

6CHAPTER

..."'...
... The List

Data Model

Like trees, lista are among the most basic of data models uaed in computer programs.
Lists are, in a sense, simple forma of trees, because one can think of a list as a binary
tree in which every left child is a lea!. However, lista aJso preaeot BOme aspecta that
are oot special cases of what we have learoed about torees. For instance, we shall talk
about operations 00 lists, such as pusbing and popping, tbat bave no common analog
for trees, and we sball t.alk of character striogs, wbidl are special and importaot
kinds of lista requiriog tbeir own data structUre8.

.:. 6.1 What This

We introduce list terminology in Section 6.2. Tben in tbe remainder oí the chapter
we present the íollowing topics:

+ The basic operations on lista (Section 6.3).

+ Implementations oí abstract lista by data structur5, especially the linked-list
data structure (Section 6.4) ud an alTay data structure (Section 6.5).

+ The stack, a list upon wbich we insert and delete at only one end (Section 6.6).

+ The queue, a Iist upon wbicb we inaert at one end ud delete at tbe otber

(Section 6.8).

+ Character strings ud tbe special data structUr5 we use to repre8ent them

(Section 6.10).

Furtber, we shall study in detail two applications oí lista:

+ The run-time stack and the way C ud many other languages implement re-
cursive functions (Section 6.7).

~J

(

.

Is AboutChapter

286

..".... 6.2

List

18.

ry
at

Llk

og
nt

Character

string

+

SEC. 6.2 BASIC TERMINOLOGY 287

The problem oí finding longest common SUbeequences oí two strings, and its
solution by & "dynamic programming," or table-filling, algorithm (Section 6.9).

+

A list is a finite sequence of zero or more elernenta. If the elements are all of type
T, then we say that the type of the list is "Iist of T." Thus we can have lists of
integers, lists of real nurnbers, lists of strudures, lists of lists of integers, and 80 on.
We generally expect the elernents oí a list to be of some ORe type. However, since
a type can be the union of severa! types, the restriction to a single "type" can be
circumvented .

A list is often written with ita elementa sepal'ated by commas and enclosed in

parentheses:

(al,a2,.. .,an)

where the ai's are the elements of the list.
In sorne situations we shall not show cornmas or parentheses explicitly. In

particular, we shall study charocter siringa, which are lists oí characters. Character
strings are generally written with no cornrna or other separating marks and witb no
surrounding parentheses. Elements of character strings will normally be written in
typewriter font. Thus too is the list of three characters oí which the first is t and
the second and third are o.

Example 6.1. Here are some examples of lists.

l. The list of prime numbers leM tban 20, in order of gire:

(2, 3, 5, 7, 11, 13, 17, 19)

2. Tbe list of noble gasses, in order of atomic weigbt:

(helium, n«)n, argon, krypton, xenon, radon)

3. The list of the numbers of days in tbe months of a non-leap year:

(31, 28,31, 30, 31, 30, 31, 31, 30, 31, 30, 31)

As this example reminda us, the BalDe element can appear more than once on &
listo +

Example 6.2. A line of text is another example of a listo The individual charac-
ters making up the line are the elements of this list, 80 the list is a character string.
Tbis character string usually includes several occurrences of the blank character,
and normally the last character in a line of ten is the "newline" character.

As another example, a document can be viewed 88 & listo Here tbe elements
of the list are the liDes of texto Thus a document is a list wh~ elements that are
tbemselves lista, character strings in particular. +

288 THE LIST DATA MODEL

+ Example 6.3. A point in n-dimensionalspace can be represented by a list oí n
real numbers. For example, the vertices oí the unit robe can be represented by the
triples shown in Fig. 6.1. The three elements on each list represent the coordinates
oí a point that is one oí the eight corners (or "vertices") oí the cube. The first
compooeot represents the z-coordinate (horizontal), the second represents the y-
coordinate (ioto the page) , and the third represeots the z-coordinate (vertical).
+

Fig. 6.1.

The Length oí a List

Tbe length oí a list is tbe number oí occurrences oí" elements on the listo If the
number oí elements is zero, then the list is said to be empty. We use the Greek
letter l (epsilon) to represent the empty listo We can also represent the empty list
by a pair oí parentbeses surrounding nothing: (). It is important to remember that
lengtb counts positions, not distinct symbols, and 80 a symbol appearing k times
on a list adds k to the length oí the listo

Empty list

Example 6.4. The length of list (1) in Example 6.1 is 8, and the length of list
(2) is 6. The length of list (3) is 12, since there is one position for each month. The
fact that there are only three different numbers on the list is irrelevant as far as the
length of the list is concerned. +

+

Parts of a List

Head and tail of Ir a list is not empty, then it consists of a first element, called the head and the
remainder of the list, called the tail. For instance, the head of list (2) in Example
6.1 is helium, while the tail is the list consisting oí the remaining five elements,

(neon, argon, krypton, xenon, radon)

a list

,.1 '~ ~ ~ !!C~,.i }[u ~,,- """'""

(Q,l.ij .. :.:':;t~ j,., ~J;,tt 11)A'" , ,
'i. '

".

(0,0.1..,

)1,0)

(, ,

Sui

Su!

The vertices af the unit cube represented as triples.

PrE

sufl

Sublist

Subsequence

+ Example 6.5. Let L be the character string abc. The sublists of L are

l, a, b, C, ab, bc, abc

These are &11 SUbeequences of L as weIl, and in addition, ac is a SUbeequence, but
not a sublist.

For another example, let L be the character string abab. Then the sublists are

l, a, b, ab, ba, aba, bab, abab

These are &1eo subeequences of L, and in addition, L has tbe 8Ubeequences aa, bb,
aab, and abb. Notice tbat a character string like bba Í8 not'a subsequence of L.
Even though L has two b's and an a, they do not appear in such an arder in L
that we can forro bba by striking out elements of L. That Í8, there is no a after the
eecond b in L. +

Preflx and
8ufflx

+ Example 6.6. Tbe prefixes of tbe list abc are l, a, ab, and abc. Its suffixes are
l, C, bc, and abc. +

SEC. 6.2 BASIC TERMINOLOGY 289

Elements and Lists of Length 1

It is important to remember tbat tbe bead of a list is an element, wbile tbe tail of
a list is a listo Moreover, we sbould not confuse the bead of a list - saya - witb
the list of lengtb 1 containing only tbe element a, wbich would normally be written
with parentbeses as (a). Ir the element a is of type T, tben tbe list (a) is of type
"list of T."

Failure to recognize the difference leads to programrning errors wben we irn-
plernent lista by data structures. For example, we mar represent lists by linked
cells, wbich are typically structures with an el..ent field of BOrne type T, holding
an element, and a n.xt field holding a pointer to the next cell. Then elernent a is
of type T, wbile tbe list (a) is a cell witb el_ent field holding a and next field
holding NULL.

H L = (al, a2,..., an) is a list, then for any i and j such that 1 $ i $ j $ n,
(4i, 4i+l, . . . ,aj) is &&id to be a sublist of L. That is, a sublist is formed by starting
at some ~ition i, and taking all the elements up to some position j. We a1so say
that (, the empty list. is a sublist of any listo

A ..ubsequence of the list L = (al. a2. an) is a list formed by striking out
zero or more elements oí L. The remaining elements, which forro the subsequence,
must appear in the SalDe order in which they appear in L, but the elements of the
8ubsequence need not be consecutive in L. Note that (and tbe list L itself are
always 8Ubsequences, as well as sublists, of L.

A prefir oí a list is any sublist that starts at the beginning oí the listo A 8Uffi:r:
is a sublist that tennÍDates at the end oí the listo As special ~I we regard ~ as

of any listoboth a prefix and a suffix

290 THE LIST DATA MODEL

Car and Cdr
In the programming language Lisp, the head is called the car and the tail is called
the cdr (pronounced "cudder"). The terms "car" and "cdr" arose from the names
given to two fields of a machine instruction on an IBM 709, the computer on which
Lisp was first implemented. Cal stands for "contents of the address register ," and
cdr stands for "contents of the decrement register." In a sense, memory words
were seen as cells with eleaent and next fields, corresponding to the cal and cdr,

respectively.

The Position of an Element on a List

Each element on a list is associated with a position. If (al, a2, o o ., an) is a list and
n ~ 1, then al is said to be first element, a2 the second, and so on, with an the last
elemento We also say that element aí occurs at position io In addition, oi is said
to follow aí-l and to precede Oi+l' A position holding element a is said to be an
occurrence oí a.

The number oí positions on a list equals the length of the listo It is possible
for the same element to appear at two or more positionso Thus it is important not
to confuse a position with the element at that positiono For instance, list (3) in
Example 6.1 has twelve positions, seven of which hold 31 - namely, positions 1, 3,

5, 7, 8, 10, and 120

Occurrence of

sn element

EXERCISES

6.2.1: Answer the foUowing questions about the list (2,7,1,8,2).

a) What is the length?
b) What are all the prefixes?
c) What are all the suffixes?
d) What are all the sublists?
e) How many subsequences are there?
f) What is the head?
g) What is the tail?
h) How many positions are there?

6.2.2: Repeat Exercise 6.2.1 for the character string banana.

6.2.3..: In a liet of length n ~ O, what are the largest and smallest pO8Sible
numbers of (a) prefixes (b) sublists (c) subsequences?

6.2.4: If the tail of the tail of the list Lis the empty list, what is the length of L?

6.2.5.: Bea Fuddled wrote a list whose elements are themselves lista of integers,
but omitted the parentheses: 1,2,3. There are many lists oí lists that could have
been represented, such as «(1),(2,3)). What are all the possible lista that do not
have the empty list as an element?

..".... 6.3

Sorting and

merging

I

t

t

1

~

t
,

...

SEC. 6.3 OPERATIONS ON LISTS 291

ListsOperations on
A great variety of operations can be perfonned on lista. In Chapter 2, when we
discu88ed merge IOn, t.he basic problem was to IOn a list, but we also needed to
split a list into two, and to merge two sort.ed lista. Fonnally, t.he operation of
3orting a list. (a}, a2,. . ., an) amounta to replacing the list with a list consisting of
a permut.ation of it.s elemente, (6},62,.. .,6n), such t.hat. 6} 5 ~ 5 ... 5 6n. Dere,
as before, 5 repreeenta an ordering of t.he elementa, such as "leas t.han or equal to"
on int.egers or reals, or lexicographic order on st.rings. The operat.ion of merying
t.wo sorted lista consiste of const.ruct.ing from t.hem a sort.ed list. cont.aining t.he same
elementa as t.he t.wo given lista. Mult.iplicity must. be preserved; t.hat is, if there are
k occurrences of element a among the t.wo given lista, t.hen the result.ing list. has k
occurrences of a. Review Sect.ion 2.8 for examples of these two operations on lista.

Insertion, Deletion, and Lookup
Recall from Section 5.7 that a "dictionary" is a set of elementa on which we perform
the operations in8ert, delete, and lookup. There is an important difference between
sets and lists. An element can never appear more than once in a set, although, as
we have seen, an element can appear more than once on a listj this and other issues
regarding seta are discussed in Chapter 7. However, lista can implement seta, in
the sense that the elements in a set {al, a2, . . ., an} can be placed in a list in any
order, for example, the order (a1,a2,.' .,an), or the order (an,an-1,'. .,a1)' Thus
it should be no surprise that there are operations on lista analogous to the dictionary
operations on seta.

l. We can insert an element % onto a list L. In principie, % could appear anywhere
on the list, and it does not matter if % already appears in L one or more times.
We insert by adding one more occurrence of %. As a special case, if we make %
the head oí the new list (and therefore make L the tail), we 8&Y that we pulh
% onto the list L. IfL = (al,'. .,an), the resulting list is (%,a1,'. .,a..).

2. We can dele te an element % from a list L. Here, we delete an occurrence of %
from L. If there is more than one occurrence, we could specify which occurrence
to deletej for example, we could always delete the first occurrence. Ir we want
to delete all occurrences of %, we repeat the deletion until no more %'s remain.
Ir % is not present on list L, the deletion has no effect. As a special case, if
we delete the head element of the list, 80 that the 1ist (%, al, . . . , an) becomes
(al, . . ., a..), we are said to pop the listo

3. We can lookup an element % on a list L. This operation returns !RUS or FALSE,
depending on whether % is or is not an element on tbe listo

Example 6.7. Let L be tbe list (1,2,3,2). Tbe result of in8ert(1, L) could be
tbe list (1,1,2,3,2), if we ch~ to pusb 1, tbat is, to iD8ert 1 at tbe beginning. We
could also insert the new 1 at the end, yielding (1,2,3,2,1). Alternatively, tbe new
1 could be placed in any of three ~itioD8 interior to the list L.

The result of delete(2, L) is tbe list (1,3,2) if we delete tbe first occurrence of
2. If we ask lookup(z, L), tbe answer is TRUB if z is 1, 2, or 3, but FALSE if z la any
otber value. ..

