
APPENDIX E: MATLAB’S
SYMBOLIC MATH TOOLBOX
TUTORIAL

E.1 INTRODUCTION

Readers who are studying MATLAB may want to explore the additional functionality of
MATLAB’s Symbolic Math Toolbox. Before proceeding, the reader should have studies
Appendix B, the MATLAB tutorial, including Section B.1, which is applicable to this
appendix.

MATLAB’s Symbolic Math Toolbox Version 3 in addition to MATLAB Version 7
and the Control System Toolbox Version 8 is required in order to add symbolic
mathematics capability to your M-files.

The M-files in this appendix are available elsewhere on this Web site.
Symbolic math commands are used in your MATLAB M-files right along with your

standard MATLAB statements. The only additional requirement is to declare symbolic
variables before they are used with the statement syms x1 x2. . ., where xi are
symbolic variables.

Some of the added capabilities that the Symbolic Math Toolbox yields for control
systems analysis and design include the following:

1. Functions and equations can be entered symbolically. That is, alpha characters as
well as numerical characters can be used in your M-files. For example, you can enter
B=x^2+3*x+7, instead of B=[1 3 7]. You could even enter B=a*x^2+b*x+c
and obtain its factors as

1

[2 1/2]

[-b + (b - 4 a c)]

[1/2 — — — — — — — — — — — —]

[a]

[]

[2 1/2]

[-b - (b - 4 a c)]

[1/2 — — — — — — — — — — — —]
[a]

2. Symbolic expressions can be manipulated algebraically and simplified.

3. Transfer functions can be typed almost as written, making your M-files more
readable. For examble, the statement, G=(s+1)*(s+2)/[(s^2+3*s+10)*
(s+4)] would replace the three statements, numg=poly ([-1 -2]),
deng=conv ([1 3 10), [1 4]), and G=tf (numg, deng).

4. Laplace and z-transforms as well as their inverses can be entered and found in
symbolic form.

5. Functions can be ‘‘pretty printed’’ for clarity in the MATLAB Command Win-
dow and printed output.

These are only a few advantages of using the Symbolic Math Toolbox. This
appendix will explore more. The reader is encouraged not to stop exploration at the end
of Appendix E, since there is so much more than can be covered here. The Bibliography
at the end of this appendix gives references for further pursuit.

The format of the examples in this appendix follows Appendix B. Symbolic
programs use the designation: chapter <number> symbolic program <number>, that is,
ch2sp3. Thus, the programs in this appendix can be distinguished form Appendix B
programs by the use of ‘‘sp’’ (symbolic program) before the program number, rather
than ‘‘p’’ (program), that is, ch2p3. Symbolic Math Toolbox examples are included for
Chapters 2, 3, 4, 6, and 13. The reader is encouraged, however, to apply what is learned
to other chapters.

E.2 SYMBOLIC MATH TOOLBOX EXAMPLES

CHAPTER 2: MODELING IN THE FREQUENCY DOMAIN

ch2sp1 MATLAB’s calculating power is greatly enhanced using the Symbolic Math
Toolbox. In this example we demonstrate its power by calculating inverse Laplace
transforms of F(s). The beginning of any symbolic calculation requires defining the
symbolic objects. For example, the Laplace transform variable, s, or the time variable, t,
must be defined as a symbolic object. This definition is performed using the syms
command. Thus, syms s defines s as a symbolic object; syms t defines t as a
symbolic object; and symss t defines both s and t as symbolic objects. We need only
define objects that we input to the program. Variables produced by the program need not
be defined. Thus, if we are finding inverse Laplace transforms, we need only define s as a
symbolic object, since t results from the calculation. Once the object is defined, we can
then type F as a function of s as we normally would write it. We do not have to use
vectors to represent the numerator and denominator. The Laplace transforms or time
functions can also be printed in the MATLAB Command Window as we normally

2 APPENDIX E: MATLAB’s Symbolic Math Toolbox Tutorial

would write it. This form is called pretty printing. The command is pretty (F),
where F is the function we want to pretty print. In the code below, you can see the
difference between normal printing and pretty printing if you run the code without the
semicolons at the steps where the functions, F or f, are defined. Once F is defined as
F(s), we can find the inverse Laplace transform using the commandilaplace(F). In
the following example, we find the inverse Laplace transforms of the frequency
functions in the examples used for Cases 2 and 3 in Section 2.2 in the text.

