a binary search tree T is straightforward. The foll<
recursive algorithm sketches the idea:

OASIS. If T is an empty tree, replace T by a tree consisting of a single node and
place z at that node. Ir T is not empty and its root has element z, then z is already
in the dictionary, and we do nothing.

INDUCTION. Ir T is not empty and does not have z at its root, then insert z into
the left subtree ir z is less than the element at the root, or insert z into the right
subtree ir z is greater than the element at the root.

The function insert(x, T) shown in Fig. 5.35 implements this algorithm for
the left-child-right-child data structure. When we find that the value of T is RULL
at line (1), we create a new nade, which becomes the tree T. This tree is created
by liDes (2) through (5) and returned at line (10).

If r. is not found at the root of T, then, at liDes (6) through (9), insert is
called on the leCt or right 8ubtree, whichever is appropriate. The 8ubtree, modified
by the insertion, becomes the new value of the left or right subtree of the root of T
at liDes (7) or (9), respectively. Line (10) returns the augmented tree.

Notice that ir r. is at the root of T, then none of the tests of lines (1), (6),
and (8) succeed. In this case, iDa.rt returns T without doing anything, which is
correct, since r. is already in the tree.

Example 5.24. Let US oontinue with Example 5.23, understanding that techni-
cally, the comparison of character strings requires slightly different code from that
of Fig. 5.35, in which arithmetic compariaons like < are replaced by calls t.o suit-
ably defioed fuoctioos like lt. Figure 5.36 shows the binary search tree of Fig. 5.33

.

T is empty. )
current node.

(x < T->el.-nt)

rn lookup(x. T->leftChild);
x 8U8t be > T->el-ent ./

rn lookup(x. T->rightChild);



SEC.5.7 BINARY SEARCH TREES 263

TR.BB in.eñ(ETTPE x. TRD T)
{

if (T = NULL) {
T = (TR.BB) aalloc(sizeof(atruct NaDE»;
T->el..ent = x;
T->leftChild = RULI.;
T->rightChild == NULL;

}
el.. if (x < T->el..ent)

T->l.ftChild = in.eñ(x. T->l8f~Child);
.lae if (x > T->.l..ent)

T->rightChild = inseñ(x. T->rightChild);
r.~urn T;

(1)
(2)
(3)
(4)
(5)

(8)
(7)
(8)
(9)
10)

}

Fig. 5.35. Function ina8rt(x.T) adds % Lo T.

aíter we insert Fil tby. We begin by calling in..rt at the root, and we find that
Fil tby < Hairy. Thus, we call ins.rt on tbe leít child, at line (7) oí Fig. 5.35.
Tbe result is that we find Filtby > Basbful, and 80 we call in8.rt on the right
child, at line(9). That. tak~ us t.o Gruapy, which íollows Filtby in lexicographic
order, and we call insert on the leít child oí Grumpy.

The pointer t.o the leít child oí Gruapy is IULL, 80 at line (1) we discover that
we must create a new nade. This one-node tree ia returned to the call oí insert at
tbe nade for Gruapy, and tbe tree is installed as the value oí the left. child oí Gruapy
at. line (7). Tbe modified tree witb Gruapy and Filtby ia returned t.o the call oí
in8ert at the nade labeled Ba8bful, and this modified tree becomes the right child
oí Basbtul. Then, continuing up tbe tree, tbe new tree rooted at Basbful becomes
the left child of the root oí the entire tree. The final tree is shown in Fig. 5.36. +

/
Ba8hful

Gruapy

/
Filtby Happy

Fig. 5.36. Binary 8eard1 tree after iD8erting FilthJ.



264 THE TREE DATA MODEL

Deleting an Element from a Binary Search Tree

Deleting an element z from a binary search tree is a little more complicated tban
lookup or insert. To begin, we may locate tbe nade containing z; iftbere is no euch
nade, we &re done, since z is not in the tree to begin with. Ir z is at a leaf, we can
simply delete the lea!. Ir z is at an interior nade n, however, we cannot delete that
nade, because to do 80 would disconnect the tree.

We must rearrange the tree in 8Ome way 80 that the BST property is maintained
and yet z is no longer present. Tbere are two cases. First, if n has only one child,
we can replace n by that child, and the BST property will be maintained.

Fig. 5.37.

Second, suppoee n has both children presento One straiegy is to find the node
m with label1/, the smallest element in the right 8ubtree oc n, and replace z by 1/
in node n, 88 sugge8t.ed by Fig. 5.37. We can then remove Bode m Crom the right
subtree.

The BST property continues to boldo The reason is that z is greater than
everything in the left subtree oC n, and 80 1/, ~ing greater than z (because 1/ is
in the right subtree oC n), is also greater than everything in the leCt subtree oC n.
Thus, as Car as the leCt subtree oC n is concerned, 1/ is a suitable element at n. As
Car 88 the right subtree oC n is concerned, 1/ is also suitable as the root, because 'J
was chosen to be the smallest element in the right subtree.

ETYPE delet_iD(TREE .pT)

{

(1)
(2)
(3)
(4)

(5)
}

Fig.5.38.

To delete %, remove the node containing 1ft the smallest element in the
right subtree, and then replace the label % by 1/ at node n.

ETYPE .iD;

{if «*pT)->leftChild == IULL)

.in = (*pT)->el.ent;

(*pT) = (*pT)->rightChild;

return .in;

}
el.e

return deleteain(&«.pT)->leftChild»;

F\mction delet_in(pT) removea and retUnIB the smaUest element (rom T.



ed
Id,

Call by
reference

~

ie
y

ht

iD

is
n.
\s

y

+ Example 5.26. Figure 5.41 shows what would happen if we used a function
similar to del.te (but able to compare character strings) to remove Bairy from the

SEC. 5.7 BINARY SEARCH TREES 265

It is convenient to define a function delet_in(pT), shown in Fig. 5.38, to
remove the Bode containing the smallest element from a nonempty binary aearch
tree and to retum the value of that smallest elemento We p.. to the function an
argument that is the address of the pointer to the tree T. All references to T in the
function are done indirectly through this pointer.