292 THE LIST DATA MODEL

Concatenation
We concatenate two lista L and M by forming the list that begins with the elements
of L and then continues with the elements of M. That is, if L = (al, a2, o .., an)
and M = (bl, b2,' 0.' bk), then LM, the concatenation of L and M, is the list

(al,a2,00.,an,b1,b2,...,bk)
Note that the empty list is the identity for concatenationo That is, for any list L,
we have EL = LE = L.

Example 6.8. If Lis the list (1,2,3) ud M is the list (3,1), then LM is the list
(1,2,3,3,1)0 If L is the character string dog and M is the character string house,
then LM is the character string doghouBe. ...

Other List Operations
Another family of operations on lists refers to particular positions of the listo For

example,
a) The operation jirst(L) returns the first element (head) of list L, and last(L)

returns the last element of L. Both cause an error if L is an empty listo

b) The operation retrieve(i, L) retums the element at the ith position of list Lo
It is an error if L has length less than io

There are additional operations that involve the length of a listo Some common

operations are:

c) length(L), which returns the length oflist Lo

d) isEmpty(L), which returns TRUE if Lis an empty list ud returns FALSE if noto
Similarly, isNotEmpty(L) would return the oppositeo

Identity for
concatenation

.

First snd last of
lists

Retrieve

isEmpty

EXERCISES

6.3.1: Let L be the list (3,1,4,1,5,9).

a) What is the value of delete(5, L)?
b) What is the value of delete(l, L)?
c) What is the result of popping L?
d) What is the result of pushing 2 anta list L?
e) What is retumed if we perform lookup with the element 6 and list L?
f) If M is the list (6,7,8), what is the value oc LM (the concatenation of L and

M)? What is M L?
g) What is jirst(L)? What is lost(L)?
h) What is the result of retrieve(3, L)?
i) What is the value of length(L)?
j) What is the value of isEmpty(L)?

6.3.2**: If L and M are lista, under what conditions is LM = M L?

6.3.3**: Let z be an element and L a listo Under what conditions are the following
equations true?

+:+ 6.4 The

SEC. 6.4 THE LINKED-LlST DATA STRUCTURE 293

.,
b)
c)
d)

in.ert(%, L»= L
ddeie(%, L)) = L

delefe(z,
in8ert(ZI
firlt(L) = retrieve(l, L)
101t(L) = retrieve(lengtl L)

-List Data StructureL

The easiest way to implement a list is to use a linked list of cells. Each cell consists
of two fields, one containing an element. of the list., the ot.her a pointer to the next.
cell on t.he linked list.. In t.his chapter we shall make t.be simplifying assumption t.hat
elements are integers. Not only mar we use the specific type int for the type of
elements, but we can compare elements by t.be standard compariaon operators =, <,
and 80 oo. Tbe exercises invite tbe reader to develop variante of our functions that
work for arbitrary types, where compariaons are made by uaer-defined functions
such as eq to test equality, lt(z, y) to test if z precedes y in some ordering, and 80
oo.

In wbat follows, we sball use our macro from Section 1.6:

DefCell(int. CELL. LIST);

which expande into our standard structure for cells and lists:

tYpe4ef struct CELL .LIST;
atruct CELL {

int el..ent;
LIST nen;

r;

Note that LIST is the type of a pointer to a cell. In effect, the next field of each
cell pointa both to the next cell and to the entire remainder of the listo

Figure 6.2 shows a linked list that representa the abstract list

L=(Ol,O2,...,an)

There is one cell for each element; the element Oí appears in the eleaent field of the
ith cell. The pointer in the ith ceU points to the (i + l)st cell, for i = 1,2,. . ., n -1,
and the pointer in the last cell is WLL, indicating the end of the listo Outside the
list is a pointer, named L, that points to the first cell of the list; L is of type LIST.
If the list L were empty, then the value o(L would be ROLL.

L [~I~~~3.--"'{~~I~3 . . . --"[~~I~]

FiS. 8.2. A 6nked list .~..-~ tJJe Iist L = (al,~ , G,.).

Implementation ol Dictionary Operations by Linked Lists

Let us consider how we can implement the dictionary operations ir we represent the
dictionary by a linked listo The following operations on dictionaries were defined in
Section 5.7.

294 THE LIST DATA MODEL

Lists and Linked Lists
Remember that a list is an abstract, or mathematical modelo The liDked list is a
simple data structure, which was meDtioDed iD Chapter l. A linked list is one way
to implement the list data model, although, as we shall see, it is Dot the oDly way.
At aDY rate, this is a good time to remember once more the distinctioD between
modela and the data structures that implement them.

l. insert(z, D), to insert elemeDt z joto dictioDary D,

2. delete(z, D), to delete element z from dictioDary D, and

3. lookup(z, D), to determine whether element z is iD dictionary D,

We shall see that the liDked list is a simpler data structure for implemeDtiDg dic-
tioDaries than the biDary search tree that we discussed iD the previous chapter.
However, the runniDg time of the dictioDary operatioDs wheD USiDg the linked-list
represeDtatioD is Dot as good as wheD USiDg the biDary search tree. ID Chapter 7 we
shall see an even better implemeDtation for dictioDaries - the hash table - which

makes use, as subroutines, of the dictioDary operations OD lists.
We shall &88ume that our dictioDary coDtains iDtegers, and cells are defiDed as

they were at the begiDDiDg of this section. Then the type of a dictionary is LIST,
alBO as defined at the begiDDiDg of this sectiOD. The dictionary containing the set of
elements {al, a2, . . . , an} could be represented by the liDked list of Fig. 6.2. There
are many other lista that could represent the same set, since order of elements is
not important in sets.

Lookup
To pedorro lookup(x, D), we examine each cell of the list representing D to see
whether it holds the desired element Xo If so, we ieturn TRUE. Ir we reach the end
of the list without finding x, we return FALSEo As before, the defined constants
TRUE and FALSE stand for the constants 1 and O, and BOOLEAll for the defined type
into A recursive function lookup(x.D) is shown in Figo 6.3.

BOOLEAN lookup(int x. LIST L)
{

if (L = IULL)
return FALSE;

el.e if (x = L->el..ent)
return TRUE;

e1.e
return lookup(x. L->next);

}

Fig. 6.3. Lookup on a linked listo

If the list has length n, we claim that the function of Fig. 6.3 takes O(n) time.
Except for the recursive call at the end, lookup takes 0(1) time. When the call is

SEC. 6.4 THE LINKED-LIST DATA STRUCTURE 295

made, the length of the remaining list is 1 less than the length of the list L. Thus
it should surprise no one that 1ookup on a list of length n takes O(n) time. More
formally, the following recurrence relation gives the running time T(n) of 1ookup
when the list L pointed to by the second argument has length n.

BASIS. T(O) is 0(1), because there is no recursive call when L is IULL.

INDUCTION. T(n) = T(n - 1) + 0(1).

The solution to this recurrence is T(n) = O(n), as we saw several times in Chapter
3. Since a dictionary of n elements is represented by a list of length n, lookup takes
O(n) time on a dictionary of size n.

Unfortunately, the average time for a successfullookup is also proportional to
n. For if we are looking for an element x known to be in D, the expected value of
the position of x in the list is (n+ 1)/2. That is, x could be anywhere from the first
to the nth element, with equal probability. Thus, the expected number of recursive
calls to 1ookup is (n + 1)/2. Since each takes 0(1) time, the average successful
lookup takes O(n) time. Oí course, if the lookup is unsuccessful, we make all n
calls before reaching the end of the list and returning FALSE.

Deletion
A function to delete an element x from a linked list is shown in Fig. 6.4. The second
parameter pL is a pointer to the list L (rather than the list L itself). We use the
"call by reference" style here because we want de1ete to remove the cell containing
x from the listo As we move clown the list, pL holds a pointer to a pointer to the
"current" cell. If we find x in the current cell C, at line (2), then we change the
pointer to cell C at line (3), so that it points to the cell following C on the listo If
C happens to be last on the list, the Corroer pointer to C becomes IULL. If x is not
the current element, then at line (4) we recursively delete x from the tail of the listo

Note that the test at line (1) causes the function to return with no action if
the list is empty. That is because z is not present on an empty list, and we need
not do anything to remove x from the dictionary. If D is a linked list representing
a dictionary, then a call to de1ete(x. t;D) initiates the deletion of x from the

dictionary D.

yoid de1ete(int x. LIST *pL)
{

(1) i.t «*pL) != IULL)
(2) i.t (x == (*pL)->e1eaent)
(3) (*pL) = (*pL)->next;

e18e
(4) de1ete(x. .«*pL)->next»;

}

Fig. 6.4. Deleting an elemento

If the element x is not on the list for the dictionary D, then we run clown to
the end of the list, taking 0(1) time for each elemento The analysis is similar to

296 THE LIST DATA MODEL

that for the lookup function of Fig. 6.3, and we
Thus the time to delete an element not in D is
in the dictionary D, then, on the average, we
listo Therefore we search (n + 1)/2 cells on the
successful deletion is alBO O(n).

Insertion
A function to insert an element x into a linked list is shown in Fig. 6.5. To insert
X, we need to check that X is not already on the list (if it is, we do nothing). Ir X
is not already present, we must add it to the listo It does not matter where in the
list we add x, but the function in Fig. 6.5 adds x to the end of the listo When at
line (1) we detect the NULL at the end, we are therefore sure that x is not already
on the listo Then, liDes (2) through (4) append x to the end of the listo

Ir the list is not NULL, line (5) checks for x at the current ceno Ir x is not there,
line (6) makes a recursive call on the tail. Ir x is found at line (5), then function
insert terminates with no recursive call and with no change to the list L. A call
to insert(x. I;D) initiates the insertion of x into dictionary D.

void in8ert(iD~ x.

{
(1)
(2)
(3)

,.(4)

(5)
(6)

}

As in the case of lookup and deletion, if we do not find x on the list, we travel to
the end, taking O(n) time. If we do find x, then on the average we travel halfwayl
down the list, and we still take O(n) time on the average.

A Variant Approach with Duplicates

We can make insertion run rastel if we do not check for the presence of z on the
list before inserting it. However, as a consequence, there mar be several copies oí
an element on the list representing a dictionary.

To execute the dictionary operation insert(z, D) we simply create a new cell,
put z in it, and push that cell onto the front of the list for D. This operation takes
0(1) time.

The lookup operation is exactly the &ame as in Fig. 6.3. The only nuance is
that we mar have to search a longer list, because the length of the list representing
dictionary D mar be greater than the number of members of D.

In the Collowing analyaes, we .hall U8e tenns like "halC~" or "n/2" when we mean the
middle of a list oC length n. Strictly apeaking, (n + 1)/2 is more accurate.

leave the details for the reader.
) if D has n elements. Ir z is

encounter z halfway down the
and the running time of aaverage,

LIST .pL)

if «*pL) = NULL) {
(*pL) = (LIST) aalloc(aizeof(atruct CELL»;
(*pL)->element = x;
(*pL)->next = NULL;

}
C.pL)->el..ent)
tCC.pL)->next»;

81a8 if (x !=

inaert(x.

Fig.6.5.

SEC.6.4 THE LINKED-LIST DATA STRUCTURE 297

Abstraction Versus Implementation Again

It mar be surprising to lee us using duplicates in lists that rep~t dictionari~,
since the abstract data type mCfIONARY is defined as a set, and sets do not have
duplicates. However, it is not the dictionary that has duplicates. Rather the data
structure implementing the dictionary is a!lowed to have duplicates. But even when
z appears severa! times on a linked list, it is only present once in the dictionary
that the linked list represents.

Deletion is slightly differeot. We cannot stop our search for z wheo we eo-
counter a cell with element z, because there could be other copies of z. Thus we
must delete z from the tail of a list L, even wheo the head of L cootains z. As a
result, not ooly do we have looger lista to conteod with, but to achieve a successful
deletion we must search every cell rather than an average of half the list, as we
could for the case io which no duplicates were allowed on the listo The details of
these versions of the dictionary operations are left as an exercise.

lo summary, by allowiog duplicates, we make iosertioo rastel, 0(1) instead of
O(n). However, successful deletioos require search ofthe entire list, rather than an
average of hall the list, and for both lookup and deletioo, we must contend with lista
that are longer than when duplicates are not allowed, altbough how much looger
dependa on howoften we insert an element that is already present in the dictionary.

Which method to choose is a bit subtle. Clearly, if insertioos predominate, we
should allow duplicates. lo the extreme case, where we do only inaertioDS but Dever
lookup or deletion, we get performance of 0(1) per operation, iostead of 0(n).2 If
we can be Bufe, for some reasoo, that we shall oever insert an element already io
the dictionary, then we can use both the fut inaertioo and the fut deletioo, where
we stop wben we find ooe occurrence of the elemeot to be deleted. 00 the other
hand, if we may insert duplicate elelheots, and lookups or deletioos predominate,
then we are best off checking for tbe p~nce of z before inserting it, as in tbe
insert function of Fig. 6.5.

Sorted Lists to Represent Dictionaries

Another alternative is to keep elements sorted in increasing arder on the list repre-
senting a dictionary D. Then, if we wish to lookup element %, we have only to go as
far as the position in which % would appearj on the average, that is halfway down
the listo If we meet an elemeot greater than %, then there is no hope of fioding z later
in the listo We thus avoid goiog all the way down the list 00 unsuccessful 8eardles.
That saves us about a factor of 2, aJthough the exact factor is somewhat clouded
because we have to ask whether z follows in sorted arder each of the elements we
meet on the list, which is an additionaJ step at each cell. However, the sarne factor
in savings is gained on unsuccessful searches during iD8ertion and deletion.