’(ch2sp1)’ % Display label.
syms s % Construct symbolic object for

% Laplace variable ’s’.
’Inverse Laplace transform’ % Display label.
F=2/[(s+1)*(s+2)^2]; % Define F(s) form Case 2 example.
’F(s) from Case 2’ % Display label.
pretty F % Pretty print F(s)
f=ilaplace(F); % Find inverse Laplace transform.
’f(t) for Case 2’ % Display label.
pretty(f) % Pretty print f(t) for Case 2.
F=3/[s*(s^2+2*s+5)]; % Define F(s) from Case 3 example.
’F(s) for Case 3’ % Display label.
pretty(F) % Pretty print F(s) for Case 3.
f=ilaplace(F); % Find inverse Laplace transform.
’f(t) for Case 3’ % Display label.
pretty(f) % Pretty print f(t) for Case 3.
pause

ch2sp2 In this example, we find Laplace transforms of time functions using the com-
mand, laplace(f), where f is a time function, f(t). As an example, we use the time
functions that resulted from the calculations in Cases 2 and 3 in Section 2.2 in the text
and work in reverse to obtain their Laplace transforms. We will see that the command,
laplace(f), yields F(s) in partial fractions. In addition to pretty printing discussed in
the previous example, the Symbolic Math Toolbox contains other commands that can
change the look of the displayed result for readability and form. Some of these com-
mands are: collect(F)—collect common coefficient terms of F; expand(F)—
expands product of factors of F; factor(F)—factors F; simple(F)—finds
simplest form of F with the least number of terms; simplify(F)—simplifies F;
vpa(expression, places)—standing for variable precision arithmetic, this
command converts fractional symbolic terms into decimal terms with a specified
number of decimal places. For example, the symbolic fraction, 3=16, would be
converted to 0.1875 if the argument, places, were 4. In the example below, we
find the Laplace transform of a time function. The result is displayed as partial fractions.
To combine the partial fractions, we use the command,simplify(F), whereF is the
Laplace transform of f(t) found usinglaplace(f). Finally, we useF=vpa(F,3) to
convert the symbolic fractions to decimals in the displayed result.

’(ch2sp2)’ % Display label.
syms t % Construct symbolic object for

% time variable ’t’.
’Laplace transform’ % Display label.
’f(t) from Case 2’ % Display label.
F=2*exp(-t)-2*t*exp(-2*t)-2*exp(-2*t);

% Define f(t) from Case 2 example.

E.2 Symbolic Math Toolbox Examples 3

pretty(f) % Pretty print f(t) from Case 2
% example.

’F(s) for Case 2’ % Display label.
F=laplace(f); % Find Laplace transform.
pretty(F) % Pretty print partial fractions of

% F(s) for Case 2.
F=simplify(F); % Combine partial fractions.
pretty(F) % Pretty print combined partial

% fractions.
’f(t) for Case 3’ % Display label.
f=3/5-3/5*exp(-t)*[cos(2*t)+(1/2)*sin(2*t)];

% Define f(t) from Case 3 example.
pretty (f) % Pretty print f(t) for Case 3.
’F(s) for Case 3 - Symbolic fractions’

% Display label.
F=laplace(f); % Find Laplace transform.
pretty(F) % Pretty print partial fraction of

% F(s) for Case 3.
’F(s) for Case 3 - Decimal representation’

% Display label.

F=vpa(F, 3); % Convert symbolic numerical
% fractions to 3-place decimal
% representation for F(s).

ptetty (F) % Pretty print decimal
% representation.

’F(s) for Case 3 - Simplified % Display label.
F=simplify(F); % Combine partial fractions.
pretty(F) % Pretty print combined partial

% fractions.
pause

ch2sp3 MATLAB’s Symbolic Math Toolbox may be used to simplify the input of
complicated transfer functions as follows: Initially, input the transfer function G(s) ¼
numg=deng via symbolic math statements. Then convert G(s) to an LTI transfer
function object. This conversion is done in two steps. The first step uses the command
[numg, deng]=numden(G) to extract the symbolic numerator and denominator of
G. The second step converts, separately, the numerator and denominator to vectors using
the commandsym2poly(S), whereS is a symbolic polynomial. The last step consists
of forming the LTI transfer function object by using the vector representation of the
transfer function’s numerator and denominator. As an example, we form the LTI object
GðsÞ ¼ ½54ðsþ 27Þðs3 þ 52s2 þ 37sþ 73Þ�=½sðs4 þ 872s3 þ 437s2 þ 89sþ 65Þðs2þ
79sþ 36Þ�, making use of MATLAB’s Symbolic Math Toolbox for simplicity and
readability.

