
                                                                                                
4 Harmonics

4.1 DEFINITION OF HARMONICS

Webster’s New World Dictionary defines harmonics as pure tones making up a
composite tone in music. A pure tone is a musical sound of a single frequency, and
a combination of many pure tones makes up a composite sound. Sound waves are
electromagnetic waves traveling through space as a periodic function of time. Can
the principle behind pure music tones apply to other functions or quantities that are
time dependent? In the early 1800s, French mathematician, Jean Baptiste Fourier
formulated that a periodic nonsinusoidal function of a fundamental frequency f may
be expressed as the sum of sinusoidal functions of frequencies which are multiples
of the fundamental frequency. In our discussions here, we are mainly concerned
with periodic functions of voltage and current due to their importance in the field
of power quality. In other applications, the periodic function might refer to radiof-
requency transmission, heat flow through a medium, vibrations of a mechanical
structure, or the motions of a pendulum in a clock.

A sinusoidal voltage or current function that is dependent on time t may be
represented by the following expressions:

Voltage function, v(t) = V sin(ωt) (4.1)

Current function, i(t) = I sin(ωt ± Ø) (4.2)

where ω = 2 × π × f is known as the angular velocity of the periodic waveform and
Ø is the difference in phase angle between the voltage and the current waveforms
referred to as a common axis. The sign of phase angle Ø is positive if the current
leads the voltage and negative if the current lags the voltage. Figure 4.1 contains
voltage and current waveforms expressed by Eqs. (4.1) and (4.2) and which by
definition are pure sinusoids.

For the periodic nonsinusoidal waveform shown in Figure 4.2, the simplified
Fourier expression states:

v(t) = V0 + V1 sin(ωt) + V2 sin(2ωt) + V3 sin(3ωt) + … + Vn sin(nωt) + 

Vn+1 sin ((n+1)ωt) + … (4.3)

The Fourier expression is an infinite series. In this equation, V0 represents the
constant or the DC component of the waveform. V1, V2, V3, …, Vn are the peak values
of the successive terms of the expression. The terms are known as the harmonics of
the periodic waveform. The fundamental (or first harmonic) frequency has a
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frequency of f, the second harmonic has a frequency of 2 × f, the third harmonic
has a frequency of 3 × f, and the nth harmonic has a frequency of n × f. If the
fundamental frequency is 60 Hz (as in the U.S.), the second harmonic frequency is
120 Hz, and the third harmonic frequency is 180 Hz.

The significance of harmonic frequencies can be seen in Figure 4.3. The second
harmonic undergoes two complete cycles during one cycle of the fundamental fre-
quency, and the third harmonic traverses three complete cycles during one cycle of
the fundamental frequency. V1, V2, and V3 are the peak values of the harmonic
components that comprise the composite waveform, which also has a frequency of f.

FIGURE 4.1 Sinusoidal voltage and current functions of time (t). Lagging functions are
indicated by negative phase angle and leading functions by positive phase angle.

FIGURE 4.2 Nonsinusoidal voltage waveform Fourier series. The Fourier series allows
expression of nonsinusoidal periodic waveforms in terms of sinusoidal harmonic frequency
components.
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The ability to express a nonsinusoidal waveform as a sum of sinusoidal waves allows
us to use the more common mathematical expressions and formulas to solve power
system problems. In order to find the effect of a nonsinusoidal voltage or current on
a piece of equipment, we only need to determine the effect of the individual harmonics
and then vectorially sum the results to derive the net effect. Figure 4.4 illustrates how
individual harmonics that are sinusoidal can be added to form a nonsinusoidal wave-
form. 

The Fourier expression in Eq. (4.3) has been simplified to clarify the concept
behind harmonic frequency components in a nonlinear periodic function. For the
purist, the following more precise expression is offered. For a periodic voltage wave
with fundamental frequency of ω = 2πf,

v(t) = V0 + ∑ (ak cos kωt + bk sin kωt) (for k = 1 to ∞) (4.4)

FIGURE 4.3 Fundamental, second, and third harmonics.
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where ak and bk are the coefficients of the individual harmonic terms or components.
Under certain conditions, the cosine or sine terms can vanish, giving us a simpler
expression. If the function is an even function, meaning f(–t) = f(t), then the sine
terms vanish from the expression. If the function is odd, with f(–t) = –f(t), then
the cosine terms disappear. For our analysis, we will use the simplified expression
involving sine terms only. It should be noted that having both sine and cosine
terms affects only the displacement angle of the harmonic components and the
shape of the nonlinear wave and does not alter the principle behind application of
the Fourier series.

The coefficients of the harmonic terms of a function f(t) contained in Eq. (4.4)
are determined by:

ak =  f(t).coskt.dt, (k = 1,2,3, …, n) (4.5) 

bk =  f(t).sinkt.dt, (k = 1,2,3, …, n) (4.6)

The coefficients represent the peak values of the individual harmonic frequency terms
of the nonlinear periodic function represented by f(t). It is not the intent of this book
to explore the intricacies of the Fourier series. Several books in mathematics are
available for the reader who wants to develop a deeper understanding of this very
essential tool for solving power quality problems related to harmonics.

FIGURE 4.4 Creation of nonlinear waveform by adding the fundamental and third harmonic
frequency waveforms.
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4.2 HARMONIC NUMBER (h)

Harmonic number (h) refers to the individual frequency elements that comprise a
composite waveform. For example, h = 5 refers to the fifth harmonic component
with a frequency equal to five times the fundamental frequency. If the fundamental
frequency is 60 Hz, then the fifth harmonic frequency is 5 × 60, or 300 Hz. The
harmonic number 6 is a component with a frequency of 360 Hz. Dealing with
harmonic numbers and not with harmonic frequencies is done for two reasons. The
fundamental frequency varies among individual countries and applications. The
fundamental frequency in the U.S. is 60 Hz, whereas in Europe and many Asian
countries it is 50 Hz. Also, some applications use frequencies other than 50 or
60 Hz; for example, 400 Hz is a common frequency in the aerospace industry, while
some AC systems for electric traction use 25 Hz as the frequency. The inverter part
of an AC adjustable speed drive can operate at any frequency between zero and its
full rated maximum frequency, and the fundamental frequency then becomes the
frequency at which the motor is operating. The use of harmonic numbers allows us
to simplify how we express harmonics. The second reason for using harmonic
numbers is the simplification realized in performing mathematical operations involv-
ing harmonics.

4.3 ODD AND EVEN ORDER HARMONICS

As their names imply, odd harmonics have odd numbers (e.g., 3, 5, 7, 9, 11), and
even harmonics have even numbers (e.g., 2, 4, 6, 8, 10). Harmonic number 1 is
assigned to the fundamental frequency component of the periodic wave. Harmonic
number 0 represents the constant or DC component of the waveform. The DC
component is the net difference between the positive and negative halves of one
complete waveform cycle. Figure 4.5 shows a periodic waveform with net DC
content. The DC component of a waveform has undesirable effects, particularly on
transformers, due to the phenomenon of core saturation. Saturation of the core is
caused by operating the core at magnetic field levels above the knee of the magne-
tization curve. Transformers are designed to operate below the knee portion of the
curve. When DC voltages or currents are applied to the transformer winding, large
DC magnetic fields are set up in the transformer core. The sum of the AC and the
DC magnetic fields can shift the transformer operation into regions past the knee of
the saturation curve. Operation in the saturation region places large excitation power
requirements on the power system. The transformer losses are substantially
increased, causing excessive temperature rise. Core vibration becomes more pro-
nounced as a result of operation in the saturation region.

We usually look at harmonics as integers, but some applications produce har-
monic voltages and currents that are not integers. Electric arc furnaces are examples
of loads that generate non-integer harmonics. Arc welders can also generate non-
integer harmonics. In both cases, once the arc stabilizes, the non-integer harmonics
mostly disappear, leaving only the integer harmonics.

