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Fig. 1. We filter direct (a) and global illumination (b) with high-frequency appearance and complex emitters ∼30× faster than the state-of-the-art and ∼10%
the memory footprint. Unless otherwise stated, our results have converged and residual noise is due to high-frequency appearance.

Realistic rendering with materials that exhibit high-frequency spatial varia-
tion remains a challenge, as eliminating spatial and temporal aliasing requires
prohibitively high sampling rates. Recent work has made the problem more
tractable, however existingmethods remain prohibitively expensive when us-
ing large environmental lights and/or (correctly filtered) global illumination.
We present an appearance model with explicit high-frequency micro-normal
variation, and a filtering approach that scales to multi-dimensional shading
integrals. By combining a novel and compact half-vector histogram scheme
with a directional basis expansion, we accurately compute the integral of
filtered high-frequency reflectance over large lights with angularly varying
emission. Our approach is scalable, rendering images indistinguishable from
ground truth at over 10× the speed of the state-of-the-art and with only 15%
the memory footprint. When filtering appearance with global illumination,
we outperform the state-of-the-art by ∼30×.
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1 INTRODUCTION
Microfacet reflectance models are a powerful tool for expressing the
behavior of real-world appearance. Traditionally, thesemodels relied
on aggregate statistical formulations of the normal distribution
function (NDF), however many real-world objects exhibit features
at scales visible to a viewer. Meso- and macro-scale scratches, flakes
and bumps all produce visually rich “sparkle” effects.

One challenge in simulating these effects lies in resolving aliasing
in the effective reflectance inside a pixel’s projected footprint (or a
path vertex’s footprint, for indirect bounces), requiring prohibitively
large sampling rates. Previous approaches (e.g., [Belcour et al. 2017;
Jakob et al. 2014; Yan et al. 2016]) resolve this issue by hierarchically
culling normals and positions when evaluating an appropriately
filtered effective reflectance towards a fixed lighting direction.

These methods are tailored to sharp directional or point lighting,
where sparkle effects can be quite pronounced; however, scenes with
larger area and environmental sources can also exhibit sparkly be-
havior; here, resolving final antialiased images additionally requires
integrating the evaluation of these previous models over the domain
of the extended light source (Figure 2). Even with their efficient
importance sampling schemes this integration over extended lights
becomes prohibitively expensive, and the problem is compounded
if we seek to simulate additional bounces of global illumination.
We present a filtered appearance model that admits an efficient

numerical integration of incident radiance over a shading footprint
from, e.g., all-frequency environmental light sources. We allow an
explicit specification of the underlying normal variation and present
a simple, efficient double filtering algorithm that adapts to both the
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Fig. 2. While high-frequency sparkle-like appearance is highlighted by
strong directional or point lighting (middle row), environmental lights (top
row) still contribute significantly to sparkly appearance. Our method (right
column) generates converged images with these effects in less than twice
the time needed to generate converged results with a smooth microfacet
model (left column), and ∼10× faster than [Yan et al. 2016] (not shown).

frequency-content of the underlying lighting and the effective NDF
within an arbitrary filter footprint. Our representation has modest
memory needs, we easily incorporate it into standard offline and
real-time rendering engines, and we demonstrate its ability to scale
to scenes with complex lighting and global illumination.
Specifically, we present the following technical contributions:

• a novel spherical histogram to query scale-dependent NDFs in
time independent of the normal map or footprint size,

• an efficient basis-space half-vector integrator that adapts to the
frequency of both the incident radiance and multi-scale NDF, and

• applications to direct lighting and correctly filtered secondary
bounces in global illumination, both with complex lighting.

We generate alias-free animations in a fraction of the time (∼2−10%)
of the state-of-the-art ([Belcour et al. 2017; Yan et al. 2016]).

2 PREVIOUS WORK
We aim to efficiently render alias-free ground truth-quality images
of scenes with microfacet BRDFs, high-frequency normal variation,
all-frequency lighting, both with and without global illumination.
While no current method can efficiently handle these scenarios, we
discuss the most relevant prior works: specifically, we draw upon
work in both the interactive and offline rendering communities.

2.1 Microfacet models
A long history of work on appearance models for reflection from
rough surfaces, using microfacet theory [Beckmann and Spizzichino
1963; Cook and Torrance 1982; Walter et al. 2007], lies at our foun-
dation. As with most appearance filtering techniques, our model fo-
cusses on the representation and treatment of continuous multi-scale
NDFs in the microfacet model, remaining agnostic to the choice for
the remaining Fresnel and shadowing-masking terms in the model .
We will outline the specific instance of these terms we employ in
our model (Section 3), acknowledging the large body of work on
both parametric (e.g., [Bagher et al. 2012; Dupuy et al. 2015; Ngan
et al. 2005]) and non-parametric microfacet models (e.g., [Bagher
et al. 2016]), we use the same framework but with a discrete set of
normals rather than a continuous distribution.

2.2 Procedural texture antialiasing
Prior tomostwork onNDF-based appearance filtering, high-frequency
and/or procedural textures were employed extensively as a means
of introducing high-fidelity spatial variation in simple shading mod-
els [Perlin 2002]. Approaches for antialiasing these procedural tex-
tures include directly filtering out high spatial frequency content,
or imposing simple geometric models atop the textures in order to
facilitate more flexible filtering schemes [Cook and DeRose 2005;
Heitz et al. 2013; Lagae et al. 2009]. While suitable for albedo fil-
tering, these approaches cannot be applied to filtering multi-scale
NDFs.

2.3 Accurate appearance filtering
Brute force numerical integration is a simple and prohibitively costly
method to accurately render sparkle effects that arise from high-
frequency normal map variation [Jakob et al. 2014; Yan et al. 2014].
This problem is compounded if, in addition to having to resolve
spatial aliasing within a pixel footprint, variation from incident radi-
ance need also be integrated numerically. Neither efficient (multiple)
importance sampling schemes [Jakob et al. 2014; Veach and Guibas
1995; Yan et al. 2014] nor more efficient pruning strategies [Atanasov
and Koylazov 2016; Yan et al. 2016] help, due to the nature of the
full integrand, which includes a product of the filtered NDF with the
incident lighting. Our filtered appearance model explicitly treats
the fact that both a spatial and angular integral must be computed
(Figure 4), as opposed to an evaluation of a spatial integral (Figure 3).