’(ch2sp3)’ % Display label.
syms s % Construct symbolic object for

% frequency variable ’s’.
G=54*(s+27)*(s^3+52*s^2+37*s+73) . . .
/(s*(s^4+872*s^3+437*s^2+89*s+65)*(s^2+79*s+36));

% Form symbolic G(s).
’Symbolic G(s)’ % Display label.
pretty(G) % Pretty print symbolic G(s).
[numg,deng]=numden(G); % Extract symbolic numerator and

% denominator.

4 APPENDIX E: MATLAB’s Symbolic Math Toolbox Tutorial

numg=sym2poly(numg); % Form vector for numerator of
% G(s).

deng=sym2poly(deng); % Form vector for denominator of
% G(s).

’LTI G(s) in Polynomial Form’ % Display label.
Gtf=tf(numg, deng) % Form and display LTI object for

% G(s) in polynomial form.
’LTI G(s) in Factored Form’ % Display label.
Gzpk=zpk(Gtf) % Convert G(s) to factored form.
pause

ch2sp4 (Example 2.10) MATLAB’s Symbolic Math Toolbox may be used to
simplify the solution of simultaneous equations by using Cramer’s rule. A system
of simultaneous equations can be represented in matrix form by AX=B, where A is the
matrix formed from the coefficients of the unknowns in the simultaneous equations, x is
a vector containing the unknowns, and B is a vector containing the inputs. Cramer’s rule
states that xk the kth element ot the solution vector, x, is found using xk ¼
det(Ak)=det(A), where Ak is the matrix formed by replacing the kth column of matrix
A with the input vector, B. In the text we refer to det(A) as ‘‘delta. ’’In MATLAB,
matrices are written with a space or comma separating the elements of each row. The
next row is indicated with a semicolon or carriage return. The entire matrix is then
enclosed in a pair of square brackets. Applying the above to the solution of Example
2.10: A=[(R1+L*s) -L*s;-L*s (L*s+R2+(1/(c*s)))] and Ak=[(R1+
L*s) V;-L*s 0]. The function det(matrix) evaluates the determinant of the
square matrix argument. Let us now find the transfer function GðsÞ ¼ I2ðsÞ=VðsÞ, asked
for in Example 2.10. The command simple(S), where S is a symbolic function, is
introduced in the solution.Simple(S) simplifies the solution by shortening the length
of S. The use of simple(I2) shortens the solution by combining like powers of the
Laplace variable, s.

’(ch2sp4) Example 2.10’ % Display label.
Syms s R1 R2 L c V % Construct symbolic objects for

% frequency variable ’s’, and
% ’R1’, ’R2’, ’L’, ’c’, and ’V’.
% Note: Use lower-case ’c’
in declaration for
% capacitor.

A2=[(R1+L*s) V;-L*s 0] % Form Ak = A2.
A=[(R1+L*s) -L*s;-L*s (L*s+R2+(1/(c*s)))]

% Form A.
I2=det(A2)/det(A); % Use Cramer’s rule to solve for

% I2(s).
I2=simple(I2); % Reduce complexity of I2(s).
G=I2/V; % Form transfer function,

% G(s) = I2(s)/V(s).
’G(s)’ % Display label.
pretty(G) % Pretty print G(s).
pause

CHAPTER 3: MODELING IN THE TIME DOMAIN

ch3sp1 (Example 3.6) MATLAB’s Symbolic Math Toolbox may be used to perform
matrix operations. The code for these operations is intuitive and readable. The

E.2 Symbolic Math Toolbox Examples 5

operations are addition (þ), subraction (�), inverse (^�1), and matrix raised to a power
n (^n). We demonstrate by solving Example 3.6 in the text using Eq. (3.73) directly.

’(ch3sp1) Example 3.6’ % Display label.

syms s % Construct symbolic object for
% frequency variable ’s’.