The majority of nonlinear loads produce harmonics that are odd multiples of
the fundamental frequency. Certain conditions need to exist for production of even
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harmonics. Uneven current draw between the positive and negative halves of one
cycle of operation can generate even harmonics. The uneven operation may be due
to the nature of the application or could indicate problems with the load circuitry.
Transformer magnetizing currents contain appreciable levels of even harmonic com-
ponents and so do arc furnaces during startup.

Subharmonics have frequencies below the fundamental frequency and are rare
in power systems. When subharmonics are present, the underlying cause is resonance
between the harmonic currents or voltages with the power system capacitance and
inductance. Subharmonics may be generated when a system is highly inductive (such
as an arc furnace during startup) or if the power system also contains large capacitor
banks for power factor correction or filtering. Such conditions produce slow oscil-
lations that are relatively undamped, resulting in voltage sags and light flicker.

4.4 HARMONIC PHASE ROTATION AND PHASE 
ANGLE RELATIONSHIP

So far we have treated harmonics as stand-alone entities working to produce wave-
form distortion in AC voltages and currents. This approach is valid if we are looking
at single-phase voltages or currents; however, in a three-phase power system, the
harmonics of one phase have a rotational and phase angle relationship with the

FIGURE 4.5 Current waveform with DC component (scale, 1 A = 200 A). This waveform
has a net negative DC component as indicated by the larger area of the negative half compared
to the positive half of each cycle.
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harmonics of the other phases. In power system studies involving harmonics, this
relationship is important.

In a balanced three-phase electrical system, the voltages and currents have a
positional relationship as shown in Figure 4.6. The three voltages are 120˚ apart and
so are the three currents. The normal phase rotation or sequence is a–b–c, which is
counterclockwise and designated as the positive-phase sequence in this book. For
harmonic analyses, these relationships are still applicable, but the fundamental
components of voltages and currents are used as reference. All other harmonics use
the fundamental frequency as the reference. The fundamental frequencies have a
positive-phase sequence. The angle between the fundamental voltage and the fun-
damental current is the displacement power factor angle, as defined in Chapter 1.

So how do the harmonics fit into this space–time picture? For a clearer
understanding, let us look only at the current harmonic phasors. We can further
simplify the picture by limiting the discussion to odd harmonics only, which
under normal and balanced conditions are the most prevalent. The following
relationships are true for the fundamental frequency current components in a
three-phase power system:

ia1 = Ia1 sin ωt (4.7)

ib1 = Ib1 sin (ωt-120°) (4.8)

ic1 = Ic1 sin (ωt-240°) (4.9)

FIGURE 4.6 Balanced three-phase power system. Phase sequence refers to the order in which
phasors move past a reference axis. The positive phase sequence is assigned a counterclock-
wise rotation.
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The negative displacement angles indicate that the fundamental phasors ib1 and ic1

trail the ia1 phasor by the indicated angle. Figure 4.7a shows the fundamental
current phasors.

The expressions for the third harmonic currents are:

ia3 = Ia3 sin 3ωt (4.10)

ib3 = Ib3 sin 3(ωt-120°) = Ib3 sin (3ωt-360°) = Ib3 sin 3ωt (4.11)

ic3 = Ic3 sin 3(ωt-240°) = Ic3 sin (3ωt-720°) = Ic3 sin 3ωt (4.12)

The expressions for the third harmonics show that they are in phase and have zero
displacement angle between them. Figure 4.7b shows the third harmonic phasors.
The third harmonic currents are known as zero sequence harmonics due to the zero
displacement angle between the three phasors.

FIGURE 4.7 (a) Fundamental phasors. (b) Third harmonic phasors. (c) Fifth harmonic pha-
sors. (d) Seventh harmonic phasors.
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The expressions for the fifth harmonic currents are:

ia5 = Ia5 sin 5ωt (4.13)

ib5 = Ib5 sin 5(ωt-120°) = Ib5 sin(5ωt-600°) = Ib5 sin(5ωt-240°) (4.14)

ic5 = Ic5 sin 5(ωt-240°) = Ic5 sin(5ωt-1200°) = Ic5 sin(5ωt-120°) (4.15)

Figure 4.7c shows the fifth harmonic phasors. Note that the phase sequence of the
fifth harmonic currents is clockwise and opposite to that of the fundamental. The
fifth harmonics are negative sequence harmonics.

Similarly the expressions for the seventh harmonic currents are:

ia7 = Ia7 sin 7ωt (4.16)

ib7 = Ib7 sin 7(ωt-120°) = Ib7 sin(7ωt-840°) = Ib7 sin(7ωt-120°) (4.17)

ic7 = Ic7 sin 7(ωt-240°) = Ic7 sin(7ωt-1680°) = Ic7 sin(7ωt-240°) (4.18)

Figure 4.7d shows the seventh har-
monic current phasors. The seventh
harmonics have the same phase
sequence as the fundamental and
are positive sequence harmonics.
So far, we have not included even
harmonics in the discussion; doing
so is left to the reader as an exer-
cise. Table 4.1 categorizes the har-
monics in terms of their respective
sequence orders.

The expressions shown so far for harmonics have zero phase shifts with respect
to the fundamental. It is not uncommon for the harmonics to have a phase-angle
shift with respect to the fundamental. Figure 4.8 depicts a fifth harmonic current
waveform with and without phase shift from the fundamental. Expressions for the
fifth harmonics with a phase-shift angle of θ degrees are:

ia5 = Ia5 sin 5(ωt-θ) (4.19)

ib5 = Ib5 sin 5(ωt-120°-θ) (4.20)

ic5 = Ic5 sin 5(ωt-240°-θ) (4.21)

While the phase-shift angle has the effect of altering the shape of the composite
waveform, the phase sequence order of the harmonics is not affected. 

TABLE 4.1
Harmonic Order vs. Phase Sequence

Harmonic Order Sequence

1, 4, 7, 10, 13, 16, 19 Positive
2, 5, 8, 11, 14, 17, 20 Negative
3, 6, 9, 12, 15, 18, 21 Zero
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4.5 CAUSES OF VOLTAGE AND CURRENT 
HARMONICS

A pure sinusoidal waveform with zero harmonic distortion is a hypothetical quantity
and not a practical one. The voltage waveform, even at the point of generation,
contains a small amount of distortion due to nonuniformity in the excitation magnetic
field and discrete spatial distribution of coils around the generator stator slots. The
distortion at the point of generation is usually very low, typically less than 1.0%.
The generated voltage is transmitted many hundreds of miles, transformed to several
levels, and ultimately distributed to the power user. The user equipment generates
currents that are rich in harmonic frequency components, especially in large com-
mercial or industrial installations. As harmonic currents travel to the power source,
the current distortion results in additional voltage distortion due to impedance volt-
ages associated with the various power distribution equipment, such as transmission
and distribution lines, transformers, cables, buses, and so on. Figure 4.9 illustrates
how current distortion is transformed into voltage distortion. Not all voltage distor-
tion, however, is due to the flow of distorted current through the power system
impedance. For instance, static uninterruptible power source (UPS) systems can

FIGURE 4.8 Nonsymmetry of the waveform with respect to a vertical reference plane intro-
duced by a displacement of harmonics. Periodicity is still maintained.
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generate appreciable voltage distortion due to the nature of their operation. Normal
AC voltage is converted to DC and then reconverted to AC in the inverter section
of the UPS. Unless waveform shaping circuitry is provided, the voltage waveforms
generated in UPS units tend to be distorted.

As nonlinear loads are propagated into the power system, voltage distortions are
introduced which become greater moving from the source to the load because of
the circuit impedances. Current distortions for the most part are caused by loads.
Even loads that are linear will generate nonlinear currents if the supply voltage
waveform is significantly distorted. When several power users share a common
power line, the voltage distortion produced by harmonic current injection of one
user can affect the other users. This is why standards are being issued that will limit
the amount of harmonic currents that individual power users can feed into the source
(an issue that we will examine later in this chapter). The major causes of current
distortion are nonlinear loads due to adjustable speed drives, fluorescent lighting,
rectifier banks, computer and data-processing loads, arc furnaces, and so on. One
can easily visualize an environment where a wide spectrum of harmonic frequencies
are generated and transmitted to other loads or other power users, thereby producing
undesirable results throughout the system.