Most recently, several method approach the appearance filtering
problem with solutions to efficiently prune only the normals in an
NDF that will contribute non-negligibly to the final shading, for a
given view and lighting direction pair [Atanasov and Koylazov 2016;
Jakob et al. 2014; Yan et al. 2014, 2016]. These works provide sig-
nificant improvements over brute force integration in the presence
of strong point or directional lights, but they become prohibitively
costly when large lights or global illumination are considered.
Two notable exceptions are the works of Raymond et al. [2016]

and Belcour et al. [2017]. Raymond and colleagues present a multi-
scale appearance model tailored to scratch microstructures, and
they demonstrate its flexibility in the context of complex lighting.
We instead treat arbitrary user- and procedurally-generated high-
resolution normal variations, and explicitly compute both the spatial
and angular integrations with a single method. Belcour et al. [2017]
integrate an existing appearance filtering model ([Yan et al. 2014])
atop a covariance tracing-based global illumination framework in
order to correctly filter indirect bounces off of, and on to, sparkly
materials. This approach demonstrated orders of magnitude perfor-
mance improvements over brute force Monte Carlo (at the time, this
was the state-of-the-art for accurately simulating indirect bounces
of sparkly materials). We similarly integrate our appearance model
into a filter-aware global illumination algorithm, and demonstrate a
30× performance improvement over the approach of Belcour et al.

Recently, appearance models that treat wave optics for fine-scale
microstructures have demonstrated the ability of simulating subtle
iridescence effects [Werner et al. 2017; Yan et al. 2018]. We rely on
geometric optics and instead focus on accelerating lighting integra-
tion for multi-scale appearance in direct and indirect illumination.
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Incorporating wave optics in our model is an interesting, comple-
mentary direction of future work.

2.4 Fast appearance filtering
Initial work on normal antialiasing was led by the interactive graph-
ics community. Here, smooth and compact normal distributions
were used to leverage graphics MIP hardware to perform fast multi-
scale filtering [Dupuy et al. 2013; Olano and Baker 2010; Toksvig
2005]. These single-lobe approximations of the NDF are suitable
for interactive applications, but they cannot capture the details and
anisotropies of NDFs (across scales) with high spatial resolution [Yan
et al. 2014].

Han et al. [2007] notably use spherical harmonics (SH) and spher-
ical Gaussian mixture models of the multi-scale NDF, allowing for
multimodal NDFs. We too rely on SH, however only when perform-
ing our final shading (i.e., directional integration) and not when
computing the form of the multi-scale NDF (i.e., spatial normal
map filtering). Combined with an efficient half vector-space shad-
ing formulation (Section 4.2), this allows us to correctly integrate
environmental lighting with both all-frequency underlying BRDFs
and all-frequency environmental lighting, generating spatially- and
temporally-antialiased image sequences.

Finally, real-time approximations of existing accurate appearance
filtering approaches for glints [Zirr and Kaplanyan 2016] and irides-
cent scratches [Velinov et al. 2018] have shown promise towards
pushing these important visual effects into an interactive context.
The approach of Zirr and Kaplanyan [2016] is effective but limited to
simple lighting, whereas Velinov et al. [2018] derive analytic approx-
imations for spherical and polygonal area lights. Their model, how-
ever, only treats scratch-like microstructures, whereas we consider
both arbitrary normal maps and arbitrary, i.e., environmental inci-
dent illumination. While we primarily target offline, fully-accurate
simulations, we also discuss a proof-of-concept interactive renderer
implementation in Section 6.

3 PRELIMINARIES & BASELINE APPEARANCE MODEL
Aswith recent works on filtered appearancewe build atop a standard
microfacet BRDF model of reflection from smooth surfaces

fr (x ,ωi ,ωo ) = ρd + ρs

(
D(x ,ωh ) F (ωi ·ωh )G(ωi ,ωo )

4(n ·ωi )(n ·ωo )

)
, (1)

but with a critical deviation that the normal distribution function
(NDF)D(x ,ωh ) is a scale-dependent, potentially high-frequency and
anisotropic spherical distribution in the space of half-vectors ωh =
(ωi+ωo )/|ωi+ωo |. Here, ωi and ωo are the incident and outgoing
lighting direction at the shading point x (with geometric normal n),
ρd and ρs are diffuse and specular reflection coefficients, F (ωi ·ωh )

is the Fresnel term and a geometry term G(ωi ,ωo ) captures micro-
scale shadowing, masking and inter-reflection.
Techniques that target ground truth-quality renderings of mi-

crofacet models with high-frequency normal variation can be cate-
gorized by whether they allow implicit or explicit specification
of the underlying normal variation. Explicit approaches (e.g., the
“glints” methods of Yan et al. [2014; 2016]) are flexible in that they
allow an arbitrary high-resolution normal map texture as input,

ωo
n

ωh

ωi

P

Spatial Appearance Filtering

P

Pixel Footprint P

Fig. 3. Previous methods only integrate over a spatial footprint, before
evaluating filtered appearance in the direction of a point/directional source.

but generally have large memory requirements (see Section 7). Im-
plicit approaches (e.g., the “discrete microfacet” method of Jakob
et al. [2014]) instead rely on statistical processes to describe the
underlying high-frequency normal variation (typically using lazy,
on-the-fly evaluation), leading to more compact run-time algorithms
but at the cost of reduced control over appearance variations.
We will efficiently compute filtered appearance integrals in the

presence of complex incident lighting, and we propose our solution
in Section 4. First, however, we establish a baseline filtered appear-
ance model with which we can generate ground truth results and
compare to in the context of prior work. As with our final model
(Section 4), our baseline model is an explicit model and, so, allows
for user-controllability through arbitrary normal map inputs. Our
baseline (and final) models will require low memory footprints, in
order to facilitate comparisons on complex scenes. In the context of
prior work, our baseline model is a cross between glint [Yan et al.
2014, 2016] and discrete microfacet models [Jakob et al. 2014], and
so we refer to it as the G×D model.

3.1 Baseline Filtered Microfacet Model (G×D)
TheD(x ,ωh ) term in Equation 1 can be expressed as a hemispherical
probability distribution (over half-vectors) of the angle θh formed by
everymicrofacet normal with the underlyingmacro-scale/geometric
normal n at a shade point x . Unlike smooth microfacet models, the
NDF within a filtering footprint P (e.g., subtended by the projection
of a pixel onto a shading surface; see Figure 3) can be modelled
according to the individual normals that lie inside it.

We borrow and combine previous notation [Jakob et al. 2014; Yan
et al. 2014] and define the normalized NDF as the set of normalsωx
at shading locations x inside the footprint P, each of which repre-
sents the mean direction of a spherical GaussianGs that models the
roughness of an equivalently-smooth underlying microsurface (Fig-
ure 3),

D̂(P,ωh ) =

∫
P

Gs (ωh ;ωx , Σs )dx , (2)

where the Gaussian roughness centered about each micro-normal
is parameterized by its covariance matrix Σs . In practice, we apply
isotropic roughness, and so a diagonal Σs with elements σs .

While Equation 2 assumes an arbitrary underlying spatial distri-
bution of micronormals, in practice we use discrete micronormal
distributions defined in normal map textures. That is, our normal-
ized NDF is the finite set of explicitly specified normalsωx located
at shading locations x inside the footprint P. For this reason, it can
be convenient to rewrite Equation 2 in terms of normal map texels
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Fig. 4. Our method integrates high-frequency appearance variation over
both spatial footprint and incident lighting directions. To integrate over all
light directions ωi , as is needed for environment lighting, previous work
requires many Monte Carlo samples, each of which involves an expensive
integral over P. Our method solves both integrals with a single evaluation.