This style of tree manipulation, where we pass the function an argument that
is a pointer to a place where a pointer to a node (i.e., a tree) is found, is called call
by reference. It is eaential in Fig. 5.38 because at line (3), where we have found
a pointer to a node m wh~ left child is IULL, we wish to replace this pointer by
another pointer - the pointer in the rightChild field of m. If the argument of

deletemin were a pointer to a node, then the change would take place locally to the
call to deletemin, and there would not actually be a change to the pointers in the
tree itaelf. Incidentally, we could use the call-by-reference style to implement iMert
as well. In that case, we could modify the tree directly and not have to return a
reviaed tree as we did in Fig. 5.35. We leave such a revised iMert function as an
eXerC1Be.

Now, let us see how Fig. 5.38 works. We lacate the smallest element by following
left children until we find a nade wh~ left child is IULL at line (1) of Fig. 5.38.
The element 11 at this node m must be the smallest in the subtree. To see why,
first observe that 11 is smaller than the element at any ancestor of m in the subtree,
becauBe we have followed only left children. The only other nodes in the subtree
are either in the right subtree of m, in which case their elements are surely larger
than y by the BST property, or in the rigbt subtree of one of m's ancestors. But
elements in the right subtrees are greater than the element at 9Ome ancestor of m,
and therefore greater than y, as suggested by Fig. 5.39.

Having found the smallest element in tbe subtree, we record this value at line
(2), and at line (3) we replace the node of the smallest element by its right subtree.
Note that when we delete the smallest element from the subtree, we always have
the easy case of deletion, becauae there is no left subtree.

The only remaining point regarding delet_in is that when the test of line (1)
faiJs, meaning that we are not yet at the smallest element, we proceed to the left
child. That step is accomplished by the recursive call at line (5).

The function delete(x .pT) is shown in Fig. 5.40. Ir pT points to an empty tree
T, there is nothing to do, and the test of line (1) makes sure that nothing is done.
Otherwiae, the tests of lines (2) and (4) handle the cases where z is not at the root.
and we are directed to the left or right subtree, as appropriate. If we reach line (6),
then z must be at the root ofT, and we must replace the root node. Line (6) tests
for the possibility that the left child is IULL, in which case we simpiy replace T by
its right subtree at line (7). Similarly, if at line (8) we find that the right child is
IULL then at line (9) we replace T by its left subtree. Note that ir both chiJdren of
the root are IULL, then we replace T by IULL at line (7).

The remaining case, where neither child is IULL, is handled at line (10). We
call delet_in, which returns the smallest element, 11. of the right subtree and al90
deletes 11 from that subtree. The assignment of line (10) replaces z by 11 at the root
orTo



266 THE TREE DATA MODEL

Fig. 5.39.

yoid delete(ETYPE x.
{

(1)
(2)
(3)
(4)
(5)

(6)
(7)
(8)
(9)

(10)

if ({*pT) != IULL)
if (x < (.pT)->el...nt)

delete{x, a{{*pT)->leftChild»;
el.e if {x > (.pT)->ele.ent)

delete{x. &({*pT)->rightChild»;
el.. /. here, x i. at the root of (*pT) */

if ({.pT)->leftChild =- NULL)
(.pT) = {*pT)->rightChild;

el.e if ({ .pT) ->rightChild == IULL)

(.pT) = {.pT)->leftChild;

el.e /* here, neither child i. IULL ./
(*pT)->el..ent =

deleteain{a{{.pT)->rightChild»;
}

Fig.5.40.

binary search tree of Fig. 5.36. Since Hairy is at a nade with two children, delete
calls the function delet_in, which removes and returns the smallest element,
Happy, from the right subtree of the root. Happy then becomes the label of the root
of the tree, the nade at which Hairy was stored. +

~

All the other elements in tbe right subtree are greater than y.

TREE .pT)

F\mctioo delete(x.pT) removes the element % from T.



EXERCISES

5.1.1: Suppoee that we use a leftmost-(;hild-rigbt-sibling implementatioo for bioary
search trees. Rewrite the functions that implement the dictionary operations insert,
de/ete, and lookup to work for this data structure.

5.1.2: Show what happens to the binary search tree of Fig. 5.33 if we insert the
following dwarfs in arder: Doc, Dopey, Ink,. Blinty. Pinty, and Sue. Theo show
what happens when we delete in arder: Doc, Sl.u" and Hairy.

5.1.3: Rewrite the functions 1 ookup , in.en, and delet. to use lexicographic
comparisoos 00 striogs instead of arithmetic comparisons 00 integers.

5.1.4.: Rewrite the fundiDO in.en 80 tbat the tree argument is passed by refer-
ence.

5.1.5*: We wrote delete in the "can by reference" style. However, it is aJso
possible to write it in a style like that of our in.en function, where it takes a
tree as argument (rather than a pointer to a tree) and returns the tree missing the
deleted elemento Write this veniDo of the dictionary operation de/ete. Note: It is
not really possible to have deletemin retum a revised tree, since it must &1so retum
the minimum elemento We could rewrite deletemin to return a structure with both
the new tree and the minimum element, but that approach is not recommended.

5.1.6: Instead of handling the deletion of a node with two children by finding the
least element in the right subtree, we could alao find the greatest element in the left
subtree and use that to replace the deleted elemento Rewrite the functions delet.
and del.teain from Figs. 5.38 and 5.40 to incorporate this modification.

5.1.1*: Another way to handle delete when we need to remove the element at a
nade n that has parent p, (nonempty) left child 1, and (nonempty) right child r is to
find the Bode m holding the least element in the rigbt subtree of n. Tben, make r
a left or right child of p, whichever n was, and make I the left child oí m (note that

SEC. 6. 7 B~ARY SEARCO TREES 267

Happy

/
Buhful

Sleuy

Filth1

BÍDary leard1 tree alter deletÍDg Hairy.Fig. 5.41.



268 THE TREE DATA MODEL

m cannot previously have had a left child). Show why this ~t of changes preserves
the BST property. Would you prefer this strategy to the one described in Section
5.7? Hint: For both metbods, consider tbeir efl'ect on the lengths of patbs. As we
shall8ee in tbe next section, sbort paths make tbe operations run fasto

5.7.S.: In tbis exercise, refer to tbe binary search tree represented in Fig. 5.39.
Sbow by induction on i that if 1 :$ i :$ k, then y < Zi. Then, sbow that y is the
least element in the tree rooted at Zk.

5.7.9: Write a complete C program to implement a dictionary that stores integers.
Accept commands ofthe form x i, where x is one ofthe letters i (insert), d (delete),
and 1 (Iookup). Integer i is tbe argument ofthe command, tbe integer to be inserted,
deleted, or ~arched for.