4.6 INDIVIDUAL AND TOTAL HARMONIC 
DISTORTION

Individual harmonic distortion (IHD) is the ratio between the root mean square
(RMS) value of the individual harmonic and the RMS value of the fundamental

IHDn = In/I1 (4.22)

FIGURE 4.9 Voltage distortion due to current distortion. The gradient graph indicates how
distortion changes from source to load.
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For example, assume that the RMS value of the third harmonic current in a
nonlinear load is 20 A, the RMS value of the fifth harmonic current is 15 A, and
the RMS value of the fundamental is 60 A. Then, the individual third harmonic
distortion is:

IHD3 = 20/60 = 0.333, or 33.3%

and the individual fifth harmonic distortion is:

IHD5 = 15/60 = 0.25, or 25.0%

Under this definition, the value of IHD1 is always 100%. This method of quantifying
the harmonics is known as harmonic distortion based on the fundamental. This is
the convention used by the Institute of Electrical and Electronic Engineers (IEEE)
in the U.S. The European International Electrotechnical Commission (IEC) quanti-
fies harmonics based on the total RMS value of the waveform. Using the same
example shown above, the RMS value of the waveform is:

Irms =  = 65 A

Based on the IEC convention, 

IHD1 = 60/65 = 0.923, or 92.3%

IHD3 = 20/65 = 0.308, or 30.8%

IHD5 = 15/65 = 0.231, or 23.1%

The examples illustrate that even though the magnitudes of the harmonic currents
are the same, the distortion percentages are different because of a change in the
definition. It should be pointed out that it really does not matter what convention is
used as long as the same one is maintained throughout the harmonic analysis. In
this book, the IEEE convention will be followed, and all harmonic distortion calcu-
lations will be based on the fundamental.

Total harmonic distortion (THD) is a term used to describe the net deviation of
a nonlinear waveform from ideal sine waveform characteristics. Total harmonic
distortion is the ratio between the RMS value of the harmonics and the RMS value
of the fundamental. For example, if a nonlinear current has a fundamental component
of I1 and harmonic components of I2, I3, I4, I5, I6, I7, …, then the RMS value of the
harmonics is:

IH = (4.23)

THD = (IH/I1) × 100%  (4.24)
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Example: Find the total harmonic distortion of a voltage waveform with the
following harmonic frequency make up:

Fundamental = V1 = 114 V

3rd harmonic = V3 = 4 V

5th harmonic = V5 = 2 V

7th harmonic = V7 = 1.5 V

9th harmonic = V9 = 1 V

This problem can be solved in two ways:

RMS value of the harmonics = VH = = 4.82 V

THD = (4.82/114) × 100 ≅ 4.23%

or find the individual harmonic distortions:

IHD3 = 4/114 = 3.51%

IHD5 = 2/114 = 1.75%

IHD7 = 1.5/114 = 1.32%

IHD9 = 1/114 = 0.88%

By definition, IHD1 = 100%, so

THD = ≅ 4.23%

The results are not altered by using either the magnitude of the RMS quantities or
the individual harmonic distortion values.

The individual harmonic distortion indicates the contribution of each harmonic
frequency to the distorted waveform, and the total harmonic distortion describes the
net deviation due to all the harmonics. These are both important parameters. In order
to solve harmonic problems, we require information on the composition of the
individual distortions so that any treatment may be tailored to suit the problem. The
total harmonic distortion, while conveying no information on the harmonic makeup,
is used to describe the degree of pollution of the power system as far as harmonics
are concerned. Defining the individual and total harmonic distortions will be helpful
as we look at some typical nonlinear waveforms and their harmonic frequency
characteristics.

42 22 1.52 12+ + +( )

IHD3
2 IHD5

2 IHD7
2 IHD9

2+ + +( )
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4.7 HARMONIC SIGNATURES

Many of the loads installed in present-day power systems are harmonic current
generators. Combined with the impedance of the electrical system, the loads also
produce harmonic voltages. The nonlinear loads may therefore be viewed as both
harmonic current generators and harmonic voltage generators. Prior to the 1970s,
speed control of AC motors was primarily achieved using belts and pulleys. Now,
adjustable speed drives (ASDs) perform speed control functions very efficiently.
ASDs are generators of large harmonic currents. Fluorescent lights use less electrical
energy for the same light output as incandescent lighting but produce substantial
harmonic currents in the process. The explosion of personal computer use has
resulted in harmonic current proliferation in commercial buildings. This section is
devoted to describing, in no particular order, a few of the more common nonlinear
loads that surround us in our everyday life.

4.7.1 FLUORESCENT LIGHTING

Figure 4.10 shows a current waveform at a distribution panel supplying exclusively
fluorescent lights. The waveform is primarily comprised of the third and the fifth
harmonic frequencies. The individual current harmonic distortion makeup is pro-
vided in Table 4.2. The waveform also contains slight traces of even harmonics,
especially of the higher frequency order. The current waveform is flat topped due
to initiation of arc within the gas tube, which causes the voltage across the tube and
the current to become essentially unchanged for a portion of each half of a cycle.

4.7.2 ADJUSTABLE SPEED DRIVES

While several technologies exist for creating a variable voltage and variable fre-
quency power source for the speed control of AC motors, the pulse-width modulation
(PWM) drive technology is currently the most widely used. Figures 4.11 and 4.12
show current graphs at the ASD input lines with a motor operating at 60 and 45 Hz,
respectively. Tables 4.3 and 4.4 show the harmonic current distortion spectrum for
the two respective frequencies. The characteristic double hump for each half cycle
of the AC waveform is due to conduction of the input rectifier modules for a duration
of two 60˚ periods for each half cycle. As the operating frequency is reduced, the
humps become pronounced with a large increase in the total harmonic distortion.
The THD of 74.2% for 45-Hz operation is excessive and can produce many delete-
rious effects, as will be shown in later sections of this chapter.

Figure 4.13 is the waveform of the voltage at the ASD input power lines. It was
stated earlier that large current distortions can produce significant voltage distortions.
In this particular case, the voltage THD is 8.3%, which is higher than levels typically
found in most industrial installations. High levels of voltage THD also produce
unwanted results. Table 4.5 provides the voltage harmonic distortion distribution.

Figure 4.14 is the current waveform of an ASD of smaller horsepower. This
drive contains line side inductors which, along with the higher inductance of the
motor, produce a current waveform with less distortion. Table 4.6 provides the
harmonic frequency distribution for this ASD. 
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FIGURE 4.10 Nonlinear current drawn by fluorescent lighting.

TABLE 4.2
Harmonic Number h(n) vs. Individual Harmonic 
Distortion (IHD) for a Fluorescent Lighting Load

Harmonic Distortion Spectrum

h(n) IHD (%) h(n) IHD (%) h(n) IHD (%)

0 — 11 2.2 22 0.6
1 100 12 0.3 23 0.6
2 0.3 13 1.7 24 0.7
3 13.9 14 0.3 25 1.4
4 0.3 15 1.9 26 1.1
5 9 16 0.3 27 0.3
6 0.2 17 0.8 28 0.9
7 3.3 18 0.5 29 1.5
8 0 19 1.4 30 1
9 3.2 20 0.4 31 0.3

10 0.1 21 1.2

Note: Total harmonic distortion = 18.0%.
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FIGURE 4.11 Adjustable speed drive input current with motor operating at 60 Hz.

FIGURE 4.12 Adjustable speed drive input current with motor operating at 45 Hz.
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TABLE 4.3
Harmonic Number h(n) vs. Individual Harmonic 
Distortion for an Adjustable Speed Drive Input Current 
with Motor Running at 60 Hz

Harmonic Distortion Spectrum

h(n) IHD (%) h(n) IHD (%) h(n) IHD (%)

0 0.15 11 9.99 22 0.39
1 100 12 0.03 23 2.95
2 4.12 13 0.19 24 0.02
3 0.78 14 0.48 25 0.66
4 1.79 15 0.07 26 0.15
5 35.01 16 0.52 27 0.05
6 0.215 17 4.85 28 0.22
7 2.62 18 0.03 29 1.79
8 1 19 0.67 30 0.03
9 0.06 20 0.31 31 0.64

10 0.73 21 0.04

Note: Total harmonic distortion = 37.3%.