(dropping the dependence on σs , for brevity), as

D̂(P,ωh ) =
1
NP

∑
ωx ∈P

Gs (ωh ;ωx ) , (3)

whereNP are the number of texels that the footprintP projects onto
in texture-space (Figure 3, right), and we assume equally weighted
(i.e., box-filtered) averaging of these micronormals.

Note that as σs → 0 the roughness approaches mirror-like (delta)
reflection andGs → δΩ , our baseline approaches the model of Jakob
et al. [2014], but with the important difference that micronormals
are defined explicitly.
Incorporating the multi-scale NDF (i.e. for arbitrary pixel foot-

print size) described in Equation 2 into Equation 1, involves changing
the notion of a point-wise BRDF fr (dependent on intersection point
x) into a “multi-scale” BRDF f̂r that depends on pixel footprint P.
Having done this, we can evaluate for a single view and light direc-
tion, arriving at the formal definition of our baseline G×D filtered
appearance model:

f̂r (P,ωi ,ωo )=ρs

∫
P

D(x ,ωh )F (ωi ·ωh )G(ωi ,ωo )

4(n ·ωi )(n ·ωo )
dx

=ρs

D̂(P,ωh )︷                 ︸︸                 ︷∫
P

Gs (ωh ;ωx )dx F (ωi ·ωh )G(ωi ,ωo )

4(n ·ωi )(n ·ωo )
, (4)

where we solve the spatial integral by means of Equation 3 and we
employ a factorization of theG term as a product of rational approx-
imations of the Smith shadowing term, G(ωi ,ωo ) ≈ G1(θi )G1(θo )
withG(θ ) [Walter et al. 2007], and we use the exact Fresnel term for
conductors.

Note that shading with Equation 4 for lighting configurations that
require anything other than a simple evaluation of (single)ωi , and
henceωh , directions would have to rely on brute force numerical
integration. This quickly becomes prohibitively expensive (Figures 4
and 5). In Section 4 we present a mathematical representation, and
detail an efficient and scalable algorithm, for solving integrals of
Equation 4 against (non-delta) lighting distributions.
Our method inherits the following assumptions from [Yan et al.

2014, 2016] and [Jakob et al. 2014]: locally flat macro-geometry
and no view/light variation within the footprint. Our results are

consistent with prior work, as can be observed even under highly
curved surfaces, e.g. the snail (Figure 1).

3.2 Evaluating G×D
We adapt the pruning algorithm of Jakob et al. [2014] to treat explicit
normal maps and Gaussian roughness, when evaluating Equation 4
for ground truth baseline renderings. Specifically, we build a min-
max MIP-hierarchy in texture space. Spatial footprint pruning is
trivial, as we project a conservative bounding box for pixel (or indi-
rect path vertex) footprints onto the UV space. Normals are encoded
as 2D (s, t)-coordinates on a projected disc parameterization [Yan
et al. 2014] and, at each MIP-level, a min and max (s, t) are computed
and used to cull ωx directions that fall outside of P and Ωo . The
hierarchy is constructed once at start-up at a cost negligible to the
total render time.
Of note, this G×D approach requires less memory and is consis-

tently faster than the earliest approach of Yan et al. [2014], how-
ever Yan et al.’s latter approach [2016] converges between 5 − 25×
faster (albeit requiring typically 100× more memory with higher
per-evaluation cost) than G×D. For this reason, we often treat G×D
as our “brute force” solution for ground truth image generation
(even though it is roughly 500× faster than naïve importance sam-
pled Monte Carlo), and we treat the latest Yan et al. technique [2016]
as our “high-performance” benchmark. All results generated with
Yan et al.’s [2016] techniques rely on implementations provided to
us by the authors.
Figure 5 demonstrates the performance gap introduced when

even the state-of-the-art [Yan et al. 2016] has to rely on numerical
integration to resolve variation in incident radiance. This gap is
compounded by global illumination (e.g., Figures 1 and 14).
In Section 4, we will incorporate incident lighting variation as

a component of a new filtered appearance model and detail an ap-
proach for computing integrals that filter over the spatial, outgoing
view and incident lighting dimensions. Our method relies on a sim-
ple multi-scale spherical histogram (Section 4.1) and basis-space
integration scheme (Section 4.2), it is easy to implement in existing
rendering engines (Section 6), and it scales favorably in performance
and memory (outperforming the state-of-the-art by 10 − 30×).

Baseline (G×D) Our Method (Eq. 6) [Yan et al. 2016]
Fig. 5. Middle: Our method generates a converged filtered result in 4.89s
(1spp) in a scene with a high-resolution normal map and enviromental light-
ing. Top halves: equal time for our baseline (2spp, left) and [Yan et al. 2016]
(1spp, right). Bottom halves: Equal quality rendering requires 16,384spp
and 13m:8s with our baseline and 512spp and 2m:25s with [Yan et al. 2016].
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In Section 5 we will apply our model to filtering direct illumina-
tion and multi-bounce global illumination transport, both in scenes
with complex environmental (and point) lighting.

4 FILTERING APPEARANCE IN SPACE AND DIRECTION
To synthesize spatially- and temporally-antialiased image sequences
with sparkly materials, complex lighting and global illumination,
we devise a compact and efficient approach to compute integrals of
Equation 4 over arbitrary illumination signals Li(ω), namely

Lo(P,ωo ) =

∫
Ωi

Li(x ,ωi ) f̂r (P,ωi ,ωo )(n ·ωi )dωi

=

∫
Ωi

∫
P

Li(x ,ωi )D(x ,ωh ) F (ωi ·ωh )G(ωi ,ωo )

4(n ·ωo )
dx dωi , (5)

where Ωi are hemispherical directions about the macro-scale nor-
mal n and we drop the specular coefficient ρs for brevity. In this
context, D(x ,ωh ) is the point-wise NDF Gs (ωh ;ωx ). State-of-the-
art techniques would have to rely on Monte Carlo integration to
resolve Equation 5 and, even with efficient (spatially-filtered) BRDF
importance sampling [Jakob et al. 2014; Yan et al. 2014, 2016], light
importance sampling and MIS [Veach and Guibas 1995], this is pro-
hibitively costly (Figure 5).