A lookup function for sorted lists is shown in Fig. 6.6. We leave to the reader
the exerciae of modifying the functions of Figs. 6.4 and 6.5 to work on sorted lists.

298 THE LIST DATA MODEL

BOOLEAN lookup(int x. LIST L)
{

if (L == NULL)

return FALSE;
.1.. if (x> L->.l...nt)

return 100kup(x, L->next);
e18e if (x == L->element)

return TRUE;
e18e /* here x < L->element, and 80 x could not be

}

Fig. 6.6.

Comparison oí Methods

The table in Fig. 6.7 indicates the number oí cells we must search íor each oí
the three dictionary operations, íor each oí the three list-based representations oí
dictionaries we have discussed. We take n to be the number of elements in the
dictionary, which is alBO the length of the list ií no duplicates are allowed. We use
m íor the length oí the list when duplicates are allowed. We know that m ~ n, but
we do not know how much greater m is than n. Where we use n/2 -+ n we mean
that the number oí cells is an average oí n/2 when the search is successful, and n
when unsuccessíul. The entry n/2 -+ m indicates that on a successfullookup we
shall see n/2 elements oí the dictionary, on the average, before seeing the one we
want,3 but on an unsuccessful search, we must go all the way to the end oí a list oí
length m.

Notice tbat all oc tbese running times, except Cor insertion witb duplicates,
are worse tban tbe average running times Cor dictionary operations wben the data
structure is a binary search tree. As we saw in Section 5.8, dictionary operations
take only O(logn) time 00 tbe average wheo a binary searcb tree is used.

.f, In fact, aince the~ may be duplicates, we may have to examine somewhat more than "/2
celJa before we can expect to 8ee "/2 diffe~nt elementa.

liat L ./on the 8orted
return FALSEi

Lookup on a lOrted list.

lNSERr DELETE LOOKUP
No duplicatea n/2-+ n _/2 -+ n n/2 -+ n
Duplicates O m n/2 -+ m

Sorted n/2 n/2 n/2

SEC. 6.4 THE LINKED-LIST DATA STRUCTURE 299

J udicious Ordering of Tests

Notice the order in which the three testa of Fig. 6.6 aI'e made. We have no choice
but to test that L is not RUIJ. first, since if L is RUIJ. the other two tests will cause
an error. Let 1/ be the value of L->el.ent. Then in all but the last cell we visit,
we shall have z < y. The reaaon is that if we have z = 1/, we terminate the lookup
successfully, and if we have z > 1/, we terminate with failure to find z. Thus we
make the test z < 1/ first, and only if that fails do we need to separate the other
two cases. That ordering of tests follows a general principie: we want to test for the
most common cases first, and thus save in the total number of tests we perform, on
the average.

If we visit k cells, then we test k times whether L is RUIJ. and we test k times
whether z is less than 1/. Once, we shall test whether z = y, making a total of
2k + 1 tests. That is only one more test than we make in the lookup function of
Fig. 6.3 - which uses u~rted lista - in the c~ that t,he element z is found. If
the element is not found, we shatl expect to use many fewer tests in Fig. 6.6 than
in Fig. 6.3, because we can, on the average, stop after examining only half the cells
with Fig. 6.6. Thus atthough the big-oh running times of the dictionary operations
using either sorted or unsorted lists is O(n), there is usually a slight advantage in
the constant factor if we use sorted lista.

Doubly Linked Lists

In a linked list it is not easy to move from a cell toward the beginning of the listo
The doubly linked list is a data stmcture tbat facilitates movement botb forward
and backward in a listo Tbe cells of a doubly linked list of integers contain tbree
fields:

tJpdef struct CELL
struct CELL {

LIST pr..ioU8;
int el_ent;
LIST next;

.LIST ;.

};

The additional field contains a pointer to the previoua cen on the listo Figure 6.8
shows a doubly linked list datastructure that represents the list L = (al. a2. an).

:;:::~~~~I~I~JL

thelist L=(al,a2 ,a,.).Fig. 6.8.

Dictionary operatioos on a doubly linked list structure are essentially tbe same
as tb~ on a singiy linked list. To see tbe advantage oí doubly linked lista, coosider
tbe operation oí deleting an element 4i. given only a pointer to tbe ce)) containing
tbat elemento Witb & singly linked list, we would bave to find tbe previou8 cell by
searching tbe list írom tbe beginning. Witb a doubly linked list, we can do tbe task
in 0(1) time by a sequence oí pointer manipulatioos, as shown in Fig. 6.9.

300 THE LIST DATA MODEL

void delete(LIST p, LIST .pL)
{

/. p is a pointer to the cell to be deleted,
and pL points to the list ./

if (p->next ! = NULL)
p->next->previous = p->previous;

it (p->previous == NULL) /. p points to tirat cell ./
(.pL) = p->next;

else
p->previous->next = p->next;

(1)
(2)
(3)
(~)

(5)
}

The function delete(p.pL) shown in Fig. 6.9 takes as arguments a pointer p
to the cell to be deleted, and pL, which is a pointer to the list L itself. That is,
pL is the address of a pointer to the first cell on the listo In line (1) of Fig. 6.9 we
check that p does not point to the last cell. Ir it does not, then at line (2) we make
the backward pointer of the following cell point to the cell before p (or we make it
equal to BULL if p happens to point to the first cell).

Line (3) tests whether pis the first cell. If so, then at line (4) we make L point
to the second cell. Note that in this case, line (2) has made the previou8 field of
the second cell NULL. Ir p does not point to the first cell, then at line (5) we make
the forward pointer of the previous cell point to the cell following p. That way, the
cell pointed to by p has effectively been spliced out of the list; the previous and
next cells point to each other.

EXERCISES
.

6.4.1: Set up the recurrence relations Cor the running times oC (a) delete in Fig.
6.4 (b) insert in Fig. 6.5. What are their solutions?

6.4.2: Write C Cunctions Cor dictionary operations insert, lookup and delete using
linked lists witb duplicates.

6.4.3: Write C functions for insert aod delete, using sorted lista as in Fig. 6.6.

6.4.4: Write a C function tbat inserts an element z into a new cell tbat follows
the cell pointed to by p on a doubly linked listo Figure 6.9 is a similar function for
deletion, but for insertion, we don't need to koow the list header L.

6.4.5: If we use tbe doubly linked data structure for lista, ao option is to represent a
list not by a pointer to a cell, but by a cell with the element field unused. Note that
this "header" cell is not itself a part of the listo The next field of the header points
to the first true cell of the list, and the previous field of the first cell points to the
header cell. We can then delete the cell (not the header) pointed to by pointer p
without koowing the header L, as we needed to know in Fig. 6.9. Write a C function
to delete from a doubly linked list using the format described here.

6.4.6: Write recursive functions for (a) retrieve(i, L) (b) length(L) (c) last(L)
using the linked-list data structure.

Deleting a ceO from a doubly linked listoFig.6.9.

..".... 6.5 Array-Based Implementation of Lists

SEC.6.5 ARRAY-BASED IMPLEMENTATION OF LISTS 301

ing functions to cells wit.h an arbitrary t.ype BTYPE
~,y) to test if z and y are equal and lt(z, y) to te"
the elemeots of EnPE.

6.4.7: Extend each of tbe foUc
for elementa, using functions e.
if z precedes y in an ordering 4

a)
b)
c)
d)
e)

lookup 88 in Fig. 6.3.
delete as in Fig. 6.4.
insert as in Fig. 6.5.
insert, delde, ud lookup using lista with duplicates.
insert, delete, and lookup using sorted lists.

Anotber common way to implement a list Í8 to create a structure consisting oí

l. An array to bold tbe elements and

2. A variable length to keep track oí the count of the number oí elements currently
in the listo

Figure 6.10 shows how we might rep~nt the list (Oo. al. Gn-I) using ao anay
A[O. .RAX-1]. Elements ao. al,'..' an-1 are stored in A[O. .D-1] , aod length = n.

. o ao

1 41

.. .

a"'- 1 ~-1'

l e 't ~ :
M ,aV: t ..-,-,.,rLA'- fi. .'

The alTaY 1 holding the list (00,01,...,0,,-1),Fig. 6.10.

As in the previous section, we 888ume that list elements are integers and invite
the reader to generalize the functions to arbitrary types. The structure declaration
for tbia array-baeed implementation of lists is:

tJpedef .trtlct {
int A [XAX] ;
int length;

} LIST;

302 mE LIST DATA MODEL

Here, LIST is a structure oí two fieldsj tbe first is an array A tbat sto~ tbe elements,
the second an integer lengtb tbat contains tbe number oí elements currently on
tbe listo Tbe quantity IIAI is a user-defined constant tbat bounds tbe number of
elements tbat will ever be stored on tbe listo

The array-based repreaentation of lista is in many ways more convenient tban
the linked-list representation. It does suffer, bowever, from the limitation tbat lista
cannot grow longer than the array, wbich can cause an insertion to fail. In tbe
linked-list repreaentation, we can grow lista as long as we bave available computer

memory.
We can perform the dictionary operations on array-based lista in rougbly tbe

same time as on lista in the linked-list representation. To insert x, we look for x,
and if we do not find it, we check wbetber length < M AX. If not, tbere is an error
condition, as we cannot lit the new element into tbe arfar. Otberwise, we atore x
in A [lengtb] and tben increase length by 1. To delete x, we again lookup x, and if
found, we shift aIl following elements of A clown by one position; tben, we decrement
length by 1. Tbe details of functions to implement insert and delete are left as
exercises. We shall concentrate on tbe details of lookup below.

Lookup with Linear Search

Figure 6.11 i. a (unction tbat implements tbe operation lookup. Becauae tbe array
A may be large, we ch~ to pass a pointer pL to tbe structure o(type LIST as a
formal parameter to lookup. Witbin the function, tbe two fielda of tbe structure
can tben be referred to as pL->A[i] and pL->length.

Starting witb i = O, tbe (or-loop o(liDes (1) to (3) examines each location o(
tbe array in turn, until it either reaches tbe last occupied location or linda %. If it
finda %, it retorna TaO. If it has examined eacb element in tbe list without finding
%, it retorna FALSE at line (4). Tbis metbod o(lookup is called linear or sequential
searcb .

BOOLEAB lookup(int x,
{

int i;

(1)
(2)
(3)
(4)

for (i = o; i < pL->length;

if (x = pL->A[i)

return TRUB;

return FALSE;

}

It is easy to ~ that., on the average, we 8earcl1 halfthe array A[O. .leDgth-1]
before finding z if it is presento Thus letting n be the value of length, we take
O(n) time to perform a lookup. If z is not preeent, we aearch the whole array
A [O. .length-1] , again requiring O(n) time. This performance is the &ame as for
a linked-list rep~ntation of a listo

LIST .pL)

i++)

Fig. 6.11.

SEC.6.5 ARRAY-BASED IMPLEMENTATION OF LISTS 303

The Importance of Constant Factors in Practice

Throughout Chapter 3, we emphasized the importante of big-oh measures of run-
ning time, and we mar have given the impression that big-oh is all that matters
or that any O(n) algorithm is as good as any other O(n) algorithm for the same
job. Yet hete, in our discussion of sentinels, and in other sections, we have exam-
ined rather carefully the constaot factor hidden by the O(n). The reason is simple.
While it is true that big-oh measures of running time dominate constant factors, it
is alao true that everybody studying the subject learns that fairly quickly. We learn,
for example, to use an O(nlogn) running time sort whenever n is large enough to
matter. A competitive edge in the performance of software frequently comes from
improving the constaot factor in an algorithm that already has the right "big-oh"
running time, and this edge frequently translates into the success or failure of a
commercial software producto

with SentinelsLook
We can simplify the cacle in the rol-loop of Fig 6.11 and Speed up the program
by temporarily inserting z at the end oí the listo This z at the end of the list is
called a .entinel. Tbe t«bnique was first mentioned in a box on "More Defensive
Programming" in Section 3.6, and it has an important application here. Aasuming
that there always is an extra slot at tbe end oí the list, we can use the program in
Fig. 6.12 to search ror z. The running time oí the program is still O(n), but the
constant oí proportionality is smaller because the number oí machine instructions
required by tbe body and teBt of tbe loop will typicalIy be smaller for Fig. 6.12 tban
for Fig. 6.11.

BOOLEAl' ookup(iD't z, LIST .pL)

{
1nt 1;

(1)
(2)
(3)
(4)
(5)

pL->A[pL->l8D¡t;h] = Xi

i = O;

_hile (x != pL->A[1])

i++;
retan (1 < pL->length);

)

F\mction tbat doea lookup witb a eentinel.Fig.6.12.