TABLE 4.4
Harmonic Number h(n) vs. Individual Harmonic 
Distortion for an Adjustable Speed Drive Input Current 
with Motor Running at 45 Hz

Harmonic Distortion Spectrum

h(n) IHD (%) h(n) IHD (%) h(n) IHD (%)

0 2.23 11 6.36 22 0.16
1 100 12 0.03 23 3.75
2 4.56 13 9.99 24 0.12
3 2.44 14 0.11 25 1.73
4 3.29 15 0.62 26 0.42
5 62.9 16 0.35 27 0.33
6 1.4 17 5.22 28 0.22
7 36.1 18 0.35 29 1.68
8 0.43 19 1.96 30 0.26
9 0.73 20 0.64 31 1.36

10 0.58 21 0.22

Note: Total harmonic distortion = 74.2%.
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FIGURE 4.13 Adjustable speed drive input voltage with motor operating at 60 Hz.

TABLE 4.5
Harmonic Number h(n) vs. Individual Harmonic 
Distortion for an Adjustable Speed Drive Input Voltage 
with Motor Running at 60 Hz 

Harmonic Distortion Spectrum

h(n) IHD (%) h(n) IHD (%) h(n) IHD (%)

0 0.02 11 1.87 22 0.07
1 100 12 0.02 23 0.46
2 0.12 13 0.92 24 0.04
3 0.09 14 0.07 25 0.36
4 0.11 15 0.01 26 0.06
5 7.82 16 0.04 27 0.03
6 0.01 17 0.61 28 0.07
7 1.42 18 0.06 29 0.4
8 0.06 19 0.36 30 0.02
9 0.04 20 0.06 31 0.34

10 0.03 21 0.12

Note: Total harmonic distortion = 8.3%.
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FIGURE 4.14 Adjustable speed drive input current for a smaller motor operating at 50 Hz
(ASD with input line inductors).

TABLE 4.6
Harmonic Number h(n) vs. Individual Harmonic 
Distortion for an Adjustable Speed Drive Input Voltage 
with Line Inductor and Motor Running at 50 Hz 

Harmonic Distortion Spectrum

h(n) IHD (%) h(n) IHD (%) h(n) IHD (%)

0 1.27 11 0.93 22 0.43
1 100 12 0.44 23 0.42
2 1.76 13 1.01 24 0.29
3 35.5 14 0.35 25 0.51
4 1.91 15 0.96 26 0.24
5 3.83 16 0.53 27 0.58
6 1.62 17 0.23 28 0.15
7 3.42 18 0.64 29 0.2
8 0.93 19 0.82 30 0.13
9 3.22 20 0.44 31 0.21

10 0.54 21 0.75

Note: Total harmonic distortion = 36.3%.
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4.7.3 PERSONAL COMPUTER AND MONITOR

Figures 4.15 and 4.16 show the nonlinear current characteristics of a personal
computer and a computer monitor, respectively. Tables 4.7 and 4.8 provide the
harmonic content of the currents for the two devices. The predominance of the third
and fifth harmonics is evident. The current THD for both devices exceeds 100%, as
the result of high levels of individual distortions introduced by the third and fifth
harmonics. The total current drawn by a personal computer and its monitor is less
than 2 A, but a typical high-rise building can contain several hundred computers
and monitors. The net effect of this on the total current harmonic distortion of a
facility is not difficult to visualize.

So far we have examined some of the more common harmonic current genera-
tors. The examples illustrate that a wide spectrum of harmonic currents is generated.
Depending on the size of the power source and the harmonic current makeup, the
composite harmonic picture will be different from facility to facility.

4.8 EFFECT OF HARMONICS ON POWER SYSTEM 
DEVICES

We are interested in the subject of harmonics because of the harmful effects they
have on power system devices. What makes harmonics so insidious is that very often

FIGURE 4.15 Nonlinear current drawn by single personal computer.

FIGURE 4.16 Nonlinear current drawn by single computer video monitor.
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the effects of harmonics are not known until failure occurs. Insight into how har-
monics can interact within a power system and how they can affect power system
components is important for preventing failures. In this section, we will look at the
effect of harmonics on some common power system devices.

TABLE 4.7
Harmonic Number h(n) vs. Individual Harmonic 
Distortion for a Personal Computer

Harmonic Distortion Spectrum

h(n) IHD (%) h(n) IHD (%) h(n) IHD (%)

0 12.8 11 10.3 22 2.1
1 100 12 1.2 23 0
2 3.3 13 10.3 24 0
3 87.2 14 0 25 0
4 5.1 15 10.3 26 0
5 64.1 16 0 27 0
6 1.6 17 5.1 28 0
7 41.1 18 0 29 0
8 0 19 2.4 30 0
9 17.9 20 0 31 0

10 1.1 21 2.1

Note: Total harmonic distortion = 118.3%.

TABLE 4.8
Harmonic Frequency h(n) vs. Individual Harmonic 
Distortion for Computer Monitor Current

Harmonic Distortion Spectrum

h(n) IHD (%) h(n) IHD (%) h(n) IHD (%)

0 0 11 10 22 0
1 100 12 2.5 23 5
2 5 13 10 24 0
3 90 14 2.5 25 0
4 5 15 10 26 0
5 62.5 16 0 27 0
6 5 17 2.5 28 0
7 32.5 18 0 29 0
8 0 19 0 30 0
9 12.5 20 0 31 0

10 2.5 21 5

Note: Total harmonic distortion = 116.3%.
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4.8.1 TRANSFORMERS

Harmonics can affect transformers primarily in two ways. Voltage harmonics pro-
duce additional losses in the transformer core as the higher frequency harmonic
voltages set up hysteresis loops, which superimpose on the fundamental loop. Each
loop represents higher magnetization power requirements and higher core losses. A
second and a more serious effect of harmonics is due to harmonic frequency currents
in the transformer windings. The harmonic currents increase the net RMS current
flowing in the transformer windings which results in additional I2R losses. Winding
eddy current losses are also increased. Winding eddy currents are circulating currents
induced in the conductors by the leakage magnetic flux. Eddy current concentrations
are higher at the ends of the windings due to the crowding effect of the leakage
magnetic field at the coil extremities. The winding eddy current losses increase as
the square of the harmonic current and the square of the frequency of the current.
Thus, the eddy loss (EC) is proportional to Ih

2  × h2, where Ih is the RMS value of
the harmonic current of order h, and h is the harmonic frequency order or number.
Eddy currents due to harmonics can significantly increase the transformer winding
temperature. Transformers that are required to supply large nonlinear loads must be
derated to handle the harmonics. This derating factor is based on the percentage of
the harmonic currents in the load and the rated winding eddy current losses.

One method by which transformers may be rated for suitability to handle har-
monic loads is by k factor ratings. The k factor is equal to the sum of the square of
the harmonic frequency currents (expressed as a ratio of the total RMS current)
multiplied by the square of the harmonic frequency numbers:

(4.25)

where

I1 is the ratio between the fundamental current and the total RMS current.
I2 is the ratio between the second harmonic current and the total RMS current.
I3 is the ratio between the third harmonic current and the total RMS current.

Equation (4.25) can be rewritten as:

(4.26)

Example: Determine the k rating of a transformer required to carry a load
consisting of 500 A of fundamental, 200 A of third harmonics, 120 A of fifth
harmonics, and 90 A of seventh harmonics:

Total RMS current (I) = = 559 A

I1 = 500/559 = 0.894

k I1
2 1( )2 I2

2 2( )2 I3
2 3( )2 I4

2 4( )2 … In
2 n( )2+ + + + +=

k Σ In
2h2 h = 1 2 3 … n, , , ,( )=

5002 2002 1202 902+ + +( )
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I3 = 200/559 = 0.358

I5 = 120/559 = 0.215

I7 = 90/559 = 0.161

k = (0.894)212 + (0.358)232 + (0.215)252 + (0.161)272 = 4.378

The transformer specified should be capable of handling 559 A of total RMS current
with a k factor of not less than 4.378. Typically, transformers are marked with k
ratings of 4, 9, 13, 20, 30, 40, and 50, so a transformer with a k rating of 9 should
be chosen. Such a transformer would have the capability to carry the full RMS load
current and handle winding eddy current losses equal to k times the normal rated
eddy current losses.