We simplify Equation 5 by factoring and approximating the Fres-
nel, geometric terms and microfacet normalization terms from the
integral with a transfer function FG(ωo ) (see Appendix A for de-
tails), leading to our lighting-aware filtered appearance model,

Lo(P,ωo ) ≈ FG(ωo )

∫
Ωi

∫
P

Li(x ,ωi )D(x ,ωh )dx dωi . (6)

An immediate issue arises when addressing solutions to Equation 6:
the discrepancy in the natural spherical parameterizations of Li and
D. We choose to perform integration in the space of half-vectors
ωh and reparameterize Equation 6 appropriately by introducing
an incident illumination function L̂i that is dependent on both out-
going and half-vector directions, reducing the problem to solving
equations of the form∫

Ωi

∫
P

Li(x ,ωi )D(x ,ωh )dx dωi

=

∫
Ωh

Li(x̄ , r (ωo ,ωh )) (4(ωh ·ωo ))

∫
P

D(x ,ωh )dx︸             ︷︷             ︸
D̂(P,ωh )

dωh

=

∫
Ωh

L̂i(x̄ ,ωo ,ωh ) (4(ωh ·ωo ))

∫
P

Gs (ωh ;ωx )dx dωh , (7)

where the 4(ωh ·ωo ) factor accounts for the change of parameteri-
zation between differential incident and half-vectors [Torrance and
Sparrow 1967; Walter 2005], Ωh are the hemispherical directions
aboutωo , r (ωo ,ωh ) = ωi reflectsωo w.r.t.ωh , and we define our
filtered multi-scale NDF, D̂(P,ωh ), which depends on the filtering
footprint P. Note that above, as with previous work, we assume
the incident illumination L̂i does not vary significantly within the
spatial footprint and use a “central” shading point x̄ to distinguish
between its spatial variation at scales larger than a single filtering
footprint. Sections 5 and 6 will detail our representation of the in-
cident illumination L̂i, which allows us to handle physically-based

microfacet models in the presence of environmental lighting, ad-
dressing certain limitations that we discuss regarding previous work
(e.g., [Han et al. 2007]; see Section 6.3). For the purposes of our ex-
position here, however, it is safe to assume that we have arrived at
an expression L̂i that can be treated as a simple (hemi-)spherical
function ofωh .

Now, to efficiently solve integrals of the form in Equation 7 (and,
so, Equation 6), we combine two ideas that lead to orders of mag-
nitude faster performance than the state-of-the-art with a modest
memory requirement: first, a representation for computing multi-
scale spherical NDFs over arbitrary filtering footprints in constant
time, using spherical histograms; and, second, a basis-space repre-
sentation for computing efficient spherical integrals that can adapt
to the frequency-content of both the incident lighting L̂i and the
multi-scale NDF D inside a footprint.

4.1 Multi-scale NDFs using Histogram Accumulation
For explicit high-frequency normal variation represented in, i.e., a
normal map, themulti-scale NDF D̂(P,ωh ) is a normalized spherical
distribution of all the normals that lie inside the projected filtering
footprint P, convolved with the isotropic roughness kernelGs . One
can naïvely arrive at a discretized (e.g., a spherical texture map)
approximation of D̂(P,ωh ) by convolving and summing each nor-
mal map texel that lies inside the projection of P onto (u,v, )-space.
This naïve approach is not favorable for two key reasons:
(1) the cost of computing D̂ would scale linearly in the size of P, and
(2) the cost of spherical Gaussian convolution would scale with the

underlying discretization resolution for D̂.
Motivated by these scalability issues, we propose a novel represen-
tation and an efficient data-structure, based on spherical histogram
accumulation, to compute a discrete representation of D̂ in constant
time for footprints P of arbitrary size (item #1, above). We detail
our histogram formulation below, before discussing how basis-space
representation can help us avoid the scalability cost of spherical
Gaussian convolution (item #2, above; see Section 4.2).
We observe that, instead of individually representing every pos-

sible discrete micro-normal direction, we can collect histogram
statistics of the normals that fall within a footprint. This has two
benefits: first, we show below how histogram statistics for an arbi-
trary footprint can be computed using histogram statistics collected
for each individual micro-normal in the normal map, and this all
in constant time independent of the footprint size; second, we can
control the NDF accuracy by adjusting the histogram bin resolution.

4.1.1 Histogram initialization. Specifically, we define a new 2D
histogram texture with the same resolution as the normal map.
Each texel stores an accumulated spherical histogram of normals,
encoded as a 2D bin of (θ ,ϕ)-space normal buckets. Bins have
equal elevation and azimuthal angle extents. Given the SAT-like
structure, a value at position (u ′,v ′) corresponds to the histogram
of normals in the rectangular area (of the normal map) with corners
(0, 0), (0,v ′), (u ′, 0) and (u ′,v ′)

At initialization, beginning from the top-left histogram texel, we
accumulate normals into bins from left-to-right and top-to-bottom
(see Figure 6): each histogram texel accumulates additional normals
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P →

= − − +

= − − +

Fig. 6. We use texture-space accumulated NDF histograms to efficiently query the multi-scale NDF histogram for an arbitrary filtering footprint P using four
lookups into this SAT-like data structure (histogram radial sizes not to scale, above). Figure 11 illustrates the visual impact of different histogram resolutions.
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Fig. 7. We adapt the shading to the minimum between the max frequency bandwidth of the multi-scale NDF in a footprint (top row) and the max bandwidth
of the lighting environment. We visualize enviroment maps bandlimited to this effective shading bandwidth (bottom).

from the normal map to cover the same area up to the current (u,v)-
coordinate. Normals only get added (not removed) to histogram
bins as we traverse across texels, and so a histogram at texel (u ′,v ′)

is a strict superset of the histograms at texel, e.g., (u ′ − 1,v ′ − 1). In
this case, the histogram at (u ′,v ′) is equal to the sum of histogram
entries at (u ′,v ′−1) and (u ′−1,v ′) (correcting for overlaps) plus the
corresponding frequency increase for the normal at (u ′,v ′) in the
normal map. This structure allows for a fast sweeping accumulation,
which adds a negligible overhead at startup (see Section 6.1).

4.1.2 Summed area table histogram queries. At run-time we com-
pute the NDF histogram of an arbitrary axis-aligned (u,v) footprint
by treating the histogram as a summed area table, using only four
constant cost queries (Figure 6). As with Yan et al. [Yan et al. 2014,
2016], we utilize axis-aligned (u,v) footprints and a Gaussian image
reconstruction kernel to approximate Gaussian footprint weighing.
Given the ability to compute multi-scale NDF histograms (effi-

ciently, in constant time w.r.t. footprint size), we require an approach
to integrate the product of these spherical histograms with arbitrary
incident illumination distributions (i.e., Equations 6 and 7).

4.2 Adaptive Basis-space Integration
A naïve integration solution is to apply a spherical quadrature at
central axes of each spherical histogram bin, effectively a bin as a
weighted delta function. Alternatively, a quadraturewith pre-filtered
environmental summed area tables can be used, treating each bin
as a subtended spherical rectangle. These integration approaches
scale linearly with the histogram resolution, whereas we propose
an adaptive method with several advantages:

• we adapt to the frequency content of the entire integrand in Equa-
tion 7, treating the bandlimits of both the NDF and the incident
illumination and shading at the minimum of these bandlimits,

• our shading scales indepedent of the histogram resolution, and
• we do not need any specialized spherical SAT parameterizations,
which would incur a resampling cost at shade-time.