+++ 5.8 Efficiency of Binary Search Tree Operations+

Tbe binary search tree provides a reasonably fast implementation of a dictionary.
First, notice that each of the operations insert, delete, and lookup makes a number
of recursive calls equal to the length of tbe patb followed (but tbis patb must include
tbe route to the smallest element of the right subtree, in case deleteain is called).
Also, a simple analysis of the functions lookup, inaert, delete, and deletain
tells us that each operation takes 0(1) time, plus tbe time for one recursive callo
Moreover, since this recursive call is always made at a child of the current nade,
the height of the nade in each successive call decreases by at least 1.

Thus, if T( h) is the time taken by any of these functions when called with
a pointer to a nade of height h, we have the following recurrence relation upper-
bounding T(h):

BASIS. T(O) = 0(1). That is, when called on- a leaf, tbe call either terminates
without further calls or makes a recursive can witb a IULL argument and then
retums without further calla. AII of this work takes O( 1) time.

INDUCTION. T(h) :$ T(h - 1) + 0(1) for h ~ 1. Tbat is, the time taken by a call
on any interior nade is 0(1) plus the time for a recursive call, which is on a nade
of beight at m~t h - 1. If we make the reasonable assumption that T( h) increases
with increasing h, then tbe time for the recursive call is no greater than T(h - 1).

The solution to tbe recurrence for T(h) is O(h), as di8CU88ed in Section 3.9.
Thus, the running time of each dictionary operation on a binary search tree of n
nades is at m~t proportional to the height of the tree. But what is the height of a
typical binary search tree of n nades?

The Worst Case

In the worst case, aIl tbe nades in the binary tree will be arranged in a single path,
like the tree of Fig. 5.42. That tree would result, for example, from taking a list of
k elements in sorted arder and inserting them one at a time into an initially empty
tree. There are aIso t~ in which tbe single path does not consist of right children

~, ~~,- ""._"-



Complete tree

SEC. 5.8 EFFICIENCY OF BINARY SEARCH TREE OPERATIONS 269

Fig. 5.42. A degenerate binary tree.

only but is a mixture of right and left children, with the path taking a tufO either
left or right at each interior node.

The height of a k-node tree like Fig. 5.42 is clearly k-l. We thus expect
that lookup, insert, and delete will take O(k) time on a dictionary of k elements, if
the representation of that dictionary happens to be one of these unfortunate trees.
lntuitively, if we need to look for element z, on the average we shall find it halfway
clown the path, requiring U8 to look at k/2 nodes. If we faíl to find z, we shall
likewise have to search clown the tree until we come to the place where z would be
found, which will also be halfway clown, on the average. Since each of the operations
lookup, insert, and delete requires searching for the element involved, we know that
these operations each take O(k) time on the average, given one of the bad trees of
the form of Fig. 5.42.

Tbe Best Case
However, a binary tree need not grow long and thin like Fig. 5.42; it could be short
and bushy like Fig. 5.43. A tree like the latter, where every interior Bode clown to
some level has both children present and the next level has all the leaves, is called
a full or complete tree.

Rill binary tree with Rven nodea.Fig. 5.43.

We can prove this claimA complete binary tree of height h has 2"+1 -1 nodea.
by ioduction 00 the height h.

Since ~1 - 1 = 1, the basisBASIS. lí h = O, the tree consista oí a single node.
case holds.





y
,

++++ 5.9 Priority

+

SEC. 5.9 PRIORITY QUEUES AND PARTIALLY ORDERED TREES 271

Thus, we ask, For what value of d ia (3/4)dk :$ 1? If we take logarithms to the base
2, we get

dlog2(3/4) + log2 k :$ log21 (5.1)

Now log21 = O, and the quantity 1082(3/4) is a negative constant, about -0.4.
Thus we can rewrite (5.1) aslog2 k :$ O.4d, or d ~ (log2 k)/O.4 = 2.51og2 k.

Put anotber way, at a depth of about two and a hall times the logaritbrn to the
base 2 of the number of nades, we expect to find only leaves (or to have found the
leaves at higher levels). Thia argument justifies, but does not prove, the statement
that the typical binary search tree will have a height that is proportional to the
logarithm of the number of nodes in the tree.

EXERCISES

5.8.1: Ir tree T bas beigbt h and branching factor 6, wbat are the largest and
smallest numbers of nodes tbat T can have?

5.8.2..: Perform an experiment in which we cboose one of the n! orders for n
different values and insert tbe values in tbis arder into an initially empty binary
search tree. Let P(n) be the expected value of the depth of the node at which a
particular value v among tbe n values is found after this experimento

a) Show that, for n ~ 2,

2 R-1

P(n) = 1 + ;2 L kP(k)
.=1

b) Prove that P(n) is O(logn).

Queues and Partially Ordered Trees

So far, we have seen only one abstract data type, the dictionary, and one imple-
meotation for it, the binuy search tree. In this section we shall study anotber
abstract data type and one of its m~t efficient implementations. Tbis ADT, called
a priority queue, is a set of elements each of which has an associated priority. For
example, the elements rould be ~rds and the priority could be the value of one
field of the record. The two operations &SSOciated with the priority queue ADT &re
tbe íoIlowing:

l. Inserting an element into the set (insert).

2. Finding and deleting from the eet an element oí highest priority (this combined
operatoion is called deletemaz). The deleted element is retumed by this function.

Example 5.26. A time-shared operating system accepts requests for service
from VarioUS80ulcea, and these jobs may noto all have the same priority. For example,
at higbest priority may be tbe system proceMeS; tbese would include tbe "daemons"
tohat watch for incoming data, such as tohe signal generated by a keystroke at a
tenninal or tbe arriyal oí a packet of bite oyer a local &lea network. Tben mar
come User processes, the commands issued by ordinary users. Below these we mar



272 THE TREE DATA MODEL

have certain background jobs such 88 backup oc data to tape or long calculations
that the user has designated to run with a low priority.

Jobs can be represented by records consisting oí an integer ID Cor the job and
an integer íor the job's priority. That is, we might use the structure

struct ETYPE {
int jobm;
int priority;

};

for elements oí a priority queue. When a new job is initiated, it gets an ID and a
priority. We then execute the in.ert operation íor this element on the priority queue
of jobs waiting for service. When a processor becomes available, the system goes
to the priority queue and executes the deletemaz operation. The element retumed
by this operation is a waiting job of highest priority, and that is the one executed
next. .