The k factor concept is derived from the ANSI/IEEE C57.110 standard, Recom-
mended Practices for Establishing Transformer Capability When Supplying Non-
Sinusoidal Load Currents, which provides the following expression for derating a
transformer when supplying harmonic loads:

I max.(pu) = [PLL–R(pu)/1 + (Σfh
2 h2/Σf h

2 )PEC–R(pu)]1/2 (4.27)

where

I max.(pu) = ratio of the maximum nonlinear current of a specified harmonic
makeup that the transformer can handle to the transformer rated current.

PLL–R(pu) = load loss density under rated conditions (per unit of rated load I2R
loss density.

PEC–R(pu) = winding eddy current loss under rated conditions (per unit of rated
I2R loss).

fh = harmonic current distribution factor for harmonic h (equal to harmonic h
current divided by the fundamental frequency current for any given load
level).

h = harmonic number or order.

As difficult as this formula might seem, the underlying principle is to account for
the increased winding eddy current losses due to the harmonics. The following
example might help clarify the IEEE expression for derating a transformer.

Example: A transformer with a full load current rating of 1000 A is subjected
to a load with the following nonlinear characteristics. The transformer has a rated
winding eddy current loss density of 10.0% (0.10 pu). Find the transformer
derating factor.

Harmonic number (h) fh (pu)

1 1
3 0.35
5 0.17
7 0.09
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Maximum load loss density, PLL–R(pu) = 1 + 0.1 = 1.1

Maximum rated eddy current loss density, PEC–R(pu) = 0.1

Σfh
2h2 = 12 + (0.35)232 + (0.17)252 + (0.09)272 = 3.22

Σfh
2  = 12 + 0.352 + 0.172 + 0.092 = 1.16

I max.(pu) = [1.1/1 + (3.22 × 0.1/1.16)]1/2 = 0.928

The transformer derating factor is 0.928; that is, the maximum nonlinear current of
the specified harmonic makeup that the transformer can handle is 928 A.

The ANSI/IEEE derating method is very useful when it is necessary to calculate
the allowable maximum currents when the harmonic makeup of the load is known.
For example, the load harmonic conditions might change on an existing transformer
depending on the characteristics of new or replacement equipment. In such cases,
the transformer may require derating. Also, transformers that supply large third
harmonic generating loads should have the neutrals oversized. This is because, as
we saw earlier, the third harmonic currents of the three phases are in phase and
therefore tend to add in the neutral circuit. In theory, the neutral current can be as
high as 173% of the phase currents. Transformers for such applications should have
a neutral bus that is twice as large as the phase bus.

4.8.2 AC MOTORS

Application of distorted voltage to a motor results in additional losses in the magnetic
core of the motor. Hysteresis and eddy current losses in the core increase as higher
frequency harmonic voltages are impressed on the motor windings. Hysteresis losses
increase with frequency and eddy current losses increase as the square of the
frequency. Also, harmonic currents produce additional I2R losses in the motor wind-
ings which must be accounted for.

Another effect, and perhaps a more serious one, is torsional oscillations due to
harmonics. Table 4.1 classified harmonics into one of three categories. Two of the
more prominent harmonics found in a typical power system are the fifth and seventh
harmonics. The fifth harmonic is a negative sequence harmonic, and the resulting
magnetic field revolves in a direction opposite to that of the fundamental field at a
speed five times the fundamental. The seventh harmonic is a positive sequence
harmonic with a resulting magnetic field revolving in the same direction as the
fundamental field at a speed seven times the fundamental. The net effect is a magnetic
field that revolves at a relative speed of six times the speed of the rotor. This induces
currents in the rotor bars at a frequency of six times the fundamental frequency. The
resulting interaction between the magnetic fields and the rotor-induced currents
produces torsional oscillations of the motor shaft. If the frequency of the oscillation
coincides with the natural frequency of the motor rotating members, severe damage
to the motor can result. Excessive vibration and noise in a motor operating in a
harmonic environment should be investigated to prevent failures.
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Motors intended for operation in a severe harmonic environment must be spe-
cially designed for the application. Motor manufacturers provide motors for opera-
tion with ASD units. If the harmonic levels become excessive, filters may be applied
at the motor terminals to keep the harmonic currents from the motor windings. Large
motors supplied from ASDs are usually provided with harmonic filters to prevent
motor damage due to harmonics.

4.8.3 CAPACITOR BANKS

Capacitor banks are commonly found in commercial and industrial power systems
to correct for low power factor conditions. Capacitor banks are designed to operate
at a maximum voltage of 110% of their rated voltages and at 135% of their rated
kVARS. When large levels of voltage and current harmonics are present, the ratings
are quite often exceeded, resulting in failures. Because the reactance of a capacitor
bank is inversely proportional to frequency, harmonic currents can find their way
into a capacitor bank. The capacitor bank acts as a sink, absorbing stray harmonic
currents and causing overloads and subsequent failure of the bank.

A more serious condition with potential for substantial damage occurs due to a
phenomenon called harmonic resonance. Resonance conditions are created when
the inductive and capacitive reactances become equal at one of the harmonic fre-
quencies. The two types of resonances are series and parallel. In general, series
resonance produces voltage amplification and parallel resonance results in current
multiplication. Resonance will not be analyzed in this book, but many textbooks on
electrical circuit theory are available that can be consulted for further explanation.
In a harmonic-rich environment, both series and parallel resonance may be present.
If a high level of harmonic voltage or current corresponding to the resonance
frequency exists in a power system, considerable damage to the capacitor bank as
well as other power system devices can result. The following example might help
to illustrate power system resonance due to capacitor banks.

Example: Figure 4.17 shows a 2000-kVA, 13.8-kV to 480/277-V transformer
with a leakage reactance of 6.0% feeding a bus containing two 500-hp adjustable
speed drives. A 750-kVAR Y-connected capacitor bank is installed on the 480-V bus
for power factor correction. Perform an analysis to determine the conditions for
resonance (consult Figure 4.18 for the transformer and capacitor connections and
their respective voltages and currents):

Transformer secondary current (I) = 2000 × 103/  = 2406 A

Transformer secondary volts = (V) = 277

Transformer reactance = I × XL × 100/V = 6.0

Transformer leakage reactance (XL) = 0.06 × 277/2406 = 0.0069 Ω

XL = 2πfL, where L = 0.0069/377 = 0.183 × 10–4 H

3 480×
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FIGURE 4.17 Schematic representation of an adjustable speed drive and a capacitor bank
supplied from a 2000-kVA power transformer.

FIGURE 4.18 Transformer and capacitor bank configuration.
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For the capacitor bank, 

 × IC = 750 × 103, where IC = 902 A

Capacitive reactance (XC) = V/IC = 277/902 = 0.307 Ω

XC = 1/2πfC, where C = 1/(377 × 0.307) = 86 × 10–4 F

For resonance, XL = XC; therefore, 

2πfRL = 1/2πfRC

where fR is the resonance frequency 

fR = 1/2π  ≅ 401 Hz

The resonance frequency is 401 Hz or the 6.7th (401/60) harmonic frequency. The
resonance frequency is close to the seventh harmonic frequency, which is one of the
more common harmonic frequency components found in power systems. This con-
dition can have very serious effects.

The following expression presents a different way to find the harmonic resonance
frequency:

Resonance frequency order = Rn = (4.28)

where MVASC is the available symmetrical fault MVA at the point of connection of
the capacitor in the power system, and MVARC is the rating of the capacitor bank
in MVAR. In the above example, neglecting the source impedance, the available fault
current = 2406 ÷ 0.06 ≅ 40,100 A.