The sentinel is placed just beyond the list by line (1). Note tbat since length
d~ not change, tbis z is not really part oí the listo The loop oí liDes (3) and (4)
increases i until we find z. Note that we are guaranteed to find z even if the list
is empty, because oí the sentinel. Aíter finding z, we test at line (5) whether we
have íound a real occurrence oí z (tbat is, i < length), or whetber we have íound
the sentinel (that is, i = length). Note that if we are using a sentinel, it is eaential
that length be kept strictly leas than MAX, or else tbere will be no place to put the
sentinel.

304 THE LIST DATA MODEL

Lookup 00 Sorted Lists with Bioary Search

Suppose Lis a list in which the elements ao, al,..., an-l have been sorted io 000-
decreasing order. Ir the ~rted list is stored in an array &[0. .n-1], we can speed
lookups coosiderably by using a technique known as binary sean:h. We must first
find the index m of the middle element; that is, m = L(n -1}/2J.4 Then we com-
pare element z with A[m]. Ir they are equal, we have found z. Ir z < A[m], we
recursively repeat the search on tbe sublist &[0. .8-1]. Ifz > A[m], we recursively
repeat tbe search on tbe sublist J. [8+1. . n-1]. Ir at &Oy time we try to search an
empty list, we report failure. Figure 6.13 illustrates the division proceM.

The cacle for a function 6insearch to locate z in a aorted array A is shown in
Fig. 6.14. The function uses the variables lo. .and high for the lower and upper
bounds of the range in which z might lie. Ir the lower range exceeds the upper, we
have failed to find z; the function terminates and retorna FALSE.

Otherwise, 6in6earch computes the midpoint of the range, by

mid = L(low + high)f2J

Then the function examines A[midJ, the element at the middle of the range, to
determine whether z is there. Ir not, it continues the search in the lower or upper
half of the range, depending on whether z is lea than or greater than A[midJ. This
idea generalizes the division suggested in Fig. 6.13, where low was O and high was
n-l.

The function bin.8arcb can be proved correct using the inductive assertion
that if z is in the array, then it must lie within the range A [lo.. . bighJ. The proaf
is by induction on the difference high -low and is left. as an exercise.

At each iteration, 6insearch either

1. Finds the element z when it reaches line (8) or

The nota&ion tajo the floor of 4, i. the inteser part of a. Thu. l6.5J = 6 and l6J = 6.
Also, ralo the ceilin9 of a, i. the .mallest inteler ¡reater than or equal to 4. For in.tance,
r6.5l = 7 and f61 = 6.

4

A
o ' , ~

Seucbhere
.., ~." ,~.. if Z' < A[l(n - 1)/2J]
¡ ~ ;-, "

l(n - l)/2J

c Search here
,~ r ir z > A[L(n - 1)/2J]

n-l

Fig. 6.13. Binary eearch divides a in two.

SEC.6.5 ARRAY-BASED IMPLEMENTATlON OF LISTS 305

bin8earch(int x. int AO. int 108. int higb)

.id;

BOOLEAH

{
int .id;

if (108> high)
r.turn FALSE;

els. {
.id = (108 + high)/2;

if (z < A [81d])

return binsearch(z. A. 108. .1d-1);
else if (z > Araid])

return binsearch(z. A. 8id+1. high);
el.. l. z = Araid] .1

return TRUE;
'-

(1)
(2)

(3)
(4)
(5)
(6)
{1;)

(8)

}

F\mction that doea lookup uaing binary 8eard1.Fig.6.14.

2. Calls itaelf recursively at line (5) or line (7) on a sublist that is at m~t half as
long as the array A [lov. .high] that it was given to search.

Starting with an array of length n, we cannot divide the length of the array to be
searched in half more than log2 n times before it has length 1, whereupon we either
find % at A [aid] , or we fail to find % at aIl after a call on the empty listo

To Iook for % in an array , witb n elementa, we call bin.earch(x.A.O.D-1).
We see that binsearch calla itaelf O(logn) times at m~t. At each call, we spend
0(1) time, plus the time of the recursive callo The running time of binary search
is therefore O(logn). That compares favorably with the linear search, which takes
O(n) time on the average, as we have ~n.

EXERCISES

6.5.1: Write function8 to (a) i~rt z and (b) delete z frorn a li8t L, using linear
search of an array.

6.5.2: Repeat Exerciae 6.5.1 for an array with 8entinels.

6.5.3: Repeat Exerciae 6.5.1 for a sorted array.

6.5.4: Write the following functions aauming that list elernents are of sorne arbi-
trary type BTTPE, for which we have functions eq(z, y) that tells whether z and y
are equal and lt(z, y) telling whether z precedes y in the arder of elernents oí type
BTTPE.

a)
b)
c)

functían lookup af Fíg. 6.11.
functían lookup af Fig. 6.12.
functían binsearch af Fig. 6.14.

306 THE LIST DATA MODEL

6.5.5**; Let P(k) be the lengtb (high-low+ 1) oCthe longest arfar such that the
binary search algorithm oC Fig. 6.14 never makes more than k probes [evaluations of
aid at line (3)]. For example, P(I) = 1, and P(2) = 3. Write a recurreoce relatioo
Cor P(k). What is tbe solutioo t.o your recUfrence relatioo? Does it demonstrate
tbat binary search makes O(log n) probes?

6.5.6*: Prove by ioduction 00 the difl'erence between low and high tbat if z is in
the range J. [lo.. . high] ,tben the binary search algorithm of Fig. 6.14 will find z.

6.5.7: Suppose we allowed arrays to have duplicates, so insertion could be done in
0(1) time. Write insert, delete, and lookup fundion8 for tbis data structure.

6.5.8: Rewrite the binary search program t.o use iteration rather than recursion.

6.5.9.*: Set up and solve a recurrence relation for tbe running time oC binary search
on an arfar of n elements. Hint: To simplify, it helps t.o take T(n) as an upper
bound on the running time of binary searcb on any array of n or fewer elements
(rather tban on exactly n elements, as would be our usual approach).

6.5.10: In temary sean::h, given a range low t.o high, we compute the approximate
1/3 point of tbe range,

first = L(2 x low + high)/3J

and compare tbe lookup element z with A[first]. Ifz > A[/irst], we compute the
approximate 2/3 point,

second = f(low + 2 x high)/31

and compare z with A[aecond). Tbus we isolate z t.o witbin one of three ranges,
each no more than one third tbe range low to high. Write a function to perform
ternary search.

6.5.11**: Repeat Exercise 6.5.5 for temary 8earcb. That is, find and solve a
recurrence relation for the largest arfar that reqúires no more than k probes during
ternary search. How do the number of probes required for binary and ternary search
compare? That is, for a giveo k, can we handle larger arrays by binary search or
by temary search?

Probes in
binary search

Ternary search

.:. 6.6 Stacks

A stock is an abstract data type based on the list data model in which all operations
are performed at oRe end of the list, which is called the top of the stack, The term
"LIFO (for lut-in first-out) list" is a synonym for stack,

The abstract model of a stack is the same 88 that of a list - that is, a sequence
of elements 01,02,.. "o.. of BOme one type. What distinguishes stacks from general
lists is the particular set of operations permitted, We shall give a more complete set
of operations later, but for the momeot, we note that the quintessential stack oper-
ations are pt¡8h ud pop, where pu8h(z) puts the element z 00 top of the stack ud
pop removes the topmost elemeot from the stack. If we write stacks witb tbe top at
the right end, the operation pu8h(z) applied to the list (01,02,. . .,0..) yields the list
(01.02, . . .,0.., z). Popping the list (01,02,. , .,0..) yields tbe list (01,02,. . .,0..-1);
popping the empty list, t. is impossible ud causes an error coodition.

Top of stack

Push and pop ,)

+

The ADT stack

Clear stack

Full and empty
stacks

SEC. 6.6 STACKS 307

Example 6.9. Many compilers begin by tuming the infix expressions that
appear in programa into equivalent postfix expressions. For example, the expression
(3 + 4) x 2 is 3 4 + 2 x in postfix notation. A sta can be u8ed to evaluate postfix
expreaions. Starting with an empty sto, we scan the postfix expression from left
to right. Each time we encounter an argument, we push it onto the stack. When we
encounter an operator, we pop the sto twice, remembering the operands popped.
We then apply tbe operator to the two popped values (with the aecond as the left
operand) and push the result onto the stack. Figure 6.15 shows the stock after each
step in the processing of the postfix expression 3 4 + 2 x. The result, 14, rem&Íns
on the stack after pro<:e88Íng. +

Fig. 6.15. Evaluating a postfix exprel8iOll usin« a stack.

Operatioos 00 a Stack

The two previous ADT's we discussed, the dictionary and the priority queue, each
had a definite set of &88Ociated operations. The stack ia re&lly a family of similar
ADT's with the SalDe underlying rnodel, but with BOrne variation in the set of
allowable operations. In thia section, we shall discuss the common operations on
stacka and show two data structu~ that can serve as implernentations for the stack,
one b&8ed on linked lista and the other on arfays.

In any collection of stack operations we expect to see puBh and pop, as we
rnentioned. There ia another common thre&d to the operations ch~n for the stack
ADT(s): they can all be implemented simply in 0(1) time, independent of the
number of elernents on the stack. You can check as an exercise that íor the two
data structu~ sugg~ted, all operations require only constant time.

In addition to puBh and pop, we generally need an operation dear that initial-
izes the stack to be empty. In Example 6.9, we tacitly aMurned that the stack started
out empty, without explaining how it got that way. Another pO88ible operation is
a test to determine whether the stack ia currently empty.

The lut of the operations we sh&ll consider is a test whether the stack is
"full." Now in our abstract model oí a stack, there is no notion oí a fullstack, since
a stack is a list and lista can grow as long as we like, in principie. However, in any
irnplementatioo oí a stack, there will be BOrne length beyond which it cannot grow.
The ~t comrnon example is when we represent a list or stack by an array. As

308 THE LIST

seen in tbe previous section, we bad to assume tbe list would not grow beyond tbe
constant RAI, or our implementatioD oí iRse" would not work.

Tbe formal definitions oí tbe operations we sball use in our implementatioD oí
stacks are the íollowing. Let S be a stack oí type BTYPE and z an element oí type
ETYPE.

1. clear(S). Make the stack S empty.

2. iaEmpt,(S). Retum TRUE if S is empty, FALSE otherwÍ8e.

3. iaFull(S). Retum TRUE if S is full, FALSE otherwise.

4. pop(S, %). If S is empty, retum FALSE; otherwise, set z to tbe value of the top
element 00 stack S, remove tbis element from S, and return TRUE.

5. puah(%, S). If S is full, retum FALSE; otberwiae, add tbe element % to tbe top
of S and retum TRUE.

There is a commoo variation of pop that 8.88umes S is nonempty. It takes only S
a.s an argument and returns tbe element z tbat is popped. Yet anotber altemative
version of pop does not retum a value at all; it just removes the element at tbe top
of tbe stock. Similarly, we may write push with the assumption that S is oot "full."
.
In that case, push does not return any value.

Array Implementation of Stacks

The implementations we used for lists can &\so be used Cor stacks. We shall discuss
an array-based implementation first, fol\owed by a linked-list rep~ntation. In eadt
case, we take the type of elements to be int. Generalizations are left 88 exercises.

The declaration for an array-baaed stack of integers is

} STACI

DATA MODEL

. ~,
t i., ..:!1 J" r.' -'~

1 - _. . ti

, -.

¡ ,

. -1 1

K-l

representing a stack.Fig. 6.16.

SEC. 6.6 STACKS 309

yoid clear(STACI ~)
{

pS->top = -1;

}

BOOLEA1f

{

Y (STACK .pS)i8E8pt

(pS->top < O);returu
}

BOOLEAR i8Full(STACK .pS)
{

return (pS->top >= MAl-1);

}

BOOLEAN pop(STACK .pS, int .px)
{

it (i8Eapty(pS»
return FALSE;

e18e {
(.px) = pS->A[(pS->~op)--];

r.~urn TRUB;
}

}

BOOLEAN puah(int x. STACX .pS)
{

if (isFull(pS»
return FALSE;

.18. {
pS->A(++(pS->top») = x;
return TRUE;

}

~

}

F\mctions to imFig.6.17. stack operations on arraya.

With an array-baaed implementation, the stack can grow either upward (from lower
locatiom to higher) or downward (from higher locations to lower). We choose to
have the st.ack grow upward;5 t.hat is, the old~t elemento ao in t.he st.ack is in
location O, the next-to-old~t elemento al is in location 1, and t.he m~t. recently
inserted element Bn-1 is in the location n-l.

The field top in the array st.ructure indicates the position of the top of st.ack.
Thus, in Fig. 6.16, top has t.he value n-l. An empty stack is rep~nted by having
top = -l. In that case, the content of array A is irrelevant, there being no elements
on the stack.

Tbe programa for t.he five stack operations defined earlier in t.his section aI'e

5 Thus tbe "top" of tbe 8t8ck ia pbyaicaJly 8hown at tbe bottom of tbe Pase, an unfortunate

but quite standard CORftotion.