... Example 5.27. We can implement a sorting algorithm using the priority queue
ADT. Suppoee we are given the sequence of integers °1. °2. . . . . Gn to sort. We
insert each into a priority queue, using the element's value as its priority. If we
then execute ddetemaz n times, the integers will be ~Iected highest fim, or in the
reverse oftheir sorted (Iowest-first) order. We shall discU88 this algorithm in more
detail in the next section; it is knowD as heapeort. ...

PartiaUy

An efficient way to implement a priority queue is by a partially ordered tree (POT),
which is a labeled binary tree with the following properti~:

1. The labels of the nades are elements with a "priority"; that priority mar be
the value of an element or tbe value of ~me oomPOnent of an elemento

2. The element store<! at a nade has at least as large a priority as the elements
stored at the children of that nade.

Property 2 implies that the element at the root of any subtree is always a largest
element of that subtree. We call property 2 the partially ordered tree property, or
POT properiy.

POT property

Example 5.28. Figure 5.44 shows a partially ordered tree with 10 elements.
Here, 88 elsewhere in this section, we shall represent elements by their priorities, 88
if the element and the priority were the SalDe thing. Note that equal elements can
appear on different levels in the tree. To see that the POT property is satisfied at
the root, note that 18, the element there, is no Iess than the elements 18 and 16
found at its children. Similarly, we can check that the POT property halda at every
interior node. Thus, Fig. 5.44 is a partially ordered tree. +

+

Ordered Trees



Partially ordered trees provide a useful abstract implementation for priority
queues. Briefly, to execute deletemaz we find tbe node at tbe root, wbich must be
tbe maximum, and replace it by tbe rigbtmost node on the bottom level. However,
when we do so, tbe POT property may be violated, and so we must restore that
property by "bubbling down" tbe element newly placed at tbe root until it finds a
suitable level where it is smaller than its parent but at least as large as any of its
children. To execute insert, we can add a new leaf at the bottom level, as far left
as possible, or at the left end of a new level if the bottom level is full. Again there
may be a violation of the POT property, and if so, we "bubble up" the new element
until it finds its rightful place.

Balanced POTs and Heaps
We say that. a partially ordered tree is balanced if all possible nodes exist at. alllevels
except the bottommost, and the leaves at the bottommost level are as far to the
left as possible. Tbis condition implies that if tbe tree has n nodes, tben no path
to a nade from the root is longer than log2 n. The tree in Fig. 5.44 is a balanced
paT.

Balanced POTs can be implemented using an array data structure called a
heap, which provides a fast, compact implementation of the priority qneue ADT. A
beap is simply an array A witb a special interpretation for the element indices. We
start witb tbe root in A[I]; A[O] is not used. Following the root, the levels appear
in order. Witbin a level, the nades are ordered from left to rigbt.

Thus, the left child of the root is in A[2], and the right child of the root is in
A[3]. In general, tbe left child of tbe nade in A[81 is in A[281 and the right child is in
A[2i + 1], if these children exist in the partiaUyordered tree. The balanced nature
of the tree allows this representation. The POT property of the elements implies
tbat if A[81 has two children, tben A[81 is at least as large as A[281 and A[2i + 1],
ud if A[81 has one child, tben A[81 is at least as large 88 A[281.

+ Example 5.29. The heap for the balanced partia1ly ordered tree in Fig. 5.44
is sbown in Fig. 5.45. For inst.ance, A[4] bolds tbe value 9; tbis array eleme:nt
repre8enta tbe left child oí tbe left child oí tbe root in Fig. 5.44. Tbe children of
tbis nade are found in A[8] and A[9]. Tbeir elementa, 3 and 7, are eacb no greater

PRlORlTV QUEUES AND PAImALLY ORDERED TREES 273SEC. 5.9

PartiaUy ordered tree with 10 nades.Fig. 5.44.



274 THE TREE DATA MODEL

"'

Layers of Implementation

lt is useful to compare our two ADT's, the dictionary and the priority queue, and
to notice that, in each case, we have given one abstract implementation and one
data structure for that implementation. There are other abstract implementations
for each, and other data structures for each abstract implementation. We promised
to discuss other abstract implementations for the dictioouy, such as the hash table,
and in the exercises of Section 5.9 we suggest that the binary search tree mar be
a suitable abstract implementation for the priority queue. The table below sum-
manzes what we already koow about abstract implementatioD8 ud data structures
for the dictiooary and the priority queue.

ADT ABSTRACT IMPLEMENTATION DATA STRUCTURE

dictioo&ry binal'Y 8eald1 Ieft-child-rigbt-child
tree structure

priority balanc:ed P8i'tially heap
queue ordered tree

than 9, as is required by tbe POT property. Array element A[ó), which corresponda
to the rigbt child of tbe left child of the root,. has a left child in A[IO). It would
have a rigbt child in A[ll), but the partially ordered tree has only 10 elements at
the moment, and 80 A(ll) is not part of the heap. +

While we have shown tree nodes and array elements as if they were the prior-
ities themeelves, in principIe an entire r«Ord appears at the node or in the array.
As we shall see, we shall have to do much swapping of elements bel.ween children
and p&rents in a partially ordered tree or its heap rep~ntation. Thus, it is COD-
siderably more efficient if the array elements themeelves are pointers 1.0 the records
representing the objects in the priority queue and these records are stored in an-
other array "outside" the heap. Then we can simply swap pointers, leaving the
records in place.

Performiog Priority Queue Operations 00 a Heap

Tbrougbout tbis section and the next, we shall represent a heap by a global array
A [1. . KJ.I:) of integers. We assume tbat elements are integers and are equal to tbeir
prioriti~. When elements are records, we can atore pointers to the record s in the
array and determine the priority of an element from a field in its record.

Suppoee that we have a heap of n-l elements satisíying tbe POT property, and
we add an nth element in A[n]. The POT property continu~ to hold everywhere,

Fig. 5.45. Heap for Fig. 5.4-4.



..

SEC. 5.9 PRlORITY QUEUES AND PARrIALLY ORDERED TREES 275

except perhaps between A[n] and its parent. Tbus, if A[n] islarger tban A[n/2] , tbe
element at the parent, we must swap these elements. Now tbere may be a violation
of the POT property between A[n/2] and its parent. If so, we recursively "bubble
up" the new element until it either reaches a position where the parent has a larger
element or reaches the root.