To apply a basis-space shading method to our problem, we require
a basis capable of efficiently:
(1) determining the bandlimit of lighting, NDF and their product,
(2) computing bandlimited integrals of this product (i.e., adaptivity) ,
(3) capturing all-frequency signal variation (i.e., accuracy), and
(4) having only modest memory requirements (i.e., compactness),
To these ends, we choose to employ spherical harmonics (SH). As
with previous work [Han et al. 2007], we detail several properties of
SH that we leverage to meet our performance, accuracy and memory
requirements; we contrast our choice and overall representations to
that of prior work below and in Section 6.3. Basis selection involves
trade-offs and, while other choices may have met our requirements
(e.g., spherical radial basis functions), our SH method demonstrates
significant performance and memory improvements over the state-
of-the-art, and so we leave the application/exploration of other bases
to this problem to future work.

Before detailing the interplay of our SH integration scheme with
our spherical histogram representation, we provide a quick primer
to SH and the specific properties we leverage.

4.2.1 Spherical harmonic preliminaries. We can represent a spher-
ical function f (ω), withω = (x ,y, z) = (θ ,ϕ) ∈ S2, with SH projec-
tion coefficients obtained by projecting f onto the real SH basis as
f =

∫
S2 f (ω)y(ω)dω, where f is a vector of these coefficients and
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y(ω) is a vector of the individual SH basis functions:

yml (θ ,ϕ) =

{√
2 Km

l cos (mϕ) Pml (cosθ ) , m > 0
√

2 Km
l sin (|m |ϕ) P

|m |

l (cosθ ), m ≤ 0
, (8)

where an “orderN ” SH representation comprises bands 0 ≤ l ≤ N−1
m, indexes the (2l + 1) basis functions in each band l , Km

l is a
normalization term, Pml are the associated Legendre polynomials,
and each band-l basis function is a degree l polynomials in (x ,y, z).
We often use a single index i = l(l + 1) +m for basis functions and
coefficients.
The signal f has bandlimit M if f ml = 0, ∀l ≥ M − 1. We treat

the concept of an effective bandlimit M when |f ml | ≤ ϵ, ∀l ≥ M − 1
for sufficiently small ϵ (we use ϵ = 10−6). We can reconstruct f by
weighting the SH basis functions by its SH projection coefficients

f (ω) = f · y(ω) =
∑N−1
l=0

∑m=l
m=−l f

m
l yml (ω) (9)

and, unless f has bandlimitM < N , the reconstruction is a bandlim-
iting approximation of f (to a bandlimit of N .)
Them = 0 subset of SH functions, called zonal harmonics (ZH),

are circularly symmetric functions of cosθ = z. Sloan et al. [2005]
introduced a fast rotation to compute the SH coefficients дml of a
circularly symmetric function aligned about z (represented by ZH
coefficients fl ) rotated to an arbitrary direction ω̄, by simply scaling
the SH basis functions evaluated at ω̄ as

дml = n
∗
l fl y

m
l (ω̄) = f ∗l yml (ω̄) , (10)

with n∗l =
√

4π/(2l + 1). This amounts to an application of the
Funke-Hecke convolution theorem that allows us to obtain the
SH coefficients of the function that results from a convolution of
a circularly-symmetric function (with ZH coefficients fl ) and a
spherical function (with SH coefficients hml ). Above, this amounts
to setting д(ω) = f (θ ) ~ h(ω), where h(ω) = δ (ω − ω̄) is simply
a delta function in the direction of the rotation axis and h has SH
projection coefficients hml = y

m
l (ω̄).

The final SH property of interest is the fast double-product integral
formulation: given two spherical functions a(ω) and b(ω) with
(effective) band-limitsMa andMb , the integral of their product is∫

S2 a(ω)b(ω)dω =
∑M2

⋆−1
i=0 ai bi , (11)

whereM⋆ = min(Ma ,Mb ) and we arrive at the right hand side by
substituting the SH expansions of a and b (Equation 9) into the
left hand side and then applying the orthonormality property of
SH basis functions:

∫
S2 yi (ω)yk (ω)dω = σi,k , where σi,k is the

Kroenecker delta.
Equations 9 and 11 satisfy requirements #1 and #2 for our basis

(listed earlier in this subsection), and we address the final two basis
requirements. Regarding all-frequency signal variation (item #3),
while they are not often leveraged for all-frequency shading appli-
cations, SH basis functions are capable of capturing all-frequency
signal variation if a sufficiently high bandlimit is chosen. We will
discuss below exactly the manner in which we apply SH to our
problem, as it scales independently to the normal/histogram map
resolution and allows us to use extremely high bandlimits (order
300 in some cases), which are more than sufficient to capture the
frequency content of NDFs (across scales) and realistic incident

illumination from, e.g., environment maps (see Figure 7). While the
number of SH coefficients we need to store grows quadratically in
the max bandlimit order, we still maintain a memory footprint signif-
icantly smaller than the state-of-the-art [Yan et al. 2016], satisfying
item #4, above (see Section 6.1).

4.2.2 Multi-scale SH NDFs and adaptive integration. We compute
the SH projection of our filtered multi-scale NDF (Equation 7) using
the multi-scale NDF histogram we query for our filtering footprint
P and, after determining the effective bandlimit of this projection
(and of the incident lighting; see Section 6), we set the shading
bandlimit adaptively per-pixel asM⋆ and apply Equation 11 to solve
the integral (Equation 7) of Equation 6.
Concretely, we arrive at the SH coefficients of the filtered multi-

scale NDF Di (P) =
∫
S2 D̂(P,ω)yi (ω)dω by summing the SH

projection coefficients of its individual Gaussian roughness kernels,
each aligned about the NP normals in the filtering footprint P,

Di (P) =
1
NP

∑
ωx ∈P

∫
S2

Gs (ω;ωx )yi (ω) dω . (12)

We query our NDF histogram for P (Figure 6) and iterate over the
NP micronormals in the histogram (outer sum in Equation 12). SH
projection coefficients for each of these individual Gaussians are
precomputed once at initialization, as they align with the histogram
bin central axes. In fact, the histogram nature of our intermediate
NDF representation allows us to further reduce the number of ele-
ments from NP toM (withM ≪ NP as P increases in size), where
M is simply the resolution of the histogram.

Recalling that spatial integration of an individual Gaussian rough-
ness kernel projects that Gaussian onto the sphere about the shading
frame, so we take advantage of the fact that these spherical Gaus-
sians are circularly symmetric and that their SH coefficients can
be computed by applying the fast ZH rotation formulation (Equa-
tion 10) to the ZH coefficients of a canonically-oriented spherical
Gaussian (which we compute and store once, numerically). Com-
puting the SH coefficients of D̂(P,ω) amount to a weighted sum of
M ZH-rotated (precomputed) spherical Gaussian SH coefficients.
One could imagine avoiding the histogram abstraction and di-

rectly storing SH coefficients for incrementally accumulated NDFs,
in a similar SAT-like structure as our histogram, but this approach
has several limitations that we discuss in more detail in Section 6:
of note, the storage costs of such an SAT would scale (quadrati-
cally) with the maximum SH order (e.g., 351 GB for order-300 and a
1024 × 1024 normal map). This alternative also bears some similari-
ties to the multi-scale NDF representation in Han et al.’s work [2007],
which we also discuss in Section 6.3.