310 THE LIST DATA MODEL

void clear(STACI .pS)
{

(.pS) = NULL;
}

BOOLEAN isEapty(STACI .pS)
{

return «'pS) = IULL);

}

BOOLEAN isFull(STACK .pS)
{

return FALSE;
}

BOOLEAN pop(STACI .pS, int .px)
{

if «.pS) = NULL)

return FALSE;
.1.. {

(.px) = (.pS)->el888Dt;
(.pS) = (.pS)->next;
retum TRUE;

}

BDOLEAN puah(int x, STACI .pS)

{
STACK ne.Cell;

ne.cell = (STACI) aalloc(.izeof (atruct CELL»;

ne.Cell->eleaent = x;

ne.Cell->next = (.pS);

(.pS) = ne.cell;

return TRUE;

shown in Fig. 6.17. We pa88 stacks by reference to avoid having to copy large anays
that are argumente of the functions.

Linked-List Implementation of a Stack

We can represent a stack by a linked-list data structure, like any listo However, it
is convenient if the top of the stack is the front of the listo That way, we can push
and pop at the head of the list, which takes only 0(1) time. If we had to find the
end of the list to push or pop, it would take O(n) time to do t.h~ operations on a
stack of length n. However, &8 a conaequence, the sto S = (al, a2, . . . ,an) must
be represented "backward" by the linked list, as:

}

Fig. 6.18.

~

L.

SEC.6.6 STACKS 311

T

The type definition macro we have used for list ceUs can as weU be used for
stacks. The macla

DetCell(int, CELL, STACK);

defines stacks of integers, expanding into

tYpdef struct CELL *STACK;
struct CELL {

int el..ent;

STACK next;

};

Witb tbis representation, tbe five operations can be implemented by tbe íunctions
in Fig. 6.18. We 8BSume that aalloc never runs out oí space, whicb means tbat
the isFull operation always returns FALSE, and tbe push operation never íails.

The effects oí push and pop on a stack implemented as a linked list are illus-
trated in Fig. 6.19. .

L

(a) List L.

~

",.
'Pl

(b) push(x, L).

.
L

(c) After executing pop(L,.x) 00 list L of (a).

Fig. 6.19. Push and pop operations 00 a stack implemented as a Iinked listo

EXERCISES

6.6.1: Show the stack that remaios after executing the following sequence of oper-
atioos, starting with an empty stack: push(a), push(b), pop, push(c), push(d), pop,
push(e) , pop, popo

6.6.2: Using only the five operatioos on stacks discussed in this section to ma-
nipulate the stack, write a C program to evaluate postfix expreMioos with integer
operands and the four usual arithmetic operators, following the algorithm suggested
in Example 6.9. Show that you can use either the arfar or the linked-list imple-
mentation with your program by defining the data type STACK appropriately and
including with your program first the functioos of Fig. 6.17, and then the functions
of Fig. 6.18.

312 THE LIST DATA MODEL

6.6.3*: How would you uae a stack to evaluate prefix exp~ions?

6.6.4: Compute the running time oí each oí the Cunctions in Figs. 6.17 and 6.18.
Are they alI0(1)7

6.6.5: Sometimes, a stack ADT uses an operation top, where top(S) returns the
top element oí stack S, which must be assumed nonempty. Write Cunctions for top
that can be used with

a) The array data structure
b) The linked-list data structure

that we defined for stacks in this section. Do your implementations of top all take
0(1) time?

6.6.6: Simulate a stack evaluating the foUowing postfix expressions.

a) ah+cdx +ex
b) abcde + + + +
c) ab+c+d+e+

6.6.7*: Suppose we start with an empty stack and perform BOme push and pop
operations. If tbe stack after these operatioDs is (al, a2, . . ., an) (top at tbe rigbt),
prove that ai was pushed before ai+l was pusbed, for i = 1,2, . . ., n-l.

.... 6.7 Implementing Function Calls

An important application oí stacks is normally hidden íram view: a stack is used to
allocate space in the computer's memory to the variables belonging to the various
functions oí a programo We shall diacuss the mechanism used in C, although a
similar mechanism is used in almost every other programming language as well.

int fact(int n)

{
(1) 1f (n <= 1)
(2) return 1; /. ba.is ./

.1..
(3) return n.fact(n-1); /. induction./

}

To see what the problem is, consider the simple, recursive factonal function
fact froro Section 2.7, which we reproduce here as Fig. 6.20. The function has a
parameter D and a retum value. As fact calla itself recursively, difl'erent calla are
active at the same time. These calla have different values oí the parameter D and
produce different retum values. Where are these different objects with the same
names kept?

To answer the question, we must Iearn a little about the ron-time oryanuation
associated with a programming language. The run-time organization is the plan
used to subdivide the computer's memory into regions to hold the various data items

Run-time
organization

a StackU sing

RecUr8ÍYe function to compute n!.Fig. 6.20.

SEC. 6.7 IMPLEMENTING FUNCTION CALLS USING A STACK 313

used by a programo When a program is ron, each execution of a function is ca!led
an activation. The data objects aaociated with each activation are stored in the

Activation memory of the computer in a block called an activation record for that activation.
record The data objects include parameters, the return value, the return address, and any

variables local to the function.

! tt
C.c>d8

S tatic ~
.

\ '$t¡ack
c:

J,

,,"p i:" '

Heap

Fig. 6.21. Typical nm-time memory organization.

Figure 6.21 shows a typica! subdivision of run-time memory. The first area
contains the object code for the program being executed. The next area contains

Static data the static data for the program, such.as the va!ues of certain constants and exter-
Run-time stack na! variables used by the programo The third afea is the ron-time stack, which

grows downward toward the higher addresses in memory. At the highest-numbered
memory locations is the heap, an area set aside for the objects that are dynamically
allocated using malloc.6

The run-time stock holds the activation records for all the currently live acti-
vations. A stack is the appropriate structure, because when we call a function, we
can push an activation record onto the stack. At all times, the currently executing
activation Al has its activation record at the top of the stack. Just below the top of
the stack is the activation record for the activation A2 that called Al. Below A2's
activation record is the record for the activation that called A2' and 50 oo. When
a function returns, we pop its activation record off the top of stack, exposing the
activation record of the function that called it. That is exactly the right thing to
do, because when a function returns, control passes to the calling function.

+ Example 6.10. Consider the skeletal programshown in Fig. 6.22. This program
is nonrecursive, and there is never more than one activation for any one function.

8 Do not coníuBe thia U8e oí the tenn "heap" with the heap data structure diecussed in Section
5.9.

"C,- "~- ,',," ..~~, -"c," ,""',..~'c ,_c "~-' ,.,.

314 THE

When the main function starts to execute, its activation record containing the space
for the variables x, y, and z is pushed onto the 8tack. When function P is called,
at the place marked Here, its activation record, which contains the space for the
variables p1 and p2, is pushed onto tbe 8tack.7 When P caUs Q, Q's activation record
is pushed onto tbe stack. At thi. point, the stack i. as shown in Fig. 6.23.

When Q finishes executing, its activation record i. pOPped off the stack. At
that time, P is aIao finisbed, and 80 its activation record is popped. Finally, aain
too is finished and has its activation ~rd popped off the stack. Now the stack is
empty, and the program is finished. +

+ Example 6.11. Consider tbe ~ursive function tac~ from Fig. 6.20. Tbere
may be many activations of tac~ live at any one time, but each one will bave an
activation ~ord of the same form, namely

~=J
consisting of a word for tbe parameter D, wbich is filled initially, and a word for tbe
return value, wbich we bave denoted tac~. Tbe retum value is not filled until tbe
last step of tbe 8(:tivation, just before tbe return.

7 Noti~ tbat tbe acti~ion ~ for P bu two data objecta, and 10 ia of & "type" different

from tbú of tbe actiY&tion ~ for the main Prosram. HoweYer. - may ~prd all ac-
ti~ion record fonn. rOl" & Prosram as varian&. of a .in¡le record type, thu. preserving the
viewpoint that a .tack bu all its elementa of the same type.

~

DATA MODELLIST

.014 P()i

.014 Q()i

aain() {
int x, J. z;

P(); /. Bere ./

}

.014 P();
<

iDt pl. p2j

Q() ;
}

Q()'1'014

{

int ql. q2. q3;

}

Skeletal program .Fig. 6.22.

SEC.6.7 lMPLEMENTING FUNCTION CALLS USING A STACK 315

1.
p1
p2

q1
q2
~

Run-time stack when functioD Q is executiog.Fig.6.23.

Suppose we cal) fact(4). Then we create one activation record, of the forro

ID 4 I

I fact - I

As fact(4) calla fact(3), we next push an activation record for that activation
whichonto the ron-time stack,

D 4
fact -

D 3
fact -

Note that there are two locations named D and two named tacto There is no
confusion, since they belong to different activations and only one activation record
can be at the top of the stack at any one time: the activation record belonging to
the currently executing activation.

n 4
fac't -

n a
f~ ~

n 2
fac't -
n 1
fac't -

Activation record. during execution of tactoFig.6.24.

Tben fact(3) calla fact(2), wbich calla fact(1). At tbat point, tbe ron-time
stack is 88 in Fig. 6.24. Now tact(l) makes no recursive call, but assigns fact = l.
The value 1 is thus placed in the slot of the top activation record reserved for tacto

316 THE LIST DATA MODEL

Tbe otber slots labeled fact are unaffected, as sbown in Fig. 6.25.
Then, fact(1) returns, exposing the activation record ror fact(2) and return-

ing control to the activation fact(2) at the point where fact(1) was called. The
return value, 1, from fact (1) is multiplied by the value of n in the activation record
for fact(2), and tbe product is placed in the slot for fact of that activation record,
as required by line (3) in Fig. 6.20. The resulting stack is shown in Fig. 6.26.

Similarly, fact(2) tben returns control to fact(3), and tbe activation record
for fact(2) is poPped off tbe stack. Tbe return value, 2, multiplies n of fact(3),
producing tbe return value 6. Tben, fact(3) returns, and its return value multiplies
n in fact(4), producing tbe return value 24. Tbe stack is now

In 4 I

I fac~ 24 I

At tbis point, fact(4) returns to sorne bypotbetical calling function wbose
activation record (not sbown) is below tbat of fact(4) on tbe stack. However, it
would receive tbe return value 24 as tbe value offact(4), and would proceed witb
its own execution. +

EXERCISES

6.1.1: CoDsider the C program of Fig. 6.27. The activatioD record for main has a
slot for the integer i. The important data in the activation record for SU8 is

n t
fae't -
n $
fa" -
n 2
:fa.ct -
. ..
fact 1

After fact(1) computes its value.Fig. 6.25.

.

. .
fac~ -
. 3
f~ -
. '2:, ""'.
fac't 2" ,

After fact (2) computes its value.Fig.6.26.

SEC.6.7 IMPLEMENTING FUNCTION CALLS USING A STACK 317

#define MAX 4
int A[MAX];

int sum(int i);

~~

aain()
{

~

. .1.,int

~

for (i = o; i < MAX; i++)

scanf("'¡;d". tA[i]);
(1)
(~C
(3) printf("~" 8118(0»;

}

int 8ua(int i)

{
if (i > MAX)

return O;

e1ae
retUrD A[i]

(4)
(5)

(6) + 8ua(i+1)i

1,

Fig. 6.27. Program for Exerciee 6.7.1.

1. The parameter i.
2. The return value.
3. An unnamed temporary location, which we shall call teap, to atore the value

Of8U8(i+l). The latter iscomputed in line (6) ud then added to A[a1 toform
the return value.

Show the stack of activation records irnrnediately before and irnrnediately &!ter each
call to sum, on the 888urnption that the value of A[al is lOio That is, show the stack
irnrnediately alter we have pushed an activation record for sua, and just before
we pop an activation record off the stack. You need not show the contente of the
bottom activation record (for aain) each time.

~

yoid delete(int x. .pL)LIST
{

it «*pL) != NULL)
it (x == (*pL)->e1eaent)

(*pL) = (*pL)->next;

e18e

delete(x. t«*pL)->nen»;
end

Fig. .6.28. for Exerciae 6.7.2.

318 THE LIST DATA MODEL

6.1.2.: The functíon delete of Fíg. 6.28 removes the first occurrence of ínteger z
from a linked list composed of the usual cells defined by

DefCell(int, CELL, LIST);

The activation record for delete consists of the parameters x and pL. However,
since pL is a pointer to a list, the value of the second pararneter in the activation
record is not a pointer to the first cell on the list, but rather a pointer to a pointer
to the first cell. Typically, an activation record will hold a pointer to the next field
ofsorne cell. Show the sequence ofstacks when delete(3,1:L) is called (frorn sorne
other function) and L is a pointer to the first cell of a linked list containing elernents
1,2,3, and 4, in that arder.

..".... 6.8 Queues
Another important ADT based on the list data model is the queue I a restricted
forro of list in which elements are inserted at one end, the rear, and removed from
the other end, the jront. The term "FIFO (first-in first-out) list" is a synonym for

queue.
The intuitive idea behind a queue is a line at a cashier's window. People enter

the line at the rear and receive service once they reach the front. Unlike a stack,
there is fairness to a queue; people are served in the order in which they enter the
line. Thus the person who has waited the longest is the one who is served next.