The C function bubbleUp to perform this operation is shown in Fig. 5.46. It
makes use ora function ..ap(A.i.j) that exchanges the elements in A[a1 and A[j]j
this function is also defined in Fig. 5.46. The operation of bubbleUp is simple.
Given argument i indicating the nade that, with its parent, poesibly violates the
POT property, we test whether i = 1 (that is, whether we are already at the root,
so that no POT violation can occur), 8lld if not, whether the element A[al is greater
than the element at its parent. If so, we swap A[i] with its parent and recursively
call bubbleUp at the parent.

void ..ap(int iD, int i, int j)
{

int t~;

t~ = A[i];
A[i] = A[j];
A[j] = t_p;

}

void bubbleUp(int 10. int i)

{
if (i > 1 la 1[i] > 1[i/2])

Bvap(l. i. i/2):

bubbleUp(l. i/2):
'\.

{

Fig. 5.46. and the function bubbleUpThe funct,ion ..ap exdlange8 array
pushes & new element of & heap into iu rightful place.

we start withExample 5.30. Suppoee we 8
eleventb element, witb priority 13.

1 2 3 4
I - I - - I - - I - I

rith the heap of Fig. 5.45 and we add an
element gas in A[ll], giving U8 the array

the
This

l 2;,;1 ,4; i .' 6 1 8 9 ,-.. 11
1_18118:1 Í, 1 9 1 7 ¡ti! 1 ~I 7 1 ¡ 1131

We now call bubbleUp(A ,11), whicb compares A[ll] with A[5] and finds that
we mustswap these elements becau~ A[ll] is larger. That ia, A[5] and A[ll] violate
the POT property. Thus, the array becomes

1 2 3 4 5 6 1 8 9 10 11
.118 118116 1 9113 1 i lO 1 '1 1 I! ¡ 1 ~ I



276 THE TREE DATA MODEL

Now we call bubbleUp(A. 6). This results in compari80D oí A [2) and A[5]. Since
A[2] is larger, there is no POT violation, ud bubbleUp(A. 6) does nothing. We
have now restored the POT property to the array. +

We now show how to implement the priority queue operation inserto Let n be
the current number oí elements in the priority queue, and 88ume A [1. . nJ already
satisfies the PQT property. We increment n and then atore the element to be
inserted into the new AW. Finally, we cala bubbleUp(A.n). The code for insert is
shown in Fig. 5.47. The argument z is the element to be inserted, and the argument
pn is a pointer to the current size of the priority queue. Note that n must be paseed
by reference - that is, by a pointer to n - 80 t.hat when n is incremented the

change has an affect that is not local only to inserto A check tbat n < M AX is
omitted.

Implementation
of insert

void iD..rt(iDt Ao. iDt x. int .pn)
{

(.pn)++;
A[.pn] = x;

bubbleUp(A. .pn);
)

Fig. ~.47.

To implement the priority queue operation deletemaz, we need another opera-
tion on heaps or partially orde~ t~, this time to bubble down an element at the
root that may violate the POT property. Suppose that A[al is a potential violator
oí the POT property, in that it may be smaller than one or both oí its children,
A[2al and A[2i + 1]. We can swap A[al with one oí its children, but we must be
careíul which one. If we swap with the larger oí ~he children, then we are sure not
to introduce a POT violation between the two íormer children of A [al , one oí which
has now become the parent oí tbe otber.

Tbe function bubbleDovn oí Fig. 5.48 implements this operation. ACter select-
ing a child witb whicb to swap A[al, it calla itselC recursively to eliminate a poesible
POT violation between tbe element A[a1 in its new position - which is now & (2i] or
A (2i +1] - and one of its new cbildren. The argument n is the number oí elements
in the beap, or, equivalently, tbe index oí the last elemento

This íunction is a bit tricky. We bave to decide which child oí A[a1 to swap
with, ií any, ud the first thing we do is aaume that the larger child is A[2a1, at
line (1) oí Fig. 5.48. If the right child exista (i.e., child < n) and the right child is
the larger, then the testa oí line (2) are met ud at line (3) we make child be the
right child oí A[a1.

Now at line (4) we test íor two things. First, it is poesible that A[a1 really has
no children in tbe heap. We tberefore check wbether A[a1 is u interior nade by
asking whether child ~ n. The second test oí line (4) is whether A[a1 is leas than
A[child). If both these conditions are met, then at line (5) we SW&p A[a1 with its
larger child, ud at line (6) we recursively call bubbleDovn, to push the offending
element further down, ií necessary.

We can use bubbleDovn to implement tbe priority queDe operation deletemaz
as shown in Fig. 5.49. Tbe íunction delet..x takes as arguments an array A ud

Bubbling down

Implementation
of deletemax

Priority queue operation in..ert implemented OD a heap.



a pointer pn to the number n that is the number oí elements currently in the heap.
We omit a test that n > O.

In line (1), we swap the element at the root, which is to be deleted, with the
last element, in A[n]. Technically, we should return the deleted element, but, as
we shall 8ee, it is convenient to put it in A [nJ, which will no longer be part oí the
heap.

At line (2), we decrement n by 1, effectively deleting the largest element, now
residing in the old A[n]. Since the root may now violate the POT property, we call
bubbleDown(A,l,n) at tiRe (3), which will recursively push the offending element
clown until it either reaches a point where it is no less than either oí its children, or
becomes a leaf; either way, there is no violation oí the POT property.

Example 5.31. Suppoee we start with tbe heap of Fig. 5.45 and execute
deletemo.r. Alter swappiq A[I] and A[IO], we ~t n to 9. The heap then becomes

I 2 3 4 5 6 7 8 9
I 6 118 116 I '9 1 7 I I I 9 I 3 I 7 I

+

When we execute bubbleDovn (A, 1,9), we set child to 2. Since A[2] ~ A [3] ,
we do not increment child at line (3) oí Fig. 5.48. Then Bince child .$ n and
A[l] < A[2], we 8wap these elementa, to obtain the &fray

PRIORITY QUEU~ ANO PARTIALLY ORDEREO TREES 277SEC. 5.9

void bubbleDowu(int AO, int i, int n)

{
int child;

child.2.i;
it (child < n u A[child+1] > A[child])

++child;
it (child <= n u A[i] < A[child]) {

8vap(A. i, child);
bubbleDowu(A, child, n);

}
}

(1)

(2)

(3)

(4.)