5 APPLICATIONS
After computing the SH coefficients of the filtered NDF D̂ we can
solve Equation 6 with an efficient SH double product integral (Equa-
tion 11). We do so in the context of two applications, detailing
their specifics, below: filtered direct illumination (e.g., [Jakob et al.
2014; Yan et al. 2014, 2016]) and filtered global illumination [Belcour
et al. 2017]. In all cases, our rendering algorithms use an order-of-
magnitude less time and less memory to match converged ground
truth compared to the state-of-the-art.
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5.1 Appearance Filtered Direct illumination
We compute filtered direct illumination Ld(P,ωo ) in a scene with
complex environment and area lighting with Equations 6
and 7 and an appropriate substitution of L̂i(x ,ωo ,ωh ) ≡

L̂e(x ,ωo ,ωh )V̂ (x ,ωo ,ωh ) that accounts for the direct shadowing
visibility term V (x ,ωi ) and the incident radiance due to emission
from light sources Le(x ,ωi ). Note that Le combines lighting from
area (e.g., polygonal), environmental and point/directional light
sources.
Here, we note that we can immediately obtain a converged un-

shadowed direct illumination result Lu(P,ωo ) with a single shading
“sample” (i.e., a single evaluation of our basis-space double-product
integral), if we ignore the visibility term and use L̂i(x ,ωo ,ωh ) ≡

L̂e(x ,ωo ,ωh ). Here, we precompute the SH projection of
L̂e(x ,ωo ,ωh )(4ωh ·ωo ) for many ωo at initialization, and query
these coefficients during fast double-product integration for the
unshadowed term Lu. We discuss technical details in Section 6.
A common numerical solution in scenarios such as this is to

devise a Monte Carlo estimator that uses the unshadowed direct illu-
mination as a control variate, and then relies on numerical sampling
to resolve the shadowing:

Ld(P,ωo )=Lu(P,ωo )−

Ns∑
s=0

Le(x ,ωs ) (1−V (x ,ωs )) f̂r (P,ωs ,ωo )

Ns pdf(x ,ωs )

(13)

where we rely on our baseline G×D technique to resolve the Monte
Carlo integral, with a spherical pdf that applies multiple importance
sampling of the light/environment and our filtered BRDF sampling.
Spatial sampling (i.e., to resolve the implicit spatial integral over the
footprint of f̂r ) is absorbed into standard sub-pixel anti-aliasing.
One side effect of this control variate estimator is that noise in

the shadowed regions can become objectionable, since individual
estimator samples are unbounded.We rely instead on the recent ratio
estimator approach of Heitz et al. [2018], that leverages a factored
multiplicative decomposition of the unshadowed and shadowed
direct radiance, instead of the difference-based estimator above.
Unlike their approach, we do not employ any spatial denoising to
our ratio estimate, to avoid adding bias; doing so would significantly
improve the visual appearance of our results at low sampling rates,
but our goal is to match ground truth results.

Unshadowed Lu(P,ωo ) Shadowed Ld(P,ωo )

Fig. 8. We can generate converged unshadowed direct illumination with a
single shading sample (left; 0m:42s) and then apply the technique of Heitz
et al. [2018] to compute shadowing numerically (with 4spp in 1m:08s).

5.2 Filtered Global Illumination
We adapt the method of Belcour et al. [2017] to filter high-frequency
appearance in the presence of global illumination effects, but now
also in scenes with complex environmental and area light sources.
Their approach propagates a lightweight covariance-based lightfield
representation along paths (i.e., in a standard uni- or bi-directional
path tracing framework). The covariance at any path vertex can
be used to define a local filtering footprint which, in turn can be
applied to filter an underlying high-frequency appearance model.
Even in scenes with strong point and directional sources, their

indirect filtered appearance method provided several orders-of-
magnitude improvements over a naïve path traced solution (the
only alternative, at the time). The added complexity of filtering
indirect reflections of high-frequency appearance in the presence
of large angularly-varying light sources stresses their method as,
just with filtered appearance in direct illumination, their underlying
appearance filtering model does not take variation due to incident
illumination into account.

By applying our solution to Equation 6 in the next-event estimator
of secondary path vertices in a standard uni-directional path tracer,
augmented with Belcour et al.’s secondary footprint computation,
we are effectively leveraging our method’s ability to compute a
converged value that integrates over all light directions (instead of
just one). This way, we are able to outperform their approach in
scenes with complex lighting by about a factor of 10 − 50× (see
Figures 1 and 14).

6 IMPLEMENTATION AND DISCUSSION
We discuss implementation details, as well as discussing design
decisions in the context of previous work, below.
At a high-level, our approach can build atop any rendering en-

gine capable of generating ray differentials [Igehy 1999] (for direct
illumination) and, for global illumination, secondary path filter-
ing differentials (we employ Belcour et al.’s [2017] approach, here).

ω0

ω1

ωi

P0

P1

Ω0
Ω1

Fig. 9. We adapt the technique of Belcour et al. [2017] to compute secondary
path vertex footprints for filtered appearance with global illumination.
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ωo
nn

(a) θo = 30◦

ωo nn

(b) θo = 60◦

Fig. 10. When integrating with respect to ωh our basis-space approach
automatically discards NDF normals outside the shading frame (grayscale)
and uses an appropriately warped incident illumination distribution.

As with previous work [Yan et al. 2014, 2016], we assume axis-
aligned footprints in texture-space, computed with conservative
(u,v) bounding boxes.
Below, we provide technical implementation details of our data-

structures and algorithm, and discuss relationships (and differences)
to certain aspects of previous work. Our rendering framework in-
volves the construction of our histogram SAT (Section 6.1), the pre-
computation of rotated Gaussian SH lobe coefficients (Section 6.2)
and the precomputation of weighted SH lighting coefficients (Sec-
tion 6.4).

6.1 Histogram Resolution
We store a discrete spherical histogram in our SAT-like multi-scale
NDF lookup texture (Section 4.1). The texture itself has the same
resolution as the underlying normal map, and each texel stores a dis-
cretized histogramwith (θ ,ϕ)-parameterized bins. We experimented
with different histogram resolutions, and settled on a resolution of
9 × 32 for every result in the paper: this value was chosen such
that renderings visually match the reference ground truth, all while
maintaining a modest memory footprint (e.g., 576MB for 1024×1024
normal maps and 1.1GB for 2048 × 2048). Figures 11 and 15 illus-
trates visual artifacts that arise from reducing the histogram bin
resolution.