A=[0 1 0;0 0 1;-1 -2 -3]; % Create matrix A.
B=[10;0;0]; % Create vector B.
C=[1 0 0]; % Create vector C.
D=0; % Create D.
I=[1 0 0;0 1 0;0 0 1]; % Create identity matrix.
’T(s)’ % Display label.
T=C*((s*I-A)^-1)*B+D; % Find transfer function.
pretty(T) % Pretty print transfer function.
pause

CHAPTER 4: TIME RESPONSE

Ch4sp1 (Example 4.11) MATLAB’s Symbolic Math Toolbox, with its ability to
perform matrix operations, lends itself to the Laplace transform solution of state
equations. Also, the command[V,D]=eig(A) allows us to find the eigenvalues of a
square matrix,A, which are the diagonal elements of diagonal matrixD. We demonstrate
by solving Example 4.11.

’(ch4sp1) Example 4.11’ % Display label.
syms s % Construct symbolic object for

% frequency variable ’s’.
’a’ % Display label.
A=[0 1 0;0 0 1;-24 -26 -9]; % Create matrix A.
B=[0;0;1]; % Create vector B.
X0=[1;0;2]; % Create initial condition vector,

% X(0).
U=1/(s+1); % Create U(s).
I=[1 0 0;0 1 0;0 0 1]; % Create identity matrix.
X=((s*I-A)^-1)*(X0+B*U); % Find Laplace transform of state

% vector.
x1=ilaplace(X(1)); % Solve for X1(t).
x2=ilaplace(X(2)); % Solve for X2(t).
x3=ilaplace(X(3)); % Solve for X3(t).
y=x1+x2; % Solve for output, y(t).
y=vpa(y,3); % Convert fractions to decimals.
’y(t)’ % Display label.
pretty(y) % Pretty print y(t).
’b’ % Display label.
[V,D]=eig(A); % Find eigenvalues, which are the

% diagonal elements of D.
’Eigenvalues on diagonal’ % Display label.

D % Display D.
pause

ch4sp2 (Example 4.12/4.13) In this example we use MATLAB’s Symbolic Math
Toolbox to solve state equations in the time domain. We make use of the Symbolic Math
Toolbox’s ability to perform integration. We first solve for the state-transition matrix by

6 APPENDIX E: MATLAB’s Symbolic Math Toolbox Tutorial

taking the inverse Laplace transform of (sI�A)�1. We then use the convolution integral
to obtain the solution. Integration is performed using the command int(S,v,a,b),
where S is the function to be integrated, v is the variable of integration, a is the lower
limit of integration, and b is the upper limit of integration. As an example we solve
Example 4.12 in the text. The state-transition matrix is obtained by the method
demonstrated in Example 4.13 in the text.

’(ch4sp2) Example 4.12/4.13’ % Display label.
Syms s t tau % Construct symbolic object for

% frequency variable ’s’, ’t’,

% and ’tau’.
‘a’ % Display label.
A=[0 1;-8 -6] % Create matrix A.
B=[0;1] % Create vector B.
X0=[1;0] % Create initial condition vector,

% X(0).
U=1 % Create u(t).
I=[1 0;0 1]; % Create identity matrix.
’E=(s*I-A)^-1’ % Display label.
E=((s*I-A)^-1) % Find Laplace transform of state-

% transition matrix,(sI-A)^-1.

Fi11=ilaplace(E(1,1)); % Take inverse Laplace transform
Fi12=ilaplace(E(1,2)); % of each element
Fi21=ilaplace(E(2,1)); % of (sI-A)^-1
Fi22=ilaplace(E(2,2)); % to find state-transition matrix.
’Fi(t)’ % Display label.
Fi=[Fi11 Fi12;Fi21 Fi22]; % Form state-transition matrix,

% Fi(t).
pretty(Fi) % Pretty print state-transition

% matrix, Fi(t).

Fitmtau=subs(Fi, t,t-tau); % Form Fi(t-tau).
’Fi (t-tau)’ % Display label.
pretty (Fitmtau) % Pretty print Fi(t-tau).
X=Fi*X0+int(Fitmtau*B*1, tau,0,t);

% Solve for x(t).
X=simple(x); % Collect terms.
X=simplify(x); % Simplify x(t).