(5)

(6)

bubbleDovn pushes a POT violator down to its proper pO8Ítion.S.48.Fig.

Toid deleteaax(int AD, i.nt .pn)
{

.8ap(A, 1, .pn);

--(.pn);
bubbleDown(A, 1, .pn);

(1)
(2)
(3)

}

Fig. 5.49. Priority queue operation deletemax implemented by a heap.



278 THE TREE DATA MODEL

We then call bubbleOovn(A.2.9). That requirea us to compare A[4] with A[5]
at line (2), and we find that the former is larger. Thus, child = 4 at line (4)
of Fig. 5.48. When we find that A[2] < .4[4], we 8wap these elements and call
bubbleOovn(A,4,9) on the array

Next, we compare A[8] and A[9], finding that tbe latter islarger, ~ that child =
9 at line (4) ofbubbleOovn(J.,4,9). We again perform the 8wap, 8ince A[4] < A[9],
resulting in the array

1 2 3 4- $ 6 7 S 9

11SI91.!sI7IrI119131.!1
Next, we call bubbleDovn(A.9.9). We set child to 18 at line (1), and the first

test of line (2) faila, becauae child < n is falseo Similarly, the test of line (4) fails,
and we make no 8wap or recursive callo Tbe array is now a heap witb tbe POT
property restored. +

Running Time oí Priority Queue Operations

The heap implementation of priority queues offers O(log n) running time per insert
or deletemaz operation. To 8ee why, Jet us first consider the insert prograrn of
Fig. 5.41. This program evidently takes 0(1) time for the first two steps, plus
whatever the caIl to bubbleUp takes. Thus, we need to determine the running time
of bubbleUp.

Informally, we notice that each time bubbleUp calls itself recursively, we are at
a node one position cl~r to the root. Since a balanced partially ordered t~ has
height approximately log2 n, the number of recursive calls ia 0(log2 n). Since each
call to bubbleUp takes time O( 1) plus the time of the recursive call, if any, the total
time should be O(logn).

More formally, let T(i) be the running time of bubbleUp(J..i}. Then we can
create a recurrence relation for T( i) as fOUOW8.

BASIS. If i = 1, then T(i) is 0(1), mnce it is easy to check that the bubbleUp
program of Fig. 5.46 does not make any recursive calls and only the test of the
if-statement ia ex~ted.

INDUCTION. If i > 1, then the if-statement test mar fail anyway, because A[al
does not need to rise furtber. Ir t.he te8t. su<x:eeds, then we execute swap, wbidI
takes 0(1) time, plus a ~rsive call to bubbleUp with an argument i/2 (or sligbtly
leE if á is odd). Thus T(á) $ T(á/2) + 0(1).

We thus have, for BOrne constante a and 6, the recurrence

T(l) = 4
T(al = T(i/2) + 6 for i> 1

12345.788
L18) 5 )!6)9 J 7 1I 1 9 I 3 1 7 1

1 2 S 4 5: e 7 8 g
1181 9 I i61 5 I 711 I 9 I 317 I



SEC. 5.9 PRIORITY QUEUES AND PARTIALLY ORDERED TREES 279

as an upper bound on tbe running time of bubbleUp. If we expand T(i/2) we get

T(i) = T(i/V) + bj (5.2)

for each j. As in Section 3.10, we d1~ tbe value of j tbat makes T(i/2j) aimplest.
In tbia case, we make j ~ual t.o log2 i, 80 tbat. i/2j = 1. Thus, (5.2) becomes
T(i) = a + b log2 i; tbat ia, T(i) ia O(log i). Since bubbleUp ia O(log i), 80 ia in.en.

Now consider deletemaz. We can see from Fig. 5.49 tbat tbe running time of
deletemaz is 0(1) plus the running time of bubbleDovn. Tbe analysis of bubble-
DOVD, in Fig. 5.48, is ~ntially the same as tbat of bubbleUp. We omit it and
conclude that bubbleDovn and deletemaz also take O(log n) time.

EXERCISES

5.9.1: Starting with the heap of Fig. 5.45, show what happens when we

a) Insert 3
b) Insert 20
c) Delete the maximum element
d) Again delete the maximum element

5.9.2: Prove Equation (5.2) by induction on i.

5.9.3: Prove by induction on the depth of the POT-property violation that the
function bubbleUp of Fig. 5.46 correctly restores a tree with one violation to a tree
that has the POT property.

5.9.4: Prove that the function insert(A.x.n) makes A into a heap of size n, if A
was previously a heap of size n-l. You mar use Exercise 5.9.3. What happens if
A was not previously a heap?

5.9.5: Prove by induction on tbe heigbt of the POT -property violation that the
function bubbleDovn of Fig. 5.48 correctly restores a tree with oRe violation to a
tree that has the POT propeny. .

5.9.6: Prove that delet-.x(A .n) makes a heap of size n into one of size n-l.
What happens if A was not previously a heap?

5.9.1: Prove that bubbleDovn(A.1.n) takes O(logn) time on a heap oflength n.

5.9.8..: What is the probability that an n-element heap, with distinct element
priorities ch~n at random, is a partially ordered tree? If you cannot derive the
general rule, write a recursive function to compute the probability as a function of
n.

5.9.9: We do not need to use a heap to implement a partially ordered tree. Suppoee
we use the conventionalleft-child-right-child data structure for binary trees. Show
how to implement the functions bubbleOoVD, insert, and delet_ax using this
structure instead of the heap structure.

5.9.10.: A binary search tree can be used as an abetract implementation of a
priority queue. Show how the operations insert and deletemaz can be implemented
using a binary search tree with the left-child-right-child data structure. Wbat is
the running time of th~ operations (a) in tbe worst case and (b) on the average?



280 THE TREE DATA MODEL

.:. 5.10 Heapsort: Sorting
We shall now d~ribe the algorithm known as h~p.ort. It ~rta an array A[l..n]
in two ph~. In the first phaae, heapeort gives A the POT property. The second
phase oí heapsort repeatedly selecta the largest remaining element írom the heap
until the heap consista oí only the smallest element, whereupon the arfar A is
sorted.

