Kling with idea

o0

Fo

They were an eager, absorbed young
group that spring of 1954: three IBM com-
puter programmers and a former U.S.
Foreign Service employee hired to do
technical typing. Their offices were tucked
away on the 19th floor of the annex to
what was then known as IBM World Head-
quarters—down the block from Tiffany's
on the busy corner of Manhattan's 57th
Street and Madison Avenue. Far below, in
the ground-floor display center, was the
machine they were trying to improve upon.
It was the IBM 701 computer, which, only
the year before, had launched the com-
pany into a brand new world of electronic
data processing.

By November, they were ready with a
preliminary report. Based on what the
group’'s manager, John Backus, then 29,
calls “more faith than knowledge,” it
stated that the programming language
they had designed for the new 704 would
enable it "'to accept a concise formulation

of a problem in terms of mathematical
notation and to produce automatically a
high-speed 704 program'’ for its solution.
The report suggested that the automatic
program would run as fast as a program
painstakingly coded by a human program-
mer. Months of testing would prove them
right. They named the language FOR-
TRAN, for FORmula TRANSslation.

Backus, now an IBM Fellow, went on to
become a staff member of the Thomas J.
Watson Research Center in Yorktown
Heights, N.Y. Sixteen years ago, he traded
the East Coast for California and the IBM
Research Laboratory in San Jose. Of the
group's other members: Irving Ziller is
now a special consultant to IBM Vice
President and Data Systems . Division
President John E. Bertram. Harlan Herrick
is a systems engineer for the General Sys-
tems Division in Manhattan. The typist,
Robert A. Nelson, who showed a talent
for FORTRAN design, is an IBM Fellow

PATHFINDER

For 25 years a
programming pioneer,
John Backus still
crackles with ideas.

- =

by Claire Siagmann

e

.
#
& e o R
® .4
e &
!.,& ‘V
= e e
*
L
i
*
-

and an important contributor to the virtual
storage concept. As for the 704, IBM’s
first machine with magnetic core memory
has long since become a museum piece.
And last year, to make way for IBM’s new
43-story skyscraper now under construc-
tion, the old headquarters annex fell to the
wrecker’s jackhammer.

But though the FORTRAN primer is more
than 20 years old, and subsequent lan-
guages have sprung forth like dandelions
on an April lawn—some 165, at last count
—FORTRAN has proved exceedingly du-
rable. Adapted to subsequent computer
models, it is, today, one of the most widely
used computer languages in the world.
Three years ago, Backus went to the White
House to receive the nation’s top award
for scientific and engineering achieve-
ment, the National Medal of Science, for
pioneering contributions to computer pro-
gramming languages.

These days, Backus divides his time be-
tween the San Jose lab and his cliffside
home near San Francisco’s twin peaks,
where he lives with his writer wife, Una
Stannard, and maintains an office with a
spectacular view. He answered his front
doorbell one afternoon not long ago, and
led me up a flight of stairs into a bright
living area filled with wicker furniture, a
variety of healthy green plants and abstract
paintings. As we seated ourselves by the

20 Think

He considered medicine. Then,

when he got out of the Army, his main

ambition was to build a hi-fi set.

window, the city, far below, gleamed white
in the afternoon sun.

Now that FORTRAN is programming his-
tory, | wondered what its author was doing
for an encore. Backus jumped up quickly
and disappeared into the next room, re-
turning with a magazine reprint in his
hands. “I've had an article published in
Communications,” he said, modestly ne-
glecting to mention that it was the Turing
Award address he had given before the
Association for Computing Machinery, in
recognition of his early technical work.
"“The import of what | said,” he continued,
“is that conventional programming lan-
guages, including FORTRAN, are very
poor languages for telling computers what
to do, basically because you can't say very
much. The kinds of languages I'm into now
are radically different. It's all very exciting
for me, because this is what it was like
back in the FORTRAN days. | mean, it's
this completely new field, with all kinds of
guestions coming up.”

For a “pioneer,” Backus is a young 54.
He wears jeans as lithely as a teenager.
When he talks, he gestures emphatically.

“l guess the best analogy comes from
the development of mathematics,” he ex-
plained. ‘‘Mathematics, you know, started
with arithmetic, and then it got into slight
abstractions, like simple algebra, simple
equations, and then it got into questions of

Backus reads widely in other disciplines.
“"Computers just don’t speak the way people do,”
he says. "It would be lovely if they did."”

the structure of algebraic laws for the
operations of arithmetic. What we’'ve been
stuck with in programming is analogous
to the arithmetic stage. And what I'm trying
to do is move from that hideously compli-
cated manipulation of numbers up to ab-
stractions, where you have structure and
you can reduce a whole set of rules to one
simple rule. If | succeed, hopefully, we'll
have an intellectual foundation for a lot of
new computer designs.”