Front and rear
of queue

Operations on a Queue
The abstract mooel oí a queue is the same as tbat oí a list (or a stack), but tbe
operations applied are special. The two operations that are characteristic oí a
queue are enqueue and dequeue; enqueue(z) adds z to the rear oí a queue, dequeue
removes the element from the íront oí tbe queue. As is true oí stacks, there are
certain other useíul operations tbat we may want to apply to queues.

Let Q be a queue whose elements are of type ETYPE, and let z be an element
oí type ETYPE. We shall consider the íollowing operations on queues:

1. clear(Q). Make the queue Q empty.

2. dequeue(Q,z). IfQ is empty, return FALSE; otherwise, set z to the value oí
the element at the front of Q, remove this element from Q, and return TRUE.

3. enqueue(z, Q). If Q is full, return FALSE; otherwise, add the element z to the
real of Q and return TRUE.

4. isEmpty(Q). Return TRUE if Q is empty and FALSE otherwise.

5. isFuU(Q). Return TRUE if Q is fuIl and FALSE otherwise.

As with stacks, we can bave more "trusting" versions of enqueue and dequeue tbat
do not check for a full or empty queue, respectively. Tben enqueue does not return
a value, and dequeue takes only Q as an argument and retums the value dequeued.

A Linked-List Implementation oí Queues
A useful data structure for queues is básed on linked lists. We start with the usual
definition oí cells given by the macro

Enqueue and
dequeue

SEC. 6.8 QUEUES 319

void clear(QUEUE .pQ)
{

pQ->front = NULL

}

BOOLEAJI isEmpty(QUEUE .pQ)
{

}

(pQ->front == NULL);return

BooLtAN isFull(QUEUE *pQ)
{

}
return FALSE;

BOOLEAN dequeue(QUEUE .pQ, int .px)
{

if (i8Eapty(pQ»

return FALSE;

e188 {
(.px) = pQ->front->81eaent;

pQ->front = pQ->front->next;

return TRUE;
}

}

QUEUEenqueue(int x, .pq)BOOLEU

{
if (isEllpty(pQ» {

pQ->front = (LIST) aalloc(aizeof(struct CBLL»;
pQ->rear = pQ->front;

}
e18e {

pQ->rear->next = (LIST) malloc(sizeof (struct CBLL»;
pQ->rear = pQ->rear->next;

}
pQ->rear->eleaent = x;
pQ->rear->next = NULL;
retum TRUE;

}

Fig. 6.29. Procedures to linked-list queue operations.

D.fC.ll(iD~, CELL, LIST);

As previously io this ch apter , we assume that elemeots of our queues are iotegers
and invite the reader to geoeralize our fuoctions to arbitrary elemeot types.

The elements of a queue will be stored 00 a linked list of cells. A queue itself
is a structure with two pointers - one to the front cell (the first on the linked list)
and another to the real cell (tbe last 00 tbe linked list). Tbat is, we define

320 THE LIST DATA MODEL

More Abstract Data Types
We can add the stack and queue to the table of ADT's that we started in Section
5.9. We covered two data structures for the stack in Section 6.6, and one data
structure for the queue in Section 6.8. Exercise 6.8.3 covers anotber data structure,

the "circular array," for tbe queue.

ADT Stack Q\leue

Abstract List L-
Implementation
Data 1) Llnked Liat. 1) Link«! List
Structures 2) Array 2) Circular Array

typedef struct {
LIST front. rear;

} QUEUE ;

If the queue is ernpty, front will be RULL, ud the value of rear is then irrelevant.
Figure 6.29 gives programs for the queue operations rnentioned in this section.

Note that when a linked list is used there is no notion of a "full" queue, and so isFull
returns FALSE always. However, if we used sorne sort of array-based irnplernentation
of a queue, there would be the possibility of a full queue.

EXERCISES

Circular array

++++ 6.9 Longest Common Subsequences

Diff cornmand

LCS

Common

subsequence

+

SEC.6.9 LONGEST COMMON SUBSEQUENCES 321

6.8.4*: Show that ir (al, a2,..', an) is a queue
enqueued before ai+l, for i = 1,2", "n -l.

with al at the front, then aj was

This section is devoted to an interesting problem about lista. Suppose we have two
lists and we want to know what differences there are between them. This problem
appears in many different guises; perhaps the most common occurs when the two
lista represent two different versions of a text lile and we want to determine which
liDes are common to the two versions. For notational convenience, throughout this
section we shall assume that lists are character strings.

A useful way to think about this problem is to treat the two files as sequences
of symbols, x = al. . . am and y = b1 . . . bn, where a; represents the ith line of the
first lile and bj represents the jtb line of the second lile. Thus an abstract symbol
like ai mar really be a "big" object, perhaps a full sentence.

There is a UNIX command diff that compares two text files for their differ-
ences. One lile, x, might be the current version of a program and the other, y,
might be the version of the program before a small change was made. We could
use diff to remind ourselves of the changes that were made tuming y into x. The
typical changes that are made to a text lile are

1. Inserting a line.

2. Deleting a line.

A modification of a line can be treated as a deletion followed by an insertion.
Usually, if we examine two text files in which a small number of such changes

have been made when transforming one into the other, it is easy to see which liDes
correspond to which, and which lin~ have been deleted and which inserted. The
diff command makes the assumption that one can identify what the changes are by
first finding a longest common Bubsequence, or LCS, ofthe two lista whose elements
are the liDes of the two text fiJes involved. An LCS represents those línea that have
not been changed.

Recall that a subsequence is formed from a list by deleting zero or more ele-
mente, keeping the remaining elements in order. A common sub.sequence of two lists
is a list that is a SUbsequence of botb. A longest common subsequence of two lista
is a common subsequence that is as long as any common SUbsequence of the two
lista.

Example 6.12. In wbat follows, we can tbink of characters like a, b, or c,as standing for liDes of a text lile, or as any otber type of elements if we wisb. -

As an example, baba and cbba are botb longest common subsequences of abcabba
and cbabac. We see tbat baba is a subsequence of abcabba, because we may take
p~itions 2, 4, 5, and 7 of tbe latter string to form baba. String baba is also a
subsequence of cbabac, because we may take positions 2, 3, 4, and 5. Similarly,
cbba is formed from positions 3, 5, 6, and 7 of abcabba and from positions 1, 2,
4, and 5 of cbabac. Tbus cbba toa is a common subsequence of tbese strings. We
must convince ourselves tbat tbese are longest common subsequences; tbat is, there

322 THE LIST DATA MODEL

are no common SUbsequences of length five or more. That fact will follow from the
algorithm we describe next. +

A Recursion That Computes the LCS

We offer a recursive definition of the length of the LCS of two lista. This definition
will let us calculate the length easily, and by examining the table it constructs,
we can then discover one of the possible LCS's itself, rather than just its length.
From the LCS, we can deduce what changes were made to the text files in question;
essentially, everything that is not part of the LCS is a change.

To find the length of an LCS of lista z and 1/, we need to find the lengths of
the LCS's of all pairs of prefixes, one from z and the other from y. Recall that a
prefix is an initial sublist of a list, 80 that, for instance, the prefixes of cbabac are
(, c, cb, cba, and 80 oo. Suppose that z = (al,a2,.. .,am) and y = (b1,b2,.. .,bn).
For each i and j, where i is between O and m and j is between O and n, we can ask
for an LCS of the prefix (al'...' Qi) from z and the prefix (b1,... ,bj) from y.

If either i or j is O, then one of the prefixes is (, and the only possible common
SUbsequence of the two prefixes is (. Thus when either i or j is O, the length of
the LCS is O. This observation is formalized in both the basis and rule (1) of the
induction that follows our informal discussion of how the LCS is computed.

Now consider the case where both i and j are greater than O. It helps to think
of an LCS as a matching between certain positions of the two strings involved. That
is, for each element of the LCS, we match the two positions of the two strings from
which that element comes. Matched positions must have the same symbols, and
the liDes between matched positions must not cross.

Example 6.13. Figure 6.30(a) shows one oí two possible rnatchings between
strings abcabba and cbabac corresponding to tbe cornrnon SUbsequence baba and
Fig. 6.30(b) shows a matching corresponding to cbba. +

..

(a) For baba. (b) For cbba.

Fig. 6.30. LCS's as matchings between positions.

Tbus let us consider any matching between prefixes (al,. . ., ai) and (61, . . ., 6j).
Tbere are two cases, depending on wbetber or not the last symbols of tbe two lists
are equal.

a) If ai # 6j, then tbe matching cannot include botb ai and 6j. Thus an LCS of
(al,.. .,aj) and (bl,.. .,6j) must be eitber

i) AnLCSof(al,...,ai-l) and ('6l,...,6j),or
ii) An LCS of(al,...,ai) and (6l,...,bj-l).

abcabba

/~//
cbabac

b

I
b

b b a

//
b a c

a c a

/
ac

SEC. 6.9 LONGEST COMMON SUBSEQUENCES 323

If we have already found tbe lengtbs of the LCS 's of these two pairs of prefixes,
then we can take the larger to be the length of the LCS of (al,"" al) and
(b1, . . . , bj). Tbis situation is formalized in rule (2) of the induction tbat follows.

b) If aí = bj, we can match a; and bj, and the matching wiIl not interfere
with any other potential matches. Thus tbe length of the LCS of (a 1, . . . , aí)
and (b1,..., bj) is 1 greater than the lengtb of the LCS of (al,"" aí-l) and
(111, . . . , bj -1). This situation is formalized in rule (3) of the foIlowing induction.

These observations let us give a recursive definition for L(i, j), the length of the
LCS of (al"'" Oí) and (b1,..., bj). We use complete induction on the sum i + j.

BASIS. If i + j = O, then both i and j are O, and 80 the LCS is (. Thus L(O, O) = O.

INDUCTION. Consider i and j, and suppose we have already computed L(g, 11) for
any 9 and h such that 9 + h < i + j. There are three cases to considero

l. Ifeither i or j is O, then L(i,j) = O.

2. If i > O and j > O, and aí ~ bj, then L(i,j) = max(L(i,j - 1), L(i - 1,)j).

3. If i > O and j > O, and aí = bj, tben L(i,j) =1 + L(i -l,j - l}.

A Dynamic Programming Algorithm for the LCS

Ultimately what we want is L(m, n), the length of an LCS for the two lists x and
y. If we write a recursive program based on the preceding induction, it will take
time that is exponential in the smaller of m and n. That is far too much time to
make the simple recursive algorithm practical for, say, n = m = 100. The reason
this recursion does so badly is a bit subtle. To begin, suppose there are no matches
at all between characters in the lists x and y, and we call L(3,3). That results in
calls to L(2,3) and L(3,2). But each of these calls results in a call to L(2,2). We
thus do the work of L(2,2) twice. The number of times L(i, j) is called increases
rapidly as the arguments of L become smaller. If we continue the trace of calls, we
find that L(I, 1) is called 6 times, L(O, 1) and L(l, O) are called 10 times each, and
L(O, O) is called 20 times.

We can do much better if we build a two-dimensional table, or arfar, to store
L(i,j) for the various valueS of i and j. If we compute the values in order of the
induction - that is, smallest values of i + j first - then the needed values of L

are always in the table when we compute L(i,j). In fact, it is easier to compute L
by rows, that is, for i = 0,1,2, and so on; within a row, compute by columna, for
j = 0,1,2, and so oo. Again, we can be sute of finding the needed values in the
table when we compute L(i,j), and no recursive calls are necessary. As a result, it
takes only 0(1) time to compute earo entry of the table, and a table for the LCS
of lista of length m and n can be constructed in O(mn) time. -

In Fig. 6.31 we see C code that fills this table, working by row rather than
by the sum i + j. We assume that the list x is stored in an array a[1..83 and
y is stored in b[1. .n]. Note that the Oth elements of these are unused; doing so
simplifies the notation in Fig. 6.31. We leave it as an exercise to show that the
running time of this program is O(mn) on lists of length m and n.s

a Strictly apeaking, we discuased only big-oh expre88ions that are a function of one variable.

However, the meaning here ahould be clear. If T(m,n) is tbe running time of the program

324 THE LIST DATA MODEL

Dynamic Programming
The term "dynamic programming" comes from a general theory developed by R.
E. Bellman in the 1950's for solving problems in control systems. People who work
in the field of artificial intelligence often speak of the technique under the llame
memoing or tabulation.Memoing

A table-filling technique like thia example ia often called a dynamic progrnm-
ming algorithm. As in thia case, it can be much more efficient than a straightforward
implementation of a recursion that solves the sarne subproblem repeatedly.

Dynamic
programming
algorithm

Example 6.14. Let z be the list cbabac and y the list abcabba. Figure 6.32
shows the table constructed for these two lista. For instance, L(6, 7) is a case where
~ ~ 6? Thus L(6, 7) is the larger of the entri~ just below and just to the left.
Since th~ are 4 ud 3, respectively, we ~t L(6,7), tbe entry in the upper right
corner, to 4. Now consider L(4,5). Since both G4 and ha are the symbol b, we add
1 to the entry L(3,4) that we find to the lower left. Since that entry is 2, we ~t
L(4, 5) to 3. .