Figure 5.50 SbOM tbe array A during tbe second pb~. Tbe initial part of
tbe array has tbe POT property, and tbe remaining part has its elements sorted in
nondecreasing order. F\lrtbermore, tbe elements in the sorted part are tbe largest
n - i elemente in tbe array. During tbe second pbase, i is allowed to run from n

down to 1, so tbat tbe beap, initia1ly tbe entire array A, eventua1ly shrinks until
it is only tbe smallest element, located in '[1]. In more detail, tbe second pbase
consiste of tbe following stepe.

1. A[l], the largest element in '[1. . i], is exchanged witb A[al. Since all elements
in '[i +1. . n] are as large as or lacger than any of '[1. . i], and since we just
moved tbe largest of tbe latter group of elements to position i, we know tbat
'[i. . n] are tbe largest. n - i + 1 elementa and are in ~rted order.

2. Tbe va1ue i is decremented, reducing tbe size of tbe beap by 1.

3. Tbe POT property is restored to tbe initial part oftbe array by bubbling down
tbe element at tbe root, wbich we just moved to A[l].

+ Example 5.32. Conaider the array in Fig. 5.45, whidt has the POT property.
Let U8 go through the first iteration of the second phase. In the first step, we
exchange A[l] and A[lO] to get:

The secood 8tep reduces the heap size to 9, and the tbird atep restof5 the POT
property to the first oioe elemeots by calliog bubbleDown(1). lo this call, A[l] and
A[2] are exchanged:

Tben, A[2] and A[4] are exchanged:

POTswith Balanced

I heap I Jarge elementa, 8Orted I

t t t
1 i n

Condition of array A during beapsort.Fig. 5.50.

'1 2 3 4 5 8 ", '8' lO
J~.J,~~.I,,161 gl711,I g 131! 1181

~



SEC. 5.10 HEAPSORf: SORTING WITH BALANCEO POTS 281

1 2 3 4 5 6 7 8 9 10
, 18 , g 116 I 5 I 7 I 1 I giS I 7 , 18 I

Finally, A[4] and A[9] are exchanged:

1 2 3 4- 5 6 7 S 9 lO
I_I~I !: 1161 71 7 1 1"1 9 13 1 i 1 isl

At this point, A[1. .9] has the POT property.
The &eCOncl iteration oí pbaae 2 begins by swapping tbe element

with "he element 5 in A (8). After bubbling 5 clown, the array becomes

1 2 3 4 5 6 7 8 9 10

I~~I !.t 9171!I.!l513 t.!~)i81

18 in 1[1]

At this stage, the last two ts of the array are the two largest elements, inelemen
.,rted order.

Phase 2 continu~ ufttil the aRay ie completely 8Orted:

1 2 3 4 5 6 1 8 9 10

12_J~ 1_~11111919l1611~,J181
+

Heapifying an

We could describe heapsort informaJly as follows:
for (1 = 1; 1 <= D; 1++)

insert(ai);
for (1 = 1; 1 <= D; i++)

deletemaz

To implement this algorithm, we insert the n element& al, a2, . . ., an to be sorted
into a heap that is initially empty. We then perform deletemaz n times, getting
the elements in larg~t-first order. The arrangement of Fig. 5.50 allows os to store
the deleted elements in tbe tail of the array. as we sbrink the heap portion of that

array.
Since we just argued in tbe last section tbat insert and deletemaz take O(log n)

time e8cl1, and since we evidently execute eacb operation n times, we have an
O(n lagn) sorting algoritbm, which is comparable to merge sort. In fact, heapsort
can be superior to merge sort in a situation in which we only need a few of the
larg~t elements, rather than the entire sorted listo The reaaon is that we can make
the array be a beap in O( n) time, rather than O( n lag n) time, if we use the function
heap1fy of Fig. 5.51.



282 THE TREE DATA MODEL

void heapify(int AO. int n)
{

for (i . n/2; i >= 1;

bubbleDovn(A. i. :
}

Running Time of Heapify

At first, it migbt appear that the n/2 calls to bubbleDoVD in Fig. 5.51 shou1d take
O(n1ogn) time in total, because logn is the on1y upper bound we know on tbe
running time of bubbleDoWD. However, we can get a tighter bound, O(n), if we
exploit the fact that most of the sequences that bubble down e1ements are very
short.

To begin, we did not even have to call bubbleDovn on the eecond hall oí the
arfar, because all the elements there are leaves. On the second quarter of the arfar,
that is,

A[(n/4)+1..n/2)

we mar can bubbleDovn once, if the element is smaller than either oí its children;
but th~ children are in the second hall, and therefore are leav~. Thua, in the
second quarter of A, we call bubbleDovn at m~t once. Similarly, in the 8eCOnd
eighth oí the arfar, we call bubbleDovn at m~t twice, and 80 on. The number of
calla to bubbleDown in the varioua regions oí the array is indicated in Fig. 5.52.

n/16 "/8 _/4 "./1 .' '" ,; ;ff: n

AI...ls3Is21 S~:'(G:I

Fig.5.52.

Let us count tbe number of calla to bubbleDoVD made by heapifJ, including
recursive calls. From Fig. 5.52 we 8ee tbat it is pO68ible to divide A into zonu,
wbere tbe itb zone consista of A[jJ for j greater than n/21+1 but no greater tban
n/2i. Tbe number of elementa in BODe i is tbus n/2i+l, ud tbere are at m~t i calls
to bubbleDoVD for each element in BOne i. 1'\1rtber, tbe BOnes i > log2 n are empty,
since tbey contain at m~t n/21+1os2 n = 1/2 elemento Tbe element A [1J is tbe sale

occupant of zone log2 n. We tbus need to compute tbe sum

IOfoft

L
1:1

in/2i+l

We can provide &0 upper bouod on the finite eum (5.3) by extending it to an infinite
eum and then pulliog out the factor n/2:

i;int

; i--)
a) ;

Fig. 5.51.

Tbe number of calla to bubbleDovn decreases rapidly as we go througil
tbe alTaY from Iow to mgh iodices.

(5.3)



~

~ L i/2' (5.4)
i=l

We must now get an upper bound on the sum in (5.4). This sum, ~~1 i/2',
can be written 88

(1/2) + (1/4 + 1/4) + (1/8 + 1/8 + 1/8) + (1/16 + 1/16 + 1/16 + 1/16) + ...

We can write th~ inv~ powen oí 2 88 the triangie shown in Fig. 5.53. Each row
is3D infinite geometric series with ratio 1/2, which suma to twice the fint term in
the series, 88 indicated at the right edge of Fig. 5.53. Tbe row sums form anotber
geometric series, which sums to 2.