6.2 Gaussian Roughness Lobe Discretization
We precompute SH coefficients for the rotated ZH Gaussian rough-
ness lobes (

∫
Gs (ω;ωx )yi (ω)dω in Equation 12), for a fixed base

roughness σs (and each high-frequency material in the scene), at
start-up. We store these rotated lobes at a 4× higher resolution (i.e.,
65 × 128) than the histogram due to the difference in their spherical

5 × 16 bins 9 × 32 bins
Fig. 11. Lower resolutions for our accumulated NDF histogram result in
angular blurring of details (left), albeit a much faster rendering (2.5×, here).

parameterizations: the NDF histograms are expressed in the local-
shading frame (withn up), whereas shading with the Gaussian lobes
is conducted in the half-vector frame (withωo up). This means that
we need to rotate the n-oriented Gaussian lobes to theωo -frame for
shading. At run-time, we rotate each (non-zero) NDF bin’s central
direction into theωo -frame and bilinearly interpolate between the
four nearest pre-rotated Gaussian lobe coefficient vectors. Alterna-
tively, we could perform a perfect rotation of a canonically-oriented
Gaussian ZH lobe to the rotated bin direction (Equation 10), but
the precomputed solution allows us to avoid evaluating SH basis
functions at run-time (whose number grow quadratically w.r.t. or-
der). We illustrate the effects of different lobe direction sampling
rates (relative to the NDF histogram resolution) on a simple smooth
microfacet sphere, rendered in the half-vector space, in Figure 12.
The effect of different rates can be observed in Figure 16.

The precomputed lobe coefficients still require very little storage:
29MB for order-30 SH, 114MB for order-60 and 714MB for order-150.

6.3 Naïve NDF SAT and Relationship to Han et al. [2007]
We combine a SAT-like NDF histogram representation with rotated
Gaussian lobes in order to compute the SH coefficients of a multi-
scale NDF, for a certain filtering footprint. An alternative approach
would be to directly store SH coefficients of the accumulated NDF,
in an SAT-like data structure; then, when querying for a specific
footprint’s NDF’s SH coefficients, we can similarly apply an SAT-
like 4-query sampling (as in Figure 6). At a high-level, this is similar
to the data structure proposed by Han et al. [2007], with the main
differences being that they leverage MIP-hardware to compute a
hierarchy of footprints, and then use a single texture sample to
query a specific footprint’s NDF’s coefficients.

We implemented both of these strategies and, in both cases, there
are significant performance and scalability constraints that pre-
clude their use for high, ground truth-quality renderings with high-
resolution appearance maps. Firstly, memory-wise, storing SH coef-
ficients per texel quickly becomes prohibitive as the normal map
resolution increases, and the maximum SH order Fmax increases: a
2048 × 2048 normal map and Fmax = 100 would require more than
160GB of storage for single-precision floats. And if a MIP-hierarchy
is employed, instead of an SAT lookup approach, then 213GB would
be needed.

Apart from storage, another downside is that the NDF coefficients
would be expressed in the n local shading frame (the same as the
NDF histogram parameterization) and, in order to shade with realis-
tic microfacet models in the half-vectorωh frame, these coefficients
need to be rotated (for each pixel sample) at run-time, which is
costly in SH [Nowrouzezahrai et al. 2012].
We instead decouple memory costs due to increasing SH order

from the asymptotic memory costs, as increases in the SH order only
affect the size of our pre-rotated Gaussian lobe coefficients; and, as
discussed earlier, we could completely avoid this precomputation
by performing the fast ZH rotation on-the-fly. This decoupling also
allows us to avoid costly SH rotations when changing between the
local shading frame and the half-vector rendering frame.
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Table 1. Memory and performance comparisons for our examples.

Scene Normal
Map

Max SH
Order

Total
Memory

Render Times
Speed-up FactorOur Method [Yan et al. 2016] or

[Belcour et al. 2017]
Cutlery 2048 × 2048 60 2.7GB 50.7s 7.1m 8×
Snails 2048 × 2048 20 2.3GB 3.53m 121.4m 34×
Torus 512 × 512 15 172MB 4.89s 2.35m 28.8×
Kettle (3×) 2048 × 2048 60 2.7GB 1.22m - -
Kettle 1024 × 1024 60 1GB 2.43m - -

6.4 Light Source Coefficients
When computing Equation 6 as a double product integral, we require
the SH coefficients of the filtered multi-scale NDF (i.e., the rotated
Gaussian NDF lobes) and the incident illumination (both expressed
in half-vector space). Rewriting Equation 7 to make explicitly the
double product integral decomposition, we have∫

Ωh

[
L̂i(x̄ ,ωo ,ωh ) (4(ωh ·ωo ))

][
D̂(P,ωh )

]
dωh

=

∫ [∑
j
∫
L̂i(x̄ ,ωo ,ω)(4(ω ·ωo ))yj (ω)dω︸                                      ︷︷                                      ︸

LSH
j (ωo )

][∑
k Dk (P)︸ ︷︷ ︸

Eq. 12

]
dωh ,

where the lighting SH coefficients LSH
j , when expressed in the half-

vector space, depend explicitly on the viewing directionωo . These
coefficients also include the change-of-parameterization Jacobian.

Similarly to our discretization of the Gaussian roughness lobe co-
efficients, we pre-tabulate SH coefficients for the lighting, discretized
at the same resolution as the Gaussian lobes (and also bilinearly
interpolated at run-time; see Figure 17). This table requires three-
times (or as many spectral components used) the storage as the
Gaussian lobe coefficient table, due to separate RGB coefficients for
lighting (so, e.g., just under 342MB for order-60).

7 RESULTS
We report render times from a dual Intel Xeon E5-2683 with 32
cores and 128 GB of RAM, and normal maps have a resolution of
2048 × 2048, unless stated otherwise. In all cases, render times do
not include renderer initialization, a process that typically takes
roughly 4 seconds for our scenes. In addition to this initialization
cost, our method requires no more than 9 seconds to construct all

0.5× histogram resolution 4× histogram resolution

Fig. 12. When storing rotated Gaussian roughness SH coefficients below the
spherical histogram resolution (left), visible re-sampling artifacts can appear.
We use a conservative discretization of 4× the histogram’s resolution.

of its internal data structures. As discussed in Section 6, the mem-
ory consumption of our approach depends on storing the spherical
NDF histograms, the rotated Gaussian roughness lobe coefficients,
and the rotated lighting coefficients. The latter of these two can be
shared across materials, require negligible memory compared to
the spherical NDF histogram texture, and require a short precom-
putation time dependent on projection quality, roughly 7 minutes
for all 65 × 128 order 60 projections, each computed with half a
million numerical integration samples. Figures 15-18 illustrate the
effect of our various simplifications and parameter settings. Table 1
summarizes our memory usage, and we discuss each scene below.
The snails scene uses the flakes normal map [Yan et al. 2014,

2016], an environment map and a single point light, simulating
global illumination with a single indirect bounce. Our method ob-
tains a converged result (see supplemental video) in 2m:15s, and
Belcour et al.’s approach [2017] generates 11spp in equal time.

The cutlery scene uses a scratched metal normal map [Yan et al.
2014, 2016] with environmental and point lighting, and our method
converges in 0m:51s, whereas the method of Yan et al. [2016] can
only generate 9 spp in equal time (far from enough to convergence).