’x(t)’ % Display label.
pretty(x) % Pretty print x (t).
pause

CHAPTER 6: STABILITY

ch6sp1 (Example 6.2) MATLAB’s Symbolic Math Toolbox may be used conveni-
ently to calculate the values in a Routh table. The toolbox is particularly useful for more
complicated tables, where symbolic objects, such as epsilon, are used. In this example
we represent each row of the Routh table by a vector. Expressions are written for
subsequent row elements by using the equations given in Table 6.2 of the text. The
MATLAB commanddet(M) is used to find the determinant of the square matrix,M, as
shown for each row element in Table 6.2. Further, we test the previous row’s first
element to see if it is zero. If it is zero, it is replaced by epsilon, e, in the next row’s

E.2 Symbolic Math Toolbox Examples 7

calculation. The preceding logic is performed using MATLAB’s IF/ELSE/END as
shown in the code below.

We now demonstrate the making of a Routh table using the Symbolic Math
Toolbox for a problem that requires the epsilon method to complete the table. The
following program produces the Routh table for Example 6.2 in the text. Also, for
clarity, we convert all rows to symbolic objects, simplify, and pretty print after forming
the table. CAUTION: In general, the results of this program are not valid if an entire row
is zero as e approaches zero, such as [e 0 0 0]. This case must be handled differently,
as discussed in text Section 6.3 in the subsection, ‘‘Entire Row Is Zero.’’

’(ch6sp1) Example 6.2’ % Display label.
% -det([si() si(); sj() sj()])/sj()

% Template for use in each cell.
syms e % Construct a symbolic object for

% epsilon.
%%
s5=[1 3 5 0 0]; % Create s^5 row of Routh table.
%%
s4=[2 6 3 0 0]; % Create s^4 row of Routh table.
%%
if -det([s5(1) s5(2);s4(1) s4(2)])/s4(1)==0

s3=[e. . .
-det([s5(1) s5(3);s4(1) s4(3)])/s4(1) 0 0];

% Create s^3 row of Routh table
% if 1st element is 0.

else
s3=[-det([s5(1) s5(2);s4(1) s4(2)])/s4(1). . .

-det([s5(1) s5(3);s4(1) s4(3)])/s4(1) 0 0];
% Create s^3 row of routh table
% if 1st element is not zero.

end
%%
if -det([s4(1) s4(2);s3(1) s3(2)])/s3(1)==0

s2=[e . . .
-det([s4(1) s4(3);s3(1) s3(3)])/s3(1) 0 0];

% Create s^2 row of Routh table
% If 1st element is 0.

else
s2=[-det([s4(1) s4(2);s3(1) s3(2)])/s3(1) . . .

-det([s4(1) s4(3);s3(1) s3(3)])/s3(1) 0 0];
% Create s^2 row of Routh table
% if 1st element is not zero.

end

%%
if -det([s3(1) s3(2);s2(1) s2(2)])/s2(1)==0

s1=[e . . .
-det([s3(1) s3(3);s2(1) s2(3)])/s2(1) 0 0];

% Create s^1 row of Routh table
% if 1st element is 0.

else
s1=[-det([s3(1) s3(2);s2(1) s2(2)])/s2(1) . . .
-det([s3(1) s3(3);s2(1) s2(3)])/s2(1) 0 0];

8 APPENDIX E: MATLAB’s Symbolic Math Toolbox Tutorial

% Create s^1 row of Routh table
% if 1st element is not zero.

end
%%%
s0=[-det([s2(1) s2(2);s1(1) s1(2)])/s1(1) . . .
-det([s2(1) s2(3);s1(1) s1(3)])/s1(1) 0 0];

% Create s^0 row of Routh table.

%%%
’s5’ % Display label.
s5=sym (s5); % Convert s5 to a symbolic object.
s5=simplify(s5); % Simplify terms in s^5 row.
pretty(s5) % Pretty print s^5 row.
’s4’ % Display label.
s4=sym(s4); % Convert s4 to a symbolic object.
s3=simplify(s4); % Simplify terms in s^4 row.
pretty(s4) % Pretty print s^4 row.
’s3’ % Display label.
s3=sym(s3); % Convert s3 to a symbolic object.
s3=simplify(s3); % Simplify terms in s^3 row.
pretty(s3) % Pretty print s^3 row.
’s2’ % Display label.
s2=sym(s2); % Convert s2 to a symbolic object.
s2=simplify(s2); % Simplify terms in s^2 row.
pretty(s2) % Pretty print s^2 row.
’s1’ % Display label.
s1=sym(s1); % Convert s1 to a symbolic object.
s1=simplify(s1); % Simplify terms in s^1 row.
pretty(s1) % Pretty print s^1 row.
’s0’ % Display label.
s0=sym(s0); % Convert s0 to a symbolic object.
s0=simplify(s0); % Simplify terms in s^0 row.
pretty(s0) % Pretty print s^0 row.
pause