It follows that (5.4) is upper-bounded by (n/2) x 2 = n. That is, the number
of calla to bubbleDoVD in tbe function heapify is no greater tban n. Since we have
already established that each call takes 0(1) time, exclusive of any recursive calla,
we conclude tbat the total time taken by heapify is O(n).

The Complete Heapsort Algorithm
Tbe C program for beapsort is sbown in Fig. 5.54. It uses an array of integers
A[1. .UI] for the beap. Tbe elements to be sorted are inserted in A[1..n]. Tbe
definitions of tbe function declarations in Fig. 5.54 are contained in Sections 5.9

and 5.10.
Line (1) calls heapify, wbich tufOS tbe n elements to be sorted into a beap;

and line (2) initializes i, which marks the end of the heap, to n. The loop of
liDes (3) and (4) appli~ deleteaax n - 1 times. We sbould examine tbe code of
Fig. 5.49 again to observe tbat deleteaax(A.i) swaps the maximum element of
tbe remaining beap - wbich is always in A[1] - witb A[al. As a side effect, i is
decremented by 1, 80 that tbe size of tbe beap sbrinks by 1. The element "deleted"
by delet~ at line (4) is now part of tbe sorted tail of tbe array. It is less tban
or equal to any element in tbe previous tail, A[1+1. .n], but greater than or equal
to any element still in tbe beap. Thus, the claimed property is maintained; all tbe
beap elements precede all tbe elements of tbe tail.

SEC. 5.10 HEAPSORT: SORTING WITH BALANCEO POTS 283

1/4 + 1/8 + 1/16
1/4 + 1/8 + 1/16

1/8 + l/le
1/16

1
1/2
1/4
1/8

1/2 +
+
+
+

+ -.. .

:~ ..

Arranging E::l i/2; as a triangular sumoFig. 5.53.

Running Time of Heapsort
We have just established that heapify in line (1) takes time proportiooal to n. Line
(2) clearly takes O( 1) time. Since i decrea8e8 by 1 each time around the loop of liDes
(3) and (4), the number oftimes around the loop is n-l. The call to delet.u at
lioe (4) tak~ O(logn) time. Thus, the total time Cor the loop is O(nlogn). That
time dominates liDes (1) and (2), and so the running time ofheapsort is O(n lOS n)

00 n elements.



284 THE TREE DATA MODEL

linclude <stdio.h>

~efin. KAX 100

int A [KAI+1] ;

void bubbleDown(int AD. int i. int n);

void delet...x(int AO. int .pn);

void heapify(int ID. int a);

void heapsort(int AO. int n);

void ..ap(int AO. int i. int j);

aain()
{

int i, n, X;

n = o;

.hile (n < "Al U acant("'I.d", tx) != IOF)
A[ ++nJ = x;

heapaort(A, n);
for (i = 1; i <= n; i++)

printf("Xd\n", A[iJ);
}

yoid heapaort(int AO, int n)
{

int i;

(1) heapitJ(A, n);
(2) i = n;

(3) .hile (i > 1)

(4) deleteaax(A, ti);
}

Fig. 5.64. Heapeorting an alTaY.

EXERCISES

5.10.1: Apply heapsort to the list ofelements 3, 1,4,1,5,9,2,6,5.

}

void heapaort(int AO. iJ
{

int i;

heapify(A. n);
i = n;

.hile (i > 1)

d.l.t~(A. ai);
}

Fig.5.54.

(1)
(2)
(3)
(4)

5.10.2*: Give an O(n) running time algorithm that finda the ~ largest elements
in a list oí n elements.

+++ 5.11 Summary+

Tbe reader sbould take away tbe following points from Chapter 5:

+ Trees are an important data model for rep~nting hierarchical information.

5



.... 5.12 Bibliographic Notes for Chapter 5

SEC. 5.12 BIBLlOGRAPWC NO~ FOR CHAPTER 5 285

+ Many data structures involving combinations of arrays and pointers can be used
to implement t~, ud the data structure of choice dependa on the operations
performed on the tree.

+ Two of the m~t important representations for tree nodes are the leftm~t-
child-right-sibling representation and the trie (array of pointers to children).

+ Recursive algoritbms and proofs are well suited for trees. A variant of our
basic induction scheme, called structural induction, is effectively a complete
induction on the number of nodes in a tree.

+ The binary tree is a variant ofthe tree model in which each node has (optional)
left and right children.

+ A binary search tree is a labeled binary tree with the "binary search tree
property" that ala the labels in the left subtree precede the label at a nade, and
alllabels in the right subtree follow the label at the nade.

+ The dictionary abstract data type is a set upon wbicb we can perform the oper-
ations insert, delete, and lookup. Tbe binary search tree efficiently implements
dictionaries.

+ A priority queue is another abstract data type, a set upon which we can perform
the operations insert and deletemaz.

+ A partially ordered tree is a labeled binary tree with the property tbat the
label at any nade is at least as great as the label at its children.

+ Balanced partially ordered trees, where the nodes fully occupy levels from the
root to the lowest level, where only the leftm~t p~itions are occupied, can be
implemented by u array structure called a heap. Tbis structure provides an
O(log n) implementation of a priority queue ud leads to an O( n log n) sorting
algorithm called heapeort.

The trie repr~ntation oí trees is írom Fredkin [1960]. The binary 8e&rd1 tree W88
invented independently by a number oí people, ud tbe reader is reíerred to Knuth
[1973] íor a history as well as a great deal more iníormation 00 various kinds oí
search trees. For more advanced applicatioDS oí trees, ~ Tarjan [1983].

Williams [1964] devised the heap implementatioo oí balanced partially ordered
trees. Floyd [1964] d~ribes an efficient version oí beapeort.

Floyd, R. W. [1964]. "Algorithm 245: Treesort 3," Comm. ACM 1:12, pp. 701.

Fredkin, E. [1960]. "Trie memory," Comm. ACM 3:4, pp. 490-500.

Knutb, D. E. [1973]. The Art o( Computer Programming, Vol. 111, Sorting and
SeardJing, 2nd ed., Addison-Wesley, Reading, M~.

Tarjan, R. E. [1983]. Data Structures and Network Algorithms, SIAM Press,
Philadelphia.

Williams, J. W. J. [1964]. MAlgoritbm 232: Heapeort," Comm. ACM 1:6, pp. 347-
348.