Surprisingly enough, for one who has
his master's degree in mathematics, Bac-
kus didn't set out to be a mathematician.
The son of a Wilmington, Delaware,
chemist-turned-stockbroker, he had, in
his words, a ‘‘checkered educational
career.”” In and out of prep school from
the 8th grade on, he spent six months at
the University of Virginia, marking time
until the Army draft. He had thought he
might become a doctor and, once in the
Army, he studied premed and began medi-
cal school at what is now New York Medi-
cal College. “I had visions,” he recalls,
“of right away doing research on the func-
tions of the brain. But at medical school,
all they wanted you to do was memorize,
memorize, memorize. By the time | got out
of the Army, my one ambition was to build
a good hi-fi set.”

It was at radio technician school, under
the G.I. Bill, that Backus discovered math.

IV ALINAINAS

teetsn bonk ot the A==

He went on for his master's at Columbia
University and, while a student, went down
one day to Madison Avenue and 57th
Street to have a look at what a classmate
had described as "an interesting thing.”

The interesting thing, it turned out, was
the IBM Selective Sequence Electronic
Calculator (SSEC). Installed at IBM head-
quarters in 1948, it was the response of
company engineers to IBM's belief that
electronics was the new growth area. In
the early postwar years, the first electronic
computer, the ENIAC, was nearing com-
pletion at the University of Pennsylvania's
Moore School of Electrical Engineering;
the mathematical genius of John von Neu-
mann was bringing the stored program
concept to realization at Princeton's Insti-
tute for Advanced Study; while at Harvard,
IBM’'s own Mark | Automatic Sequence
Controlled Calculator was doing multipli-
cation and division in seconds.

Equipped with 13,000 vacuum tubes,
23,000 relays and a large number of paper
tapes, the SSEC was a hundred times
faster than the Mark |. The company that
supplied its lubricants advertised it in The
Saturday Evening Post as the Oracle on
57th Street. Customers used it to design
turbine buckets and solve oilfield explora-
tion problems. And Wallace J. Eckert, the
director of IBM's Watson Scientific Com-
puting Laboratory, did SSEC calculations

of the moon’s orbit that would show up 20
years later in the Apollo space program.
Heady stuff for a young math major.
When the IBM systems service rep who
put the SSEC through its paces learned
that Backus would soon be in the job
market and suggested he talk with the
machine's co-inventor, Rex Seeber, he
offered little resistance. | had holes in the
sleeves of my jacket and my shoes needed
shining, but she got me an interview then
and there. Seeber gave me a little home-
made test and hired me on the spot.”

The next two years, spent computing
lunar positions, were “just delightful. You
had the machine for two weeks all to your-
self, just to check out your tapes and plug-
boards and things like that. And then, of
course, you had to be there the entire time
the program was running, because it would
stop every three minutes, and only the
people who had programmed it could see
how to get it running again.”

But, for Backus, the programming itself
was as tedious as medical memory work.
In the early 50’s, most of it was being done
in binary-coded numbers the computer

hardware could interpret. The simplest '

machine instruction was a laborious pro-
cess of setting down rows of “0’s” and
“1's" in precise order.

“Much of my work has come from being
lazy,” he says. “'I didn't like writing pro-

grams, and so, when | was working on the
IBM 701, writing programs for computing
missile trajectories, | started work on a
programming system to make it easier to
write programs for the 701. And that
wound up as something called Speed-
coding.”

Later, when the IBM 704 was in develop-
ment up at the old Homestead lab in
Poughkeepsie, Backus persuaded the de-
signers to build directly into its hardware
the features that Speedcoding simulated.

“From then on,”” he said, ‘‘the question
became, what can we do for the poor pro-
grammer now? You see, programming and
debugging were the largest parts of the
computer budget, and it was easy to see
that, with machines like the 704 getting
faster and cheaper, the situation was go-
ing to get far worse.”’

Backus decided there might be a way
to use mathematical notation to address
the computer and have it work out its pro-
grams of “0’s’” and **1's" automatically. He
wrote a letter to his boss, Dr. Cuthbert
Hurd, head of the applied science depart-
ment, saying that it might be possible to
develop an automatic programming sys-
tem for the 704, and make it practical.
Hurd, who, in 1951, had the foresight to
encourage the company to hire John von
Neumann as a consultant, said yes.

Most people, Backus says today, “‘think

“Designing a language depends on having a

couple of ideas. And where ideas come from is
hard to understand. Particularly, years later.”

July/August 1979 24

FORTRAN’s main contribution was to en-
able the programmer to write programs in
algebraic formulas instead of machine lan-
guage. But it isn't. What FORTRAN did pri-
marily was to mechanize the organization
of loops.” A loop, heavily used in scientific
work and in computing payrolls, is a series
of instructions repeated a number of times
until a specific result is reached.

FORTRAN did greatly increase pro-
grammer productivity. What had previously
taken 1,000 machine instructions could
now be written in 47 statements. And, as
intended, more scientists and engineers
learned to do their own programming. But
the language was slow, at first, in catching
on. ""Users,” says its creator, *‘just found
it hard to believe that a machine could
write an efficient program.”