[Yan et al. 2016]

Ours

Fig. 13. Cutlery scene using the same environment map and point light,
shadowed direct lighting only. Our method approached the ground truth
in 50.7s while [Yan et al. 2016] required 7m:6s to reach the same quality at
2116 samples per pixel.
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The torus scene uses a 512 × 512 scales normal map that is tiled
repeatedly in the scene, with lighting from a lower-frequency en-
vironment map. This allows us to use significantly lower effective
shading bandwidths (see Section 4.2) and we obtain a converged
rendering in less than 5 seconds, whereas the state-of-the-art [Yan
et al. 2016] rendered a single sample in 6 seconds (and our baseline
G×D fired 2spp in equal time). Fully converged renderings for these
two alternative baselines took 2m:25s and 13m:8s, respectively.

For the kettle, all lighting in this scene is due to an environmental
source and and we use a metal panel 1024 × 1024 normal map. We
render this scene to convergence in 2m:27s.

8 CONCLUSION AND FUTURE WORK
We present a scalable appearance model for filtered reflections from
high-frequency microfacet models under complex illumination. We
demonstrate significant speed-ups, up to 10× for direct illumination
and 50× for global illumination, compared to the state-of-the-art
in these two scenarios [Belcour et al. 2017; Yan et al. 2016]. Our
method includes limitations due to our assumptions, which we
discuss shortly.
Axis-aligned footprints are inherent to an SAT-like data struc-

ture, and as such, susceptible of being extended to arbitrary convex
footprints [Piponi 2013].
Light source coefficients are precomputed once, per environ-

ment map. Area lights require on the fly SH coefficient calculation
[Belcour et al. 2018; Wang and Ramamoorthi 2018]. An interesting
direction for future work is to obtain analytical expressions (e.g. for
spherical sources) that are suitable for half-vector space shading.
For F and G, an alternative to our decoupling term FG is to

compute a triple product integral using tripling coefficients. This
would increase the complexity of our method with negligible benefit,
depending on the scenario.
An interesting avenue of future work is to explore interactive

approximations of our method. Initial experiments show that a naïve
port of our direct integrator to a shader-based GPU renderer yields
performances on the order of 1Hz at a resolution of 1600 × 900 on
an NVIDIA GTX 1080 (with 8GB of vRAM) for the cutlery scene
from Figure 1. More aggressive data compression, a better trade-off
between data accesses and compute (e.g., rotating the canonical ZH
Gaussian roughness lobes by directly computing fast ZH rotations),
and perhaps an alternative spherical basis (e.g., spherical RBFs)
could increase performance into the realm of real-time applications.
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(a) Kettle scene (b) Three kettles scene (direct illumination)

OursOurs

[Belcour et al. 2017][Belcour et al. 2017]

(c) Snails scene, direct only

OursOurs

[Belcour et al. 2017][Belcour et al. 2017]

(d) Snails scene, indirect only
Fig. 14. Additional results for both direct and global illumination. Both (a) and (b) showcase additional models and environment maps with very high fidelity
lighting while remaining temporally stable and fast to compute, 2m:27s and 1m:13s, respectively. Figures (c) and (d) are a breakdown of a frame from the
Snails scene, showcasing the performance of our method across both direct and first-bounce indirect illumination in a global illumination context. In both
cases, our results handily beat [Belcour et al. 2017] at equal time (11 spp).

3 × 8 bins 5 × 16 bins 9 × 32 bins 17 × 64 bins Reference
Fig. 15. We rely on a spherical histogram that discretizes the upper hemisphere into bins (see Section 4.1). The resolution of this histogram directly impacts
the minimally reproducible detail size: lower resolutions progressively lose detail in the normal map, effectively smoothing it out. Our selected setting (9 × 32)
is adequate for all scenes we have tested, when compared to the ground truth.

17 × 32 bins 33 × 64 bins 65 × 128 bins 129 × 256 bins Reference
Fig. 16. Impact of the resolution of the rotated ZH Gaussian roughness lobes (see Section 6.2). As is apparent, the resolution does not have a significant effect
on image quality for the resolutions we tested. We use a conservative setting of 65 × 128.
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Ramamoorthi. 2014. Rendering Glints on High-resolution Normal-mapped Specular
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normal Distributions for Efficient Rendering of Specular Microstructure. ACM Trans.
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ACM Trans. Graph., Vol. 37, No. 6, Article 277. Publication date: November 2018.



Scalable Appearance Filtering for Complex Lighting Effects • 277:13

17 × 32 bins 33 × 64 bins 65 × 128 bins 129 × 256 bins Reference
Fig. 17. Impact of the resolution of the environment light’s SH coefficients table (see Section 6.4). As with Figure 16, the effect of a lower resolution is minor.
We again conservatively use 65 × 128.

Order 10 Order 30 Order 45 Order 60 Reference
Fig. 18. Impact of the chosen band limit for the NDF or light spherical harmonics. Band limiting either is equivalent. Artifacts start to appear when either
band limit is chosen below the true band limit of the respective signal (i.e. the maximum of the band limit of the NDF and the environment map). For this
scene, Order 60 was sufficient.

Decoupled FG Reference
Fig. 19. Effect of the simplification made in Equation 6 and the proposed
alternative in Equation 14. Both images were generated using our reference
G×D implementation with sufficient sampling to match ground truth.

Ling-Qi Yan, Miloš Hašan, Bruce Walter, Steve Marschner, and Ravi Ramamoorthi.
2018. Rendering Specular Microgeometry with Wave Optics. ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2018) 37, 4 (2018).

Tobias Zirr and Anton S. Kaplanyan. 2016. Real-time Rendering of Procedural Multiscale
Materials. In Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games (I3D ’16). ACM, New York, NY, USA, 139–148.

A FRESNEL AND GEOMETRIC TERM APPROXIMATION
As is common in existing interactive and offline rendering models,
we apply a factorization of the Fresnel and Geometry terms of
our filtered shading model in Equation 6: FG(ωo ). One possible
approximation would be to precompute and apply an “ideal” two-
factor integral-of-products equals product-of-integral as FG(ωo ) =
1/(4(n ·ωo ))

∫
Ωi

F (ωi · ωh )G(ωi ,ωo )dωi , but we opt for a simpler
alternative.
We instead evaluate the product of the Fresnel and Geometry

terms in the view direction and the mirror reflection of the view, as

FG(ωo ) =
F (ωr · n)G(ωr ,ωo )

4(n ·ωo )
, (14)

whereωr = 2(n ·ωo )n −ωo is the mirrored view vector. The figure
below illustrates the nature of this approximation, compared to the
more costly integrated factorization, above.

[Belcour et al. 2017]

Ours
Fig. 20. Equal quality comparison for global illumination in the snails scene.
[Belcour et al. 2017] took 121m:24s to render at 2048 samples per pixel while
our method finished in 3m:32s.

Equation 14 Product-of-integrals Ground truth
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