Available fault MVA =  = 33.34

Capacitor MVAR = 0.75

Therefore, the resonance frequency number =  = 6.67, and the har-
monic frequency = 6.67 × 60 = 400.2. This proves that similar results are obtained
by using Eq. (4.28). The expression in Eq. (4.28) is derived as follows: The available
three-phase fault current at the common bus is given by ISC = V ÷ X, where V is the
phase voltage in kilovolts and X is the total reactance of the power system at the
bus. ISC is in units of kiloamperes.

ISC = V ÷ 2πf1L, where f1 is the fundamental frequency

Short circuit MVA = MVASC = 3 × V × ISC = 3V2 ÷ 2πf1L

3 480×

LC

MV ASC ÷ MVARC( )

3 480× 40 100 10 6–×,×

33.34 ÷ 0.75
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From this,

L = 3V2 ÷ 2πf1(MVASC)

At resonance,

XLR = 2πfRL = 3V2fR ÷ f1(MVASC)

Because fR ÷ f1 = resonance frequency order, Rn, then

XLR = 3V2Rn ÷ (MVASC)

For the capacitor bank, IC = V ÷ XC, and capacitor reactive power MVARC =
3 × V × IC = 3V2(2πf1C). We can derive an expression for the capacitive reactance
at resonance XCR = 3V2 ÷ Rn(MVARC). Equating XLR and XCR, the harmonic order at
resonance is the expression given by Eq. (4.28).

The capacitor bank and the transformer form a parallel resonant circuit with the
seventh harmonic current from the ASDs acting as the harmonic source. This con-
dition is represented in Figure 4.19. Two adjustable speed drives typically draw a
current of 550 A each, for a total load of 1100 A. If the seventh harmonic current
is 5.0% of the fundamental (which is typical in drive applications), the seventh
harmonic current seen by the parallel resonant circuit is 55 A = I7.

If the resistance of the transformer and the associated cable, bus, etc. is 1.0%,
then R ≅ 0.0012 Ω.

The quality factor, Q, of an electrical system is a measure of the energy stored
in the inductance and the capacitance of the system. The current amplification factor
(CAF) of a parallel resonance circuit is approximately equal to the Q of the circuit:

Q = 2π(maximum energy stored)/ energy dissipated per cycle

Q = (2π)(1/2)LIm
2 ÷ (I2R)/f, where Im = 

Q = X/R

FIGURE 4.19 Parallel resonance circuit formed by transformer inductance and capacitor
bank capacitance at harmonic frequency fH.
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For the seventh harmonic frequency, CAF = X7/R = 7 × 0.0069/0.0012 = 40.25.
Therefore, current IR = 40.25 × 55 = 2214 A. The net current through the capacitor
bank = = 2390 A. It is easy to see that the capacitor bank is severely
overloaded. If the capacitor protective device does not operate to isolate the bank,
the capacitor bank will be damaged.

In the above example, by changing the capacitor bank to a 500-kVAR unit, the
resonance frequency is increased to 490 Hz, or the 8.2 harmonic. This frequency is
potentially less troublesome. (The reader is encouraged to work out the calculations.)
In addition, the transformer and the capacitor bank may also form a series resonance
circuit as viewed from the power source. This condition can cause a large voltage
rise on the 480-V bus with unwanted results. Prior to installing a capacitor bank, it
is important to perform a harmonic analysis to ensure that resonance frequencies do
not coincide with any of the characteristic harmonic frequencies of the power system.

4.8.4 CABLES

Current flowing in a cable produces I2R losses. When the load current contains
harmonic content, additional losses are introduced. To compound the problem, the
effective resistance of the cable increases with frequency because of the phenomenon
known as skin effect. Skin effect is due to unequal flux linkage across the cross
section of the conductor which causes AC currents to flow only on the outer periphery
of the conductor. This has the effect of increasing the resistance of the conductor
for AC currents. The higher the frequency of the current, the greater the tendency
of the current to crowd at the outer periphery of the conductor and the greater the
effective resistance for that frequency.

The capacity of a cable to carry nonlinear loads may be determined as follows.
The skin effect factor is calculated first. The skin effect factor depends on the skin
depth, which is an indicator of the penetration of the current in a conductor. Skin
depth (δ) is inversely proportional to the square root of the frequency:

δ = S ÷ 

where S is a proportionality constant based on the physical characteristics of the
cable and its magnetic permeability and f is the frequency of the current.

If Rdc is the DC resistance of the cable, then the AC resistance at frequency f,
(Rf) = K × Rdc. The value of K is determined from Table 4.9 according to the value
of X, which is calculated as:

X = 0.0636 (4.29)

where 0.0636 is a constant for copper conductors, f is the frequency, µ is the magnetic
permeability of the conductor material, and Rdc is the DC resistance per mile of the
conductor. The magnetic permeability of a nonmagnetic material such as copper is
approximately equal to 1.0. Tables or graphs containing values of X and K are
available from cable manufacturers.

IC
2 IR

2+( )

f

fµ ÷ Rdc
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Example: Find the 60-Hz and 420-Hz resistance of a 4/0 copper cable with a
DC resistance of 0.276 Ω per mile. Using Eq. (4.29), 

X60 = 0.0636  = 0.938

From Table 4.2, K ≅ 1.004, and R60 = 1.004 × 0.276 = 0.277 Ω per mile. Also, 

X420 = 0.0636  = 2.48

From Table 4.2, K ≅ 1.154, and R420 = 1.154 × 0.276 = 0.319 Ω per mile.
The ratio of the resistance of the cable at a given frequency to its resistance at

60 Hz is defined as the skin effect ratio, E. According to this definition,

E2 = resistance at second harmonic frequency ÷ resistance at the fundamental
frequency = R120 ÷ R60

E3 = resistance at third harmonic frequency ÷ resistance at the fundamental
frequency = R180 ÷ R60

Also, remember that the general form expression for the individual harmonic
distortions states that In is equal to the RMS value of the nth harmonic current
divided by the RMS value of the fundamental current, thus an expression for the
current rating factor for cables can be formulated. The current rating factor (q) is
the equivalent fundamental frequency current at which the cable should be rated for
carrying nonlinear loads containing harmonic frequency components:

(4.30)

TABLE 4.9
Cable Skin Effect Factor

X K X K X K

0 1 1.4 1.01969 2.7 1.22753
0.1 1 1.5 1.02558 2.8 1.2662
0.2 1 1.6 1.03323 2.9 1.28644
0.3 1.00004 1.7 1.04205 3.0 1.31809
0.5 1.00032 1.8 1.0524 3.1 1.35102
0.6 1.00067 1.9 1.0644 3.1 1.38504
0.7 1.00124 2.0 1.07816 3.3 1.41999
0.8 1.00212 2.1 1.09375 3.4 1.4577
0.9 1.0034 2.1 1.11126 3.5 1.49202
1.0 1.00519 2.3 1.13069 3.6 1.52879
1.1 1.00758 2.4 1.15207 3.7 1.56587
1.2 1.01071 2.5 1.17538 3.8 1.60312
1.3 1.0147 2.6 1.20056 3.9 1.64051

60 1 ÷ 0.276×( )

420 1÷ 0.276×( )

q I1
2E1 I2

2E2 I3
2E3 … In

2En+ + + +=
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where I1, I2, I3 are the ratios of the harmonic frequency currents to the fundamental
current, and E1, E2, E3 are the skin effect ratios.