It could. By the fall of 1958, more than
half the machine instructions of the 704
were being generated by FORTRAN. It
was soon being used on other machines
as well. "In a way, FORTRAN was a great
boon to our competitors,” says Backus,
“because with their programs tied up in
machine language, IBM customers weren't
about to re-program for another compu-
ter. But if a competitor could come up
with a program that would translate a
FORTRAN program into the language of
his machine, he had a selling point.”

The telephone rang, and he crossed the

22 Think

At first, the language caught

on slowly, but soon more and more scientists
were doing their own programming.

room to answer it. "‘I've had an associate
for several months now,”" he said, return-
ing. "'A former associate professor at Cor-
nell. When I’'m working at home, we often
spend an hour a day on the phone.”

What had inspired his new work?

“| just got sick of seeing more and more
new programming languages— what | call
von Neumann languages,” he replied.
"“They’ve just become so baroque and un-
wieldy that few of them make programming
sufficiently cheaper to justify their cost.
FORTRAN started the trend. You see,”
Backus continued, “all programming lan-
guages are essentially mirrors of the von
Neumann computer. Each one may add
a gimmick or two, to automate some of the
dirty work, but it's usually done at the
price of a much more complicated lan-
guage. Today’s programming manuals are
that thick.” He held up a thumb and fore-
finger. “Some of them have 500 pages.
It’s just a vicious circle, because language
designers design to fit the computer, and
computer designers think they must design
to fit the languages.

“Von Neumann's concept was brilliant,
of course, and worked fine 30 years ago,”
said Backus. "But,” he paused, making

arches of his hands, "here’s my highly
oversimplified analysis of the von Neu-
mann computer. It consists of two boxes.
One is the central processing unit, where

the calculations take place, and the other
is the store, or memory. Traffic between
them takes place, figuratively speaking,
through a narrow passage that | call the
von Neumann bottleneck. Because it is
just that. You see, the purpose of a pro-
gram is to make a big change in the store.
But how does it do it? By huffing and puff-
ing words [a computer word is only 32
bits—''0's"” and ''1's’'] back and forth
through the tiny passage between the
store and the CPU. One word at a time.”
The result, says Backus, is that the pro-
grammer is left with an enormous task of
how to get things out of the store, combine
and pump them back into the store so that
the ultimate result is achieved. Everything
that can be said in a conventional pro-
gramming language has to be thought of
in advance, making the language huge and
inflexible. "And because it takes pages
and pages of gobbledygook to describe
how a programming language works, it's
hard to prove that a given program actually
does what it is supposed to. Therefore,
programmers must learn not only this
enormously complicated language but, to
prove their programs will work, they must
also learn a highly technical logical sys-
tem in which to reason about them.
“Now, in the kinds of systems I'm trying
to build,” he explained, '‘you can write a
program as essentially an equation, like

“I'm trying to get a basic concept of input/

output. But I've wrestled with the problem for
three or four years, and | still haven't got
what [want.”

%g,f

: :::: ~

equations in high school algebra, and the
solution of that equation will be the pro-
gram you want. What’'s more, you can
prove your programs in the language of
the programs themselves. The entire lan-
guage can be described in one page. But,”
he raised a finger, ‘‘there’s a catch.
They're what | call applicative languages,
which means that there’s no concept of a
stored memory at all.”

But surely a computer can’'t do without
a stored memory?

“Well, in one sense it can,” said Backus.

"“What | want to do is to come up with a
computing system that doesn't depend on
a memory at all, and combine that system,
in a rather loose fashion, with one that has
a memory but keeps the simplicity and the
algebraic properties of the memoryless
system. Then, hopefully, the process of
algebraically speeding up programs can
be mechanized so that people can write
the simplest programs and not have to
care whether they are efficient or not. The
computer will do the hard work. And, more
than that, perhaps a lot of programs can
be written simply by describing the pro-
gram you want with an equation.”

The sun had left the hill and, farther out,
was turning the blue of the ocean to gold.
“The FORTRAN language,” Backus re-
flected, '‘took about nine months to de-
vise. I've been working on this project

24 Think

since 1970, and it's still evolving. It's been
difficult because it requires breaking one
of the traditions of spoken English.

“For example, when we write sentences,
we interpret the sentence not by the words
themselves, but in terms of what they refer
to. When you say, 'the cat is running,’ you
don't mean the word, ‘cat,’ you mean the
animal. The same with computer pro-
grams. When you write 'x equals y plus z,’
you are certainly not referring to adding
the letters 'y’ and ‘z.” Yet my languages
do just that. | call them anti-quote lan-
guages. When you use the word ‘cat’ in an
anti-quote language, you are referring to
the word, not the animal.

"Now, if you were to say that, from now
on, all English sentences are to be inter-
preted in this new way, everybody would
be terribly confused, and of course, it
wouldn't make sense in the case of Eng-
lish. Yet, that's essentially the change I've
made in programming.”’

There was a taxi waiting and a plane to
catch.

"I wouldn't be surprised if I've boggled
you,” Backus said, as he saw me down
the steps. "My stuff boggles computer
scientists, too, at first. It's a terrible wrench
in our accustomed way of thinking and
just normal language usage. But what |
can show is that if they do make the switch,
then a lot of advantages flow from it.” m