ch6sp2 (Example 6.9) MATLAB’s Symbolic Math Toolbox also may be used
conveniently to calculate the values in a Routh table that contains a variable gain,
K. The technique is similar to the previous example, ch6sp1, except thatK, rather thane,
is used as the symbolic object. We now demonstrate the solution of Example 6.9 in the
text using MATLAB and MATLAB’s Symbolic Math Toolbox.

’(ch6sp2) Example 6.9’ % Display label.
% -det([si() si();sj() sj()])/sj()

% Template for use in each cell.
syms K % Construct a symbolic object for

% gain, K.
s3=[1 77 0 0]; % Create s^3 row of Routh table.
s2=[1 77 0 0]; % Create s^2 row of Routh table.
s1=[-det([s3(1) s3(2);s2(1) s2(2)])/s2(1) . . .
-det([s3(1) s3(3);s2(1) s2(3)])/s2(1) 0 0];

% Create s^1 row of Routh table.
s0=[-det([s2(1) s2(2);s1(1) s1(2)])/s1(1) . . .
-det([s2(1) s2(3);s1(1) s1(3)])/s1(1) 0 0];

% Create s^0 row of Routh table.

E.2 Symbolic Math Toolbox Examples 9

’s3’ % Display label.
s3=sym(s3); % Convert s3 to a symbolic object.
s3=simplify(s3); % Simplify terms in s^3 row.
pretty(s3) % Pretty print s^3 row.
’s2’ % Display label.
s2=sym(s2); % Convert s2 to a symbolic object.
s2=simplify(s2); % Simplify terms in s^2 row.
pretty(s2) % Pretty print s^2 row.
’s1’ % Display label.
s1=sym(s1); % Convert s1 to a symbolic object.
s1=simplify(s1); % Simplify terms in s^1 row.
pretty(s1) % Pretty print s^1 row.
’s0’ % Display label.

s0=sym(s0); % Convert s0 to a symbolic object.
s0=simplify(s0); % Simplify terms in s^0 row.
pretty(s0) % Pretty print s^0 row.
pause

CHAPTER 13: DIGITAL CONTROL SYSTEMS

ch13sp1 (Example 13.1) MATLAB’s Symbolic Math Toolbox and the command
ztrans(f) can be used to find the z-transform of a time function, f, represented as
f(nT). MATLAB assumes that the default sampled-time independent variable is n and
the default transform independent variable is z. If you want to use k instead of n, that is,
f(kT), use ztrans(f,k,z). This command overrides MATLAB’s defaults and
assumes the sampled-time independent variable to be k. Let us solve Example 13.1
using MATLAB’s Symbolic Math Toolbox.

’(ch13sp1) Example 13.1’ % Display label.
syms n T % Construct symbolic objects for

% ’n’ and ’T’.
’f(nT)’ % Display label.
f=n*T; % Define f(nT).
pretty(f) % Pretty print f(nT).
’F(z)’ % Display label.
F=ztrans(f); % Find z-transform, F(z).
pretty(F) % Pretty print F(z).
pause

ch13sp2 (Example 13.2) MATLAB’s Symbolic Math Toolbox and the command
iztrans(F) can be used to find the time-sampled function represented as f(nT), given
its z-transform, F(z). If you want the sampled time function returned as f(kT), then
change MATLAB’s default independent sampled-time variable by using the command
iztrans (F,k). Let us solve Example 13.2 using MATLAB’s Symbolic Math
Toolbox.

’(ch13sp2) Example 13.2’ % Display label.

syms z k % Construct symbolic objects for
% ’z’ and ’k’.

’F(z)’ % Display label.
F=0.5*z/((z-0.5)*(z-0.7)); % Define F(z).
pretty (F) % Pretty print F(z).