+

Recovery of 8n LCS

We now bave a table giving us the lengtb oí the LCS, not only for tbe lista in
question, but cor each pair of tbeir prefixes. From this information we must deduce
one oc the p()88ible LCS's Cor the two lista in question. To do so, we shall find the
matching paira of elements tbat forro one of tbe LCS's. We sball find a patb tbrougb
the table, beginning at the upper rigbt comer; this patb will identify an LCS.

Suppoee tbat our patb, starting at the upper right comer, has taken U8 to row
i and column j, tbe point in the table that corresponda to the pair of eIementa a;

00 lis" of Ieucth m and n, then tbere are constan"
and n ~ no. T(m,n) $: cmn.

(j - Oi j <= Di j++)
L[O] [j] . Oi
(i - 1i i <= 8i i++) {
L[i] [O] . Oi
tor (j . 1i j <- Di j++)

it (.[i] != b[j])

for

for

if (L[i-1] [j] >= L[i] [j-1])
L[i] [j] = L[i-1] [j] :

.1..
L[i] [j] . L[i] [j-1] :

.1.. /* a[i] = b[j] */
L[i] [j] = 1 + L[i-1] [j-1] :

}

C fragment to fill tbe LCS tabIe.Fig. 6.31.

mo. no. and c Iuch that Cor all m ?: mo

t
j
t

.

SEC. 6.9 LONGEST COMMON SUBSEQUENCES 325

01233334
O 1 2 2 3 3 3 4
O t 2 2 2 3 3 3
O 1 1 1 2 2 2 3
00111222
O O O 1 1 1 1 1

c 6
a 5
b 4
a 3
b 2
c 1

O

abcabba

Fig. 6.32. Table of Iongest common subsequences for cbabac and abcabba.

and bj. If o, = bj, tben L(i,j) WM chosen to be 1 + L(i - l,j - 1). We thus treat
Oi and bj M a matched pair of elements, and we shall include the symbol that is Oi
(and also bj) in the LCS, ahead of all the elements of the LCS found so faro We
then move our patb clown and to the left, tbat is, to row i - 1 and column j - 1.

However, it is also possible that Oj # bj. H so, tben L(i, j) must equal at leMt
one of L(i - l,j) and L(i,j - 1). If L(i,j) = L(i - l,j), we shall move our path
one row clown, and ifnot, we know tbat L(i,j) = L(i,j -1), and we shall moveour
path one column left.

When we follow this rule, we eventually arrive at tbe lower left corner. At tbat
point, we have selected a certain sequence of elements for our LCS, and the LCS
itself is the list of these elements, in the reverse of tbe order in which they were
selected.

~~

o 1 2 3 3 3 3 4

O 1 2 2 3 3 3 4

O 1 2 2 2 3 3 3

01112223

O O 1 1 1 2 2 2

7:,0 O O 1 1 1 1 1'. i
O O O O O O 0,0

1) 1 2 $1;4 5 6 7

6
5
4
3

c

a
b
a
b

c

2
1
O

Fig. 6.33. A path tbat finds the LCS caba.

Example 6.15. The table of Fig. 6.32 is shown again in Fig. 6.33, with a
path shown in boldo We start with L(6,7), which is 4. Since 06 # 67, we look
immediately to the left and clown to find the value 4, which must appear in at least
one ofthese places. In this case, 4 appears only below, and so we go to L(5, 7). Now
05 = 67; both are a. Thus a is the last symbol of the LCS, and we move southwest,
to L(4, 6).

326 THE LIST DATA MODEL

Since ~ and b6 are both b, we include b, ahead oí a, in the LCS being íormed,
and we again move southwest, to L(3,5). Here, we find as :1= bs, but L(3, 5), which
is 2, equals both the entry below and the entry to the leít. We have elected in this
situation to move down, so we next move to L(2,5). There we find a2 = bs = b,
and so we put a b ahead oí the LCS being íormed and move southwest to L(1,4).

Since al :1= b. and only the entry to the leít has the same value (1) as L(I,4),
we move to L(I,3). Now we have al = b3 = c, and so we add c to the beginning
oí the LCS and move to L(O, 2). At this point, we have no choice but to move leít
to L(O, 1) and tben L(O, O), and we are done. The resulting LCS consista oí tbe
four characters we discovered, in the reverse order, or cbba. That happens to be
one of the two LCS's we mentioned in Example 6.12. We can obtain other LCS's
by choosing to go left instead oí down wben L(i,j) equals both L(i,j - 1) and

L(i -1, j), and by cboosing to go leít or down when one of these equals L(i, j), even
in the situation when aí = bj (i.e., by skipping certain matches in favor of matches
íartber to tbe leít). .

We can prove that this patb finding algorithm always finds an LCS. The state-
ment that we prove by complete induction on the SUln oí the lengths oí the lista
18:

STATEMENT S(k): If we find ourselves at row i and column j, where i + j = k,
and if L(i,j) = v, then we SUbsequently discover v elements for our LCS.

BASIS. The basis is k = O. If i + j = O, then both i and j are O. We have finished
our path and find no more elements Cor the LCS. As we know L(O, O) = O, the
inductive hypothesis halda for i + j = O.

INDUCTION. Assume the inductive hypothesis Cor suma k or leM, and let i + j =
k + 1. Suppose we are at L(i,j), which has value v. If a; = bj, then we find one
match and move to L(i - 1,j -1). Since the 8um (i -1) + (j -1) is leas than i+j,
the inductive hypothesis applies. Since L(i - 1,j -1) must be v - 1, we know that
we shall find v - 1 more elements for our LCS, which, with the one element just
found, will give U8 v elements. That observation provea the inductive hypothesis in
this case.

The only other case is when ai # bj. Then, either L(i - 1, j) or L(i, j - 1), or
both, must have the value v, and we move to one of these positions that does have
the value v. Since the sum of the row and column is i + j - 1 in either case, the

inductive hypothesis applies, and we conclude that we find v elements Cor the LCS.
Again we can conclude that S(k + 1) is true. Since we have considered all C&8e8,

we are done and conclude that if we are at an entry L(i,j), we always find L(i,j)
elements for our LCS.

EXERCISES

6.9.1: Wbat is the length oí the LCS oí the lists

a) banana and cabana
b) abaacbacab and bacabbcaba

.:. 6.10 Representing Character Strings

SEC.6.10 REPRESENTING CHARACTER STRINGS 327

of lista from Exercise 6.9.1. Hint: After6.9.2*: Find all the LCS's of the
building the table from
following each choice in tUfO when
two or three different ways.

, trace backward Crom the upper right comer I
you come to a point that could be explained in

6.9.3**: Suppose we use the recursive algoritbm for computing tbe LCS tbat we
described first (instead of the table-filling prograrn that we recommend). Ir we call
L(4,4) with two lists having no symbols in common, how many calls to L(l,l) are
made? Hint: Use a table-filling (dynamic prograrnming) algorithm to compute a
table giving the value of L(i,j) for all i and j. Compare your result with Pascal's
triangle from Section 4.5. What does this relationship suggest about a formula for
the number of calls?

6.9.4**: Suppose we have two lists x and y, each of length n. For n below a certain
size, there can be at most one string that is an LCS oí x and y (although that string
mar occur in different positions of x andfor y). For example, if n = 1, then the
LCS can only be (, unless x and y are both the same symbol a, in which case a
is the only LCS. What is the smallest value oí n for which x and y can have two
different LCS's?

6.9.5: Show that the program of Fig. 6.31 has running time O(mn).

6.9.6: Write a C program to take a table, such as that computed by the program
of Fig. 6.31, and find the positions, in each string, of one LCS. What is the running
time of your program, if the table is m by n?

6.9.7: In the beginning of this section, we suggested that the length of an LCS and
the size of the largest matching between positions of two strings were related.

a*) Prove by induction on k that if two strings have a common subsequence oí
length k, then they have a matching of length k.

b) Prove that if two strings have a matching of length k, then they have a common
subsequence of length k.

c) Conclude froro (a) and (b) that the lengths ofthe LCS and the greatest aize of
a matching are the same.

Character strings are probably the most common forro of list encountered in prac-
tire. There are a great many ways to represent strings
are rarely appropriate for other kinds of lists.
to the special issues regarding character strings.

First, we should realize that storing a single character string is rarely the whole
problem. Often, we have a large number of character strings, each rather short.
They may forro a dictionary, meaning that we insert and delete strings from the
population as time goes on, or they may be a sta tic set ofstrings, unchanging over
time. The following are two typical examples.

328 THE LIST DATA MODEL

Concordance 1. A useful tool íor studying texte is a concordance, a list oí all the words ueed in
the document and the placa in wbich tbey occur. Tbere will typically be tens
oí thousands oí different words used in a large document, and each occurrence
must be stored once. The set oí words used isstatic; that is, once íormed it does
not change, except perhape ií there were errors in the original concordance.

2. The compiler that tUfOS a C program into machine code must keep track oí
all the character strings that represent variables oí the programo A large pro-
gram mar bave hundreds or thousands oí variable names, especially when we
remember tbat two local variables named i that are declared in two functions
are really two distinct variables. As the compiler 8C&Da the program, it finds
new variable names and inserte them into the set oí names. Once the com-
piler has finished compiling a íunction, the variables oí that íunction are not
available to subsequent functioos, and 80 mar be deleted.

In botb oí these examples, there will be many short character atrings. Short
words abound in English, and programmers like to use single letters such as i or x
for variables. On the other hand, there is no limit on the length oí words, either in
English texte or in programa.

Character Strings in C

Character-string constante, as might appear in a C program, are stored as arrays of
Null character characters, íollowed by the special character '\0', called the null character, whose

value is O. However, in applications such as the ones mentioned above, we need the
íacility to create and atore new strings as a program ruos. Tbus, we need a data
structure in which we can store arbitrary character strings. Some oí the pO88ibilities
are:

1. Use a fixed-length array to hold character strings. Strings shorter than the
arfar are íollowed by a nulJ character. Strings longer than the arfar caDnot be

Thuncation stored in tbeir entirety. They must be troncated by storing only their prefix of
length equal to tbe lengtb of the array.

2. A scheme similar to (1), but 888ume that every string, or prefix oí a truncated
string, is íollowed by the null character. Tbis approach simplifies the reading
oí strings, but it reduces by one the number oí string characters that can be
stored.

3. A scheme similar to (1), but instead oí íollowing strings by a null charader,
use another integer length to indicate how long tbe string really is.

4. To avoid tbe restriction oí a maximumstring length, we can store tbe characters
oí the string as the elemente oí a linked listo POMibly, several characters can
be stored in one cell.

5. We mar create a large arfar of characters in which individual character strings
are placed. A string is tben rep~ted by a pointer to a place in the array
where tbe string begios. Strings mar be terminated by a null character or they
mar have an associated length.

~. "

,..
.~",': SEC.6.10 REPRESENTING CHARACTER STRINGS 329

Fixed-Lengtb Array Representations
Let us consider a structure oí type (1) above, where strings are represented by
fixed-length arrays. In the following example, we create structures that bave a
fixed-Iength array as one of their fields.

. Example 6.16. Consider the data structure we might use to hold one entry in
a concordance, that is, a single word and its associated information. We need to
hold

1. The word itself.
2. The number of times the word appears.
3. A list of the liDes oí the document in which there are one or more occurrences

oí the word.

Thus we might use the íollowing structure:

typedef struct {
char vord[MAI];
int occurrencea;
LIST linea;

} VORDCELL;

Here, MAl is the maximum length of a word. All VORDCELL structures have an array
called vord of MAl bytes, no matter how short the word happens to be.

The field occurrences is a count oí the number of times the word appears,
and liDes is a pointer to the beginning of a linked list of cells. These cells are of
the conventional type defined by the macro

DefCell(int. CELL. LIST);

Each cell holds ORe integer, representing a line on which there are ORe or more
occurrences of the word in question. Note that occurrences could be larger tban
the length of tbe list, if the word appeared several times on ORe line.

In Fig. 6.34 we see the structure for tbe word earth in the first chapter of
Genesis. We assume IIAI is at least 6. The complete list of line (verse) numbers is

(1,2,10,11,12,15,17,20,22,24,25,26,28,29,30).

vord: ".~h\O"
occurrence.: 20
1 i n e s : [II3-"{~B-"~3-"'" ... {~G

Fig. 6.34. Concordance entry for the word earth in the fint chapter oí GenesÍB.

The entire concordance might consist of a collection oí structures of type VORD-
CELL. These might, for example, be organized in a binary search tree, with the <
ordering of structures based on tbe alphabetic order oí words. That structure would
allow relatively fast access f.o words as we use the concordance. It would alBO allow
us to create the concordance efficiently as we scan the text f.o locate and list the
occurrences of the various words. To use the binary tree structure we would re-
quire left- and righkhild fields in the type VORDCELL. We could alBO arrange these

~

330 THE LIST DATA MODEL

structures in a linked list, by adding a "next" field to the type VORDCELL instead.
That would be a simpler structure, but it would be less efficient if the number of
words is large. We shall see, in the next chapter, how to arrange these structures
in a hash table, which probably offers the best peñormance of all data structures
for this problem. ..