Example: Determine the current rating factor for a 300-kcmil copper conductor
required to carry a nonlinear load with the following harmonic frequency content:

Fundamental = 250 A

3rd harmonic = 25 A

5th harmonic = 60 A

7th harmonic = 45 A

11th harmonic = 20 A

The DC resistance of 300-kcmil cable = 0.17 Ω per mile. Using Eq. (4.29),

X60 = 0.0636  = 1.195, K ≅ 1.0106

X180 = 0.0636  = 2.069, K ≅ 1.089

X300 = 0.0636  = 2.672, K ≅ 1.220

X420 = 0.0636  = 3.161, K ≅ 1.372

X660 = 0,0636  = 3.963, K ≅ 1.664

R60 = 1.0106 × 0.17 = 0.1718 Ω/mile

R180 = 1.089 × 0.17 = 0.1851 Ω/mile

R300 = 1.220 × 0.17 = 0.2074 Ω/mile

R420 = 1.372 × 0.17 = 0.2332 Ω/mile

R660 = 1.664 × 0.17 = 0.2829 Ω/mile

Skin effect ratios are:

E1 = 1, E3 = 1.077, E5 = 1.207, E7 = 1.357, E11 = 1.647

The individual harmonic distortion factors are:

I1 = 1.0, I3 = 25/250 = 0.1, I5 = 60/250 = 0.24, I7 = 0.18, I11 = 20/250 = 0.08

The current rating factor from Eq. (4.30) is given by:

q = 1 + (0.1)2(1.077) + (0.24)2(1.207) + (0.18)2(1.357) + (0.08)2(1.647) = 1.135

60 1 ÷ 0.17×( )

180 1 ÷ 0.17×( )

300 1 ÷ 0.17×( )

420 1 ÷ 0.17×( )

660 1 ÷ 0.17×( )
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The cable should be capable of handling a 60-Hz equivalent current of 1.135 × 250
≅ 284 A.

4.8.5 BUSWAYS

Most commercial multistory installations contain busways that serve as the primary
source of electrical power to various floors. Busways that incorporate sandwiched
busbars are susceptible to nonlinear loading, especially if the neutral bus carries
large levels of triplen harmonic currents (third, ninth, etc.). Under the worst possible
conditions, the neutral bus may be forced to carry a current equal to 173% of the
phase currents. In cases where substantial neutral currents are expected, the busways
must be suitably derated. Table 4.10 indicates the amount of nonlinear loads that
may be allowed to flow in the phase busbars for different neutral currents. The data
are shown for busways with neutral busbars that are 100 and 200% in size.

4.8.6 PROTECTIVE DEVICES

Harmonic currents influence the operation of protective devices. Fuses and motor
thermal overload devices are prone to nuisance operation when subjected to nonlin-
ear currents. This factor should be given due consideration when sizing protective
devices for use in a harmonic environment. Electromechanical relays are also
affected by harmonics. Depending on the design, an electromechanical relay may
operate faster or slower than the expected times for operation at the fundamental
frequency alone. Such factors should be carefully considered prior to placing the
relays in service.

TABLE 4.10
Bus Duct Derating Factor 
for Harmonic Loading

IN/I∅H
I∅H/I∅

100% N 200% N

0 1.000 1.000
0.25 0.99 0.995
0.50 0.961 0.98
0.75 0.918 0.956
1.00 0.866 0.926
1.25 0.811 0.891
1.50 0.756 0.853
1.75 0.703 0.814
2.00 0.655 0.775

Note: IN is the neutral current, I∅H is the harmonic
current component in each phase, and I∅ is the
total phase current. N = size of neutral bus bar in
relation to phase bus bar.
© 2002 by CRC Press LLC 



4.9 GUIDELINES FOR HARMONIC VOLTAGE AND 
CURRENT LIMITATION

So far we have discussed the adverse effects of harmonics on power system opera-
tion. It is important, therefore, that attempts be made to limit the harmonic distortion
that a facility might produce. There are two reasons for this. First, the lower the
harmonic currents produced in an electrical system, the better the equipment within
the confinement of the system will perform. Also, lower harmonic currents produce
less of an impact on other power users sharing the same power lines of the harmonic
generating power system. The IEEE 519 standard provides guidelines for harmonic
current limits at the point of common coupling (PCC) between the facility and the
utility. The rationale behind the use of the PCC as the reference location is simple.
It is a given fact that within a particular power use environment, harmonic currents
will be generated and propagated. Harmonic current injection at the PCC determines
how one facility might affect other power users and the utility that supplies the
power. Table 4.11 (per IEEE 519) lists harmonic current limits based on the size of
the power user. As the ratio between the maximum available short circuit current at
the PCC and the maximum demand load current increases, the percentage of the
harmonic currents that are allowed also increases. This means that larger power
users are allowed to inject into the system only a minimal amount of harmonic
current (as a percentage of the fundamental current). Such a scheme tends to equalize
the amounts of harmonic currents that large and small users of power are allowed
to inject into the power system at the PCC.

IEEE 519 also provides guidelines for maximum voltage distortion at the PCC
(see Table 4.12). Limiting the voltage distortion at the PCC is the concern of the
utility. It can be expected that as long as a facility’s harmonic current contribution
is within the IEEE 519 limits the voltage distortion at the PCC will also be within
the specified limits.

TABLE 4.11
Harmonic Current Limits for General Distribution Systems (120–69,000 V)

ISC/IL h < 11 11 ≤ h < 17 17 ≤ h < 23 23 ≤ h < 35 35 ≤ h THD

<20 4.0 2.0 1.5 0.6 0.3 5.0
20–50 7.0 3.5 2.5 1.0 0.5 8.0
50–100 10.0 4.5 4.0 1.5 0.7 12.0
100–1000 12.0 5.5 5.0 2.0 1.0 15.0
>1000 15.0 7.0 6.0 2.5 1.4 20.0

Note: ISC = maximum short-circuit current at PCC; IL = maximum fundamental frequency demand
load current at PCC (average current of the maximum demand for the preceding 12 months); h =
individual harmonic order; THD = total harmonic distortion. based on the maximum demand load
current. The table applies to odd harmonics; even harmonics are limited to 25% of the odd harmonic
limits shown above.
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When the IEEE 519 harmonic limits are used as guidelines within a facility, the
PCC is the common junction between the harmonic generating loads and other
electrical equipment in the power system. It is expected that applying IEEE guide-
lines renders power system operation more reliable. In the future, more and more
utilities might require facilities to limit their harmonic current injection to levels
stipulated by IEEE 519. The following section contains information on how har-
monic mitigation might be achieved.

4.10 HARMONIC CURRENT MITIGATION

4.10.1 EQUIPMENT DESIGN

The use of electronic power devices is steadily increasing. It is estimated that more
than 70% of the loading of a facility by year 2010 will be due to nonlinear loads,
thus demand is increasing for product manufacturers to produce devices that generate
lower distortion. The importance of equipment design in minimizing harmonic
current production has taken on greater importance, as reflected by technological
improvements in fluorescent lamp ballasts, adjustable speed drives, battery chargers,
and uninterruptible power source (UPS) units. Computers and similar data-process-
ing devices contain switching mode power supplies that generate a substantial
amount of harmonic currents, as seen earlier. Designing power supplies for electronic
equipment adds considerably to the cost of the units and can also make the equipment
heavier. At this time, when computer prices are extremely competitive, attempts to
engineer power supplies that draw low harmonic currents are not a priority.

Adjustable speed drive (ASD) technology is evolving steadily, with greater
emphasis being placed on a reduction in harmonic currents. Older generation ASDs
using current source inverter (CSI) and voltage source inverter (VSI) technologies
produced considerable harmonic frequency currents. The significant harmonic fre-
quency currents generated in power conversion equipment can be stated as:

n = kq ± 1

where n is the significant harmonic frequency, k is any positive integer (1, 2, 3, etc.),
and q is the pulse number of the power conversion equipment which is the number

TABLE 4.12
Voltage Harmonic Distortion Limits

Bus Voltage at PCC
Individual Voltage 

Distortion (%)
Total Voltage 

Distortion THD (%)

69 kV and below 3.0 5.0
69.001 kV through 161 kV 1.5 2.5
161.001 kV and above 1.0 1.5

Note: PCC = point of common coupling; THD = total harmonic distortion.
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of power pulses that are in one complete sequence of power conversion. For example,
a three-phase full wave bridge rectifier has six power pulses and therefore has a
pulse number of 6. With six-pulse-power conversion equipment, the following sig-
nificant harmonics may be generated:

For k =1, n = (1 × 6) ± 1 = 5th and 7th harmonics.
For k =2, n = (2 × 6) ± 1 = 11th and 13th harmonics.