10 APPENDIX E: MATLAB’s Symbolic Math Toolbox Tutorial

’f(kT)’ % Display label.
f=iztrans(F,k); % Find inverse z-transform, f(kT).
pretty(f) % Pretty print f(kT).
’f(nT)’ % Display label.
f=iztrans(F); % Find inverse z-transform, f(nT).
pretty(f) % Pretty print f(nT).
pause

ch13sp3 (Example 13.4) MATLAB’s Symbolic Math Toolbox can be used to find the
z-tansform of a transfer function, G(s), in cascade with a z.o.h. Two new commands are
introduced. The first, compose(f,g), allows a variable g to replace the variable t in
f(t). We use this command to replace t in g2(t) win nT before taking the z-transform. The
other new command is subs(S,old,new). Subs stands for symbolic substitution.
Old is a variable contained in S. New is a numerical or symbolic quantity to replace
Old. We use subs to replace T in G(z) with a numerical value. To find the z-transform
of a transfer function, G(s), in cascade with a z.o.h. by using MATLAB’s Symbolic
Math Toolbox, we perform the following steps: (1) Construct G2ðsÞ ¼ GðsÞ=s; (2) find
the inverse Laplace transform of G2(s); (3) replace t with nT in g2(t); (4) find
GðzÞ ¼ ð1� z�1ÞG2ðzÞ; (5) substitue a numerical value for T. Let us solve Example
13.4 using MATLAB’s Symbolic Math Toolbox.

‘(ch13sp3) Example 13.4’ % Display label.
syms s z n T % Construct symbolic objects for

% ‘s‘, ‘z‘, ‘n‘, and ‘T‘.
G2s=(s+2)/(s*(s+1)); % Form G2(s)=G(s)/s.
’G2(s)=G(s)/s’ % Display label.
pretty (G2s) % Pretty print G2(s).
’g2(t)’ % Display label.
g2t=ilaplace(G2s); % Find g2(t).
pretty (g2t) % Pretty print g2(t).
g2nT=compose(g2t,n*T); % Find g2 (nT).
’g2(nT)’ % Display label.
pretty(g2nT) % Pretty print g2(nT).
Gz=(1-z^-1)*ztrans(g2nT); % Find G(z) = (1-z^-1)G2(z).
Gz=simplify(Gz); % simplify G(z).
’G(z)=(1-z^-1)G2(z)’ % Display label.
pretty(Gz) % Pretty print G(z).

Gz=subs (Gz, T, 0.5); % Let T=0.5 in G(z).
Gz=vpa(simplify(Gz),4); % Simplify G(z) and evaluate

% numerical values to 4 places.
’G(z) evaluated for T=0.5’ % Display label.
pretty(Gz) % Pretty print G(z) with numerical

% values.

pause

E.2 Symbolic Math Toolbox Examples 11

E.3 COMMAND SUMMARY

diff (S,‘x’) Differentiate the symbolic function, S, with

respect to variable, x.

compose(f,g) Substitute g(y) for x in f(x).

ilaplace(X) Find inverse Laplace transform of X(s).

int(S,v,a,b) Integrate S with respect to v from

lower limit a to upper limit b.
iztrans(F,k) Find inverse z-transform. Finds f(kT) given F(z).

Without optional field, k, finds f(nT).

laplace(x) Find Laplace transform of x(t).

numden(G) Extract symbolic numerator and denominator

from G(s).

pretty(x) Pretty print x.

simple(x) Find simplest from of symbolic object x.

simplify(x) Simplify x.
subs(S,old,new) Substitute new for old in symbolic S.

sym(v) Convert v to a symbolic object.

syms x y z Declare x, y, and z to be symbolic objects.

sym2poly(P) Convert symbolic polynomial, P, to a vector.

vpa(x,D) Use variable precision arithmetic. Convert

fractional. symbolic values to decimal with

D places.

ztrans(f) Find z-transform of f(nT).

BIBLIOGRAPHY

The MathWorks. Getting started with Control System Toolbox 8. The Math Works, Natick, MA, 2000–

2007.

The Mathworks. Getting Started with MATLAB Version 7. The Math Works, Natick, MA, 1984–2004.

The Mathworks, Symbolic Math Toolbox 3 User’s Guide. The Mathworks, Natick, MA,1993–2007,

12 APPENDIX E: MATLAB’s Symbolic Math Toolbox Tutorial

alegaspi
Stamp