Linked Lists for Character Strings
The limitation on the length of character strings, and the need to allocate a fixed
amount of space no matter how short the string, are two disadvantages of the
previous implementation of character strings. However, C and other languages allow
us to build other, more flexible data structures to repreeent strings. For example, if
we are concerned that there be no upper limit 00 the length of a character string,
we can use conventionallinked lists of characters to hold character strings. That is,
we can declare a type

tYpedef struct CHARCELL .CHARSTRING;
struct CHARCELL {

char character;
CHARSTRING next j

};

In the type VDRDCELL, CHARSTRING becomes the type of the field vord, as

typedef {
CHARSTRING vord;
int occurrences;
LIST lines;

} VDRDCELL;

For example, the word earth would be rep~nted by

[~~I3-"~~]~3-"[~J~3-"'[~~I~3-.[~I~
This scheme removes any upper limit on the length of words, but it is, in practice,
oot very ecooomical of space. The reasoo is that each structure of type CHARCELL
takes at least five bytes, assuming one for the character and a typical four for a
pointer to the next cell 00 the listo Thus, the great majority of the space is used
for the "overhead" of pointers rather than the "payload" of characters.

We can be a bit more clever, however, if we pack several bytes into the data
field of each cell. For example, if we put four characters into each cell, and pointers
consume four bytes, then half our space will be used for "payload," compared with
20% payload in the one-character-per-cell scheme. The only caution is that we
must have some character, such as the null character, that can serve as a string-
terminating character, as is the case for character strings stored in arrays. In
general, if CPC (characters per cell) is the number of characters that we are willing
to place in one cell, we can declare cells by

typedef struct CHARCELL .CHARSTRING;
struct CHARCELL {

char characters [CPC] ;
CHARSTRING next;

};

Packiog
characters joto
cells

..

Endmarker

SEC.6.10 REPRESENTING CHARACTER STRINGS 331

For example, ir CPC = 4, tben we could atore tbe word earth in two cells, as

jet =.1, ~ .I~ I +--Ih_I\~[-.,IJc..I~~~1
We could also increase CPC above 4. As we do so, tbe fraction of space taken

for pointers decreases, which is goodj it meaDa that the overhead of using linked
lista ratber tban arrays is dropping. On tbe other band, if we used a very large
value for CPC, we would find tbat almost all words used only one cell, but that cell
would bave many unused locations in it, just as an arfar of length CPC would.

Example 6.17. Let U8 suppose that in our population of character strings,
30% are between 1 8Jld 4 characters long, 40% between 5 8Jld 8 characters, 20% in
the range 9-12, 8Jld 10% in the r8Jlge 13-16. Then the table in Fig. 6.35 gives the
number of bytes devoted f.o linked lista rep~nting words in the loor ranges, for
four values of CPC, namely, 4, 8, 12, 8Jld 16. For our assumption about word-length
frequencies, CPC = 8 comes out best, with 8Jl average usage of 15.6 bytes That is,
we are best off using cells with room for 8 bytes, using a total of 12 bytes per cell,
including the 4 bytes for the next pointer. Note that the total space cost, which is
19.6 bytes when we include a pointer f.o the front of the list, is not 88 good 88 using
16 bytes for a character array. However, the linked-list scheme C8Jl accommodate
strings longer than 16 characters, even though our assumptions put a 0% probability
on finding such strings. +

CHARACTERS PER CELL

Fig.6.35. Numbers of bytes used for strings in various length
rauges by different values of CPC.

Mass Storage of Character Strings

There is another approach to the storage oí large numbers oí character strings that
combines the advantage oí arfar storage (little overhead) with the advantages oí-
linked-list storage (no wasted space due to padding, and no limit on string length).
We create one very long array oí characters, into which we shall store each char-
acter string. To tell where one string ends and the next begins, we need a special
character called the endmar*er. The endmarker character cannot appear as part oí
a legitimate character string. In what íollows, we shall use . as the endmarker, íor
visibility, although it is more usual to choose a nonprinting character, such as the
null character.

332 THE LIST DATA MODEL

+ Example 6.18. Suppoee we declare an array .pace by

char .paC8 [KAX] ;

We can tben atore a word by giving a pointer to tbe first position of .pace devoted
to that word. Tbe VORDCELL structure, analogoua to that of Example 6.16, would
then be

tJpedef .truct {

char .word;

int occurr8nc8.;

LIST line.;

} VDRDCELL;

In Fig. 6.36 we see the VORDCELL structure Cor tbe word the in a concordance based
on the book of Genesis. The pointer vord refers us to .pace (3], where we see the
beginning of the word th8.

Note that the lowest elements of the array .pace might appear to contain the
text itself. However, that would not continue to be the case for long. Even if the
next elements contain the words beginning, God, and created, tbe second the
would not appear again in the array 8pace. Rather, that word would be accounted
Cor by adding to the number of occurrences in tbe VORDCELL structure for the. As
we proceeded through the book and found more repetitions of words, the entries in
.pace would stop resembling the biblical text itselC. +

_pace:

Pág. 6.36.

As in Example 6.16, the structures of Example 6.18 can be formed into data
structures such as binary search trees or linked lists by adding the appropriate
pointer fields to tbe VORDCELL structure. The function lt(W1, W2) that compares
two VORDCELL 's Wl and W2 follows the vord fields of these structures and compares
tbem lexicographically.

To build a concordance using such a binary search tree, ft maintain a pointer
available to tbe first unoccupied position in the arfar .pace. Initially, available
points to .pace (OJ. Suppoee we are scanning the text for which the concordance

vord:

occurrenc..: 1377

lin..:

6 7 8o 1

Repre8enting words by

I
J

SEC.6.10 REPRESENTING CHARACTER STRINGS 333

What Happens When We Run Out of Space?

We have 888umed that sp&ce is so large that there is always room to add a new
word. Actually, each time we add a character we must be careíul that the current
pOOtion into which we write is leas than MAl.

lí we want to enter new words after running out oí space, we need to be prepared
to obtain new blocks oí space when the old one runs out. Instead oí creating just
one array .pace, we can define a character-array type

tYpedef char SPACE[MAX];

We can then create a new array, the first character oí which is pointed to by
available, by

available = (char .) aalloc(sizeof(SPACE»;

It is useíul to remember the end oí this array by immediately assigning

last = available + MAX;

We then insert words into the array pointed to by available. lí we can no
Jonger fit words into this array, we call aalloc to create another character array.
or course we must be careful not to write past the end of the array, and if we are
presented witb a string oí length greater tban M AX, tbere is no way we can store
tbe word in this scheme.

is being built and we find the next word - say, the. We do not know whether or
not the is already in the binary search tree. We thus temporarily add the. to the
position indicated by available and the three folIowing positions. We remember
that the newly added word takes up 4 bytes.

Now we can search for the word the in the binary search tree. If found, we
add 1 to its count of occurrences and insert the current line into the list of liDes.
If not found, we create a new node - which includes the fields of the VORDCELL
structure, plus left- and right-child pointers (both rroLL) - and insert it into the

tree at the proper place. We set the vord field in the new node to available, so
that it refers to our copy of the word the. We set occurrence. to 1 and create a
list for the field line. consisting of only the current line of texto Finally, we must
add 4 to available, since the word the has now been added permanently to the
space array.

EXERCISES

6.10.1: For the structure type VORDCELL discussed in Example 6.16, write the
following programa:

a) A function create that returns a pointer to a structure of type VDRDCELL.

b) A function insert(VDRDCELL .pVC. int line) that takes a pointer to the
structure VORDcELL and a line number, adds 1 to the number of occurrences
for that word, and adds that line to the list of liDes if it is not already there.

334 THE LIST DATA MODEL

6.10.2: Redo Example 6.17 under the 888umption that any word length from 1 to
40 is equally likely; that is, 10% of the words are oí length 1-4, 10% are of length
5-8, and 80 on, up to 10% in the range 37-40. What is the average number of bytes
required if CPC is 4, 8, . . . , 40?

6.10.3*: If, in tbe model of Example 6.17, all word lengtbs from 1 to n are equalIy
likely, wbat value of CPC, as a function of n, minimizes tbe number of bytes used?
If you cannot get tbe exact answer, a big-ob approximation is useful.

6.10.4*: ORe advantage of using tbe structure of Example 6.18 is tbat one can sbare
parts of tbe space array among two or more words. For example, tbe structure for
tbe word he could bave vord field equal to 5 in the array of Fig. 6.36. Compress
the words all, call, m&D, aania, m&Diac, recall, tvo, voaan into as few elements
of the space array as you can. How much space do you save by compression?

6.10.5*: Anotber approach to storing words is to eliminate tbe endmarker character
from the .pace array. Instead, we add a length field to tbe VORDCELL structures of
Example 6.18, to te" us how many characters from the first character, as indicated
by tbe vord field, are included in the word. Assuming tbat integers take four bytes,
does this scbeme save or cost space, compared with tbe scbeme described in Example
6.18? What ifintegers could be stored in ORe byte?

6.10.6**: Tbe scbeme described in Exercise 6.10.5 alBO gives us opportunities to
compress the .pace array. Now words can overlap even if neither is a suffix of the
other. How many elements of the space array do you need to atore tbe words in the
list of Exercise 6.10.4, using the scheme of Exercise 6.10.5?

6.10.7: Write a program to take two VORDCELL's as discussed in Example 6.18 and
determine wbich one's word precedes tbe otber in lexicographic arder. Recail tbat
words are terminated by . in tbis example.

.:. 6.11 Summary of Chapter 6

The íollowing points were covered in Chapter 6.

... Lists are an important data model representing sequences oí elements.

... Linked lists and arrays are two data structures that can be used to implement
lists.

.. Lists are a simple implementation oí dictionaries, but tbeir efficiency does not
compare with that of the binary search tree of
be covered in Chapter 7.

+ Placing
we are seeking is a useful efficiency improver.

.. Stacks and queues are important ~pecial kinds of lista.

.. Tbe stack is used "behind tbe scenes" to implement recursive functions.

5 or the hash table toChapter

a "sentinel" at the end of an arfar to make sure we find the element

.

...:... 6.12 Bibliographic Notes for

SEC.6.12 BIBLIOGRAPHIC NOTES FOR CHAPTER 6 335

A character string is an important special ca&e ol a list, and we have a number
of special data structures lor representing character strings efliciently. These
include linked lists that hold several characters per cell and large arrays shared
by many character strings.

... The problem of finding longest common SUb8equences can be solved efficiently
by a technique known as "dynamic programming," in which we fi" a table of
infarmatian in the proper arder.

Chapter 6

Knuth [1968] is still the fundamental source on list data structures. While it is
hard to trace the origins of very basic notions such as "list" or "stack," the first
prograrnming la.nguage to use lists as a part of its data model was IPL- V (Newell et
al. [1961]), although arnong the early list-processing la.nguages, only Lisp (McCarthy
et al. [1962]) survives arnong the currently importa.nt languages. Lisp, by the way,
stands for "LISt Processing."

The use of stacks in run-time implementation of recursive programs is discussed
in more detail in Aho, Sethi, a.nd Ullma.n [1986].

The longest-common-subsequence algorithm described in Section 6.9 is by Wag-
ner and Fischer [1975]. The algorithm actually used in the UNIX diff command is
described in Hunt and Szymanski [1977]. Aho [1990] surveys a number of algorithms
involving the matching of character strings.

Dynarnic prograrnming as a.n abstract technique was described by Bellman
[1957]. Aho, Hopcroft, a.nd Ullma.n [1983] give a number of exarnples of algorithms
using dynamic prograrnming.

Aho, A. V. [1990]. "AIgorithms for finding pattems in strings," in Handbook ol
TheoreticaJ ComputerScience Vol. A: Algorithmsand Complexity(J. Van Leeuwen,
ed.), MIT Press, Cambridge, Mass.

Aho, A. V., J. E. Hopcroft, and J. D. Ullma.n [1983]. Data Structures and Algo-
rithms, Addison-Wesley, Reading, Mass.

Aho, A. V., R. Sethi, and J. D. Ullman [1986]. Compilers: Principles, Techniques,
and Tools, Addison-Wesley, Reading, Mass.

Bellma.n, R. E. [1957]. Dynamic Programming, Princeton University Press, Prince-
ton, NJ.

Hunt, J. W. and T. G. Szymanski [1977]. "A fast algorithm for computing longest
common SUbsequences," Comm. ACM 20:5, pp. 350-353.

Knuth, D. E. [1968]. The Art ol Computer Programming, Vol. 1, Fundamental
Algorithms, Addison-Wesley, Reading, Mass.

McCarthy, J. et al. [1962]. LISP 1.5 Programmer's Manual, MIT Computation
Center a.nd Research Laboratory of Electronics, Cambridge, Mass.

Newell, A., F. M. Tonge, E. A. Feigenbaum, B. F. Green, and G. H. Mealy [1961].
Inlormation Processing LaDguage- V Manual, Prentice-Hall, Englewood Cliffs, New
Jersey.

336 THE LIST DATA MODEL

Wagner, R. A. and M. J. Fischer [1975]. "The
J. ACM 21:1, pp. 168-173.

~

string to string correction problem,"

~~~~~~