With six-pulse-power conversion equipment, harmonics below the 5th harmonic are
insignificant. Also, as the harmonic number increases, the individual harmonic
distortions become lower due to increasing impedance presented to higher frequency
components by the power system inductive reactance. So, typically, for six-pulse-
power conversion equipment, the 5th harmonic current would be the highest, the
7th would be lower than the 5th, the 11th would be lower than the 7th, and so on,
as shown below:

I13 < I11< I7< I5

We can deduce that, when using 12-pulse-power conversion equipment, harmon-
ics below the 11th harmonic can be made insignificant. The total harmonic distortion
is also considerably reduced. Twelve-pulse-power conversion equipment costs more
than six-pulse-power equipment. Where harmonic currents are the primary concern,
24-pulse-power conversion equipment may be considered.

4.10.2 HARMONIC CURRENT CANCELLATION

Transformer connections employing phase shift are sometimes used to effect can-
cellation of harmonic currents in a power system. Triplen harmonic (3rd, 9th, 15th,
etc.) currents are a set of currents that can be effectively trapped using a special
transformer configuration called the zigzag connection. In power systems, triplen
harmonics add in the neutral circuit, as these currents are in phase. Using a zigzag
connection, the triplens can be effectively kept away from the source. Figure 4.20
illustrates how this is accomplished.

The transformer phase-shifting principle is also used to achieve cancellation of
the 5th and the 7th harmonic currents. Using a ∆–∆ and a ∆–Y transformer to supply
harmonic producing loads in parallel as shown in Figure 4.21, the 5th and the 7th
harmonics are canceled at the point of common connection. This is due to the 30˚
phase shift between the two transformer connections. As the result of this, the source
does not see any significant amount of the 5th and 7th harmonics. If the nonlinear
loads supplied by the two transformers are identical, then maximum harmonic
current cancellation takes place; otherwise, some 5th and 7th harmonic currents
would still be present. Other phase-shifting methods may be used to cancel higher
harmonics if they are found to be a problem. Some transformer manufacturers offer
multiple phase-shifting connections in a single package which saves cost and space
compared to using individual transformers.
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FIGURE 4.20 Zig-zag transformer application as third harmonic filter.

FIGURE 4.21 Cancellation of fifth and seventh harmonic currents by using 30° phase-shifted
transformer connections.
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4.10.3 HARMONIC FILTERS

Nonlinear loads produce harmonic currents that can travel to other locations in the
power system and eventually back to the source. As we saw earlier, harmonic currents
can produce a variety of effects that are harmful to the power system. Harmonic
currents are a result of the characteristics of particular loads. As long as we choose
to employ those loads, we must deal with the reality that harmonic currents will
exist to a degree dependent upon the loads. One means of ensuring that harmonic
currents produced by a nonlinear current source will not unduly interfere with the
rest of the power system is to filter out the harmonics. Application of harmonic
filters helps to accomplish this.

Harmonic filters are broadly classified into passive and active filters. Passive
filters, as the name implies, use passive components such as resistors, inductors, and
capacitors. A combination of passive components is tuned to the harmonic frequency
that is to be filtered. Figure 4.22 is a typical series-tuned filter. Here the values of
the inductor and the capacitor are chosen to present a low impedance to the harmonic
frequency that is to be filtered out. Due to the lower impedance of the filter in
comparison to the impedance of the source, the harmonic frequency current will
circulate between the load and the filter. This keeps the harmonic current of the
desired frequency away from the source and other loads in the power system. If
other harmonic frequencies are to be filtered out, additional tuned filters are applied
in parallel. Applications such as arc furnaces require multiple harmonic filters, as
they generate large quantities of harmonic currents at several frequencies.

Applying harmonic filters requires careful consideration. Series-tuned filters
appear to be of low impedance to harmonic currents but they also form a parallel
resonance circuit with the source impedance. In some instances, a situation can be
created that is worse than the condition being corrected. It is imperative that computer
simulations of the entire power system be performed prior to applying harmonic
filters. As a first step in the computer simulation, the power system is modeled to
indicate the locations of the harmonic sources, then hypothetical harmonic filters
are placed in the model and the response of the power system to the filter is examined.
If unacceptable results are obtained, the location and values of the filter parameters
are changed until the results are satisfactory. When applying harmonic filters, the
units are almost never tuned to the exact harmonic frequency. For example, the 5th
harmonic frequency may be designed for resonance at the 4.7th harmonic frequency.

FIGURE 4.22 Series-tuned filter and filter frequency response.
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By not creating a resonance circuit at precisely the 5th harmonic frequency, we can
minimize the possibility of the filter resonating with other loads or the source, thus
forming a parallel resonance circuit at the 5th harmonic. The 4.7th harmonic filter
would still be effective in filtering out the 5th harmonic currents. This is evident
from the series-tuned frequency vs. impedance curve shown in Figure 4.22.

Sometimes, tuned filters are configured to provide power factor correction for
a facility as well as harmonic current filtering. In such cases the filter would be
designed to carry the resonant harmonic frequency current and also the normal
frequency current at the fundamental frequency. In either case, a power system
harmonic study is paramount to ensure that no ill effects would be produced by the
application of the power factor correction/filter circuit.

Active filters use active conditioning to compensate for harmonic currents in a
power system. Figure 4.23 shows an active filter applied in a harmonic environment.
The filter samples the distorted current and, using power electronic switching
devices, draws a current from the source of such magnitude, frequency composition,
and phase shift to cancel the harmonics in the load. The result is that the current
drawn from the source is free of harmonics. An advantage of active filters over
passive filters is that the active filters can respond to changing load and harmonic
conditions, whereas passive filters are fixed in their harmonic response. As we saw
earlier, application of passive filters requires careful analysis. Active filters have no
serious ill effects associated with them. However, active filters are expensive and
not suited for application in small facilities.

4.11 CONCLUSIONS

The term harmonics is becoming very common in power systems, small, medium,
or large. As the use of power electronic devices grows, so will the need to understand
the effects of harmonics and the application of mitigation methods. Fortunately,

FIGURE 4.23 Active filter to cancel harmonic currents. 
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harmonics in a strict sense are not transient phenomena. Their presence can be easily
measured and identified. In some cases, harmonics can be lived with indefinitely,
but in other cases they should be minimized or eliminated. Either of these approaches
requires a clear understanding of the theory behind harmonics.
© 2002 by CRC Press LLC 


	POWER QUALITY
	Table of Contents
	Chapter 4: Harmonics
	4.1 DEFINITION OF HARMONICS
	4.2 HARMONIC NUMBER (h)
	4.3 ODD AND EVEN ORDER HARMONICS
	4.4 HARMONIC PHASE ROTATION AND PHASE ANGLE RELATIONSHIP
	4.5 CAUSES OF VOLTAGE AND CURRENT HARMONICS
	4.6 INDIVIDUAL AND TOTAL HARMONIC DISTORTION
	4.7 HARMONIC SIGNATURES
	4.7.1 FLUORESCENT LIGHTING
	4.7.2 ADJUSTABLE SPEED DRIVES
	4.7.3 PERSONAL COMPUTER AND MONITOR

	4.8 EFFECT OF HARMONICS ON POWER SYSTEM DEVICES 
	4.8.1 TRANSFORMERS
	4.8.2 AC MOTORS
	4.8.3 CAPACITOR BANKS
	4.8.4 CABLES
	4.8.5 BUSWAYS
	4.8.6 PROTECTIVE DEVICES

	4.9 GUIDELINES FOR HARMONIC VOLTAGE AND CURRENT LIMITATION
	4.10 HARMONIC CURRENT MITIGATION
	4.10.1 EQUIPMENT DESIGN
	4.10.2 HARMONIC CURRENT CANCELLATION
	4.10.3 HARMONIC FILTERS

	4.11 CONCLUSIONS



