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Abstract—The classic least squares regression fits a line to data 
where errors may occur only in the dependent variable, while the 
independent variable is assumed to have no errors. The total least 
squares regression fits a line where errors may occur in both 
variables. This tutorial provides an introduction to the method of 
total least squares supplementing a first course in statistics or 
linear algebra. 

I.  INTRODUCTION 

Detecting geometric features (lines, circles, surfaces, etc.)
from data points is a fundamental task in several fields of
science and engineering; for instance, metrology, computer
vision, mobile robotics, etc.

Let 𝑍 = {𝑧1, … , 𝑧𝑛} be a set of 𝑛 measurements or points
where each point 𝑧𝑖 = 〈𝑥𝑖, 𝑦𝑖〉 is represented by its rectangular
coordinates. A linear relation between 𝑥 and 𝑦 is usually
written as

𝑦 = 𝑎𝑥 + 𝑏 (1) 
where 𝑎 is the slope of the straight line and 𝑏 is the y-axis
intersection. In the classic Least Squares (LS) the abscissa
data (𝑥𝑖, 𝑖 = 1, … , 𝑛) are assumed to be known exactly while
the uncertainties of the ordinate data (𝑦𝑖) are used as weights 
for fitting the line 〈𝑎, 𝑏〉, given by (1), to the set of
measurements 𝑍.

The solution to fit a line using the least squares regression,
appears with complete derivations in textbooks at many levels:
calculus, linear algebra, numerical analysis, probability,
statistics, and others.

However, measured data are never free of uncertainty. This
means, in order to determine a best fit to a line, a method is
required which takes the uncertainties of the 𝑥𝑖 and 𝑦𝑖 data 
into account [3]. The Total Least Squares regression (TLS)
was introduced by Golub and Van Loan [2] to deal with both 
uncertainties. Despite its usefulness and its simplicity, TLS
has not yet appeared in numerical analysis, statistics or linear
algebra texts.  

Introducing students to TLS is the purpose of this tutorial,
and it may complement the usual courses in numerical 
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analysis, statistics or linear algebra, or serve as a transition
from such courses to a more advanced and specialized course.
Additional references to TLS are the introductory paper by 
Yves Nievergelt [5]; an overview of the TLS methods, by Ivan 
Markovsky and Sabine Van Huffel [4]; or the book by Sabine
Van Huffel and Joos Vandewalle, about the TLS problem [7].

II.  PRELIMINARIES 

A. Normal form of a line

There is a disadvantage of using equation (1) to represent a
line: vertical lines can not be represented, because 𝑎 → ∞. To
avoid this problem, a line in the plane is represented by its
normal form,

ℓ = 〈𝑟, 𝜙〉 
(2)

 
where 𝑟 and 𝜙 are the length and the angle of inclination of
the normal, respectively. As shown in Figure 1, the normal is
the shortest segment between the line and the origin of a given
coordinate frame. Using this form, points 𝑧 = 〈𝑥, 𝑦〉 that are
on the line ℓ = 〈𝑟, 𝜙〉 satisfy

𝑟 = x cos 𝜙 + 𝑦 sin 𝜙 (3) 

Fig. 1. Line parameters in the normal form. The shortest distance from the
origin to the line ℓ is 𝑟 = 𝑂𝑇����. 

The relation between the normal form 〈𝑟, 𝜙〉 to the
representation 〈𝑎, 𝑏〉 given by eq. (1) can be obtained dividing
eq. (3) by sin 𝜙 (while 𝜙 ≠ 0, avoiding vertical lines) and 
reordering terms: 

𝑦 = −
cos 𝜙
sin 𝜙

𝑥 +
𝑟

sin 𝜙

𝑦 = −
1

tan 𝜙
𝑥 +

𝑟
sin 𝜙

 
(4) 
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From this last equation, the parameters of the line 〈𝑎, 𝑏〉 are 
given by: 

𝑎 = − 1

𝑡𝑎𝑛𝜙
,       𝑏 = 𝑟

sin𝜙
 (5) 

 

B.  Orthogonal distance from a point to a line 

The shortest distance from a given point 𝑧𝑖 = 〈𝑥𝑖, 𝑦𝑖〉 to a 
line ℓ = 〈𝑟, 𝜙〉, denoted by 𝑑⊥(𝑧𝑖, ℓ), is easily computed as
follows. 

A line ℓ𝑖 through the point 𝑧𝑖, parallel to line ℓ, is given
by: 

𝑟𝑖 = 𝑥𝑖 cos 𝜙  + 𝑦𝑖 sin 𝜙 

The separation between this new line 𝑙𝑖 with parameters
〈𝑟𝑖, 𝜙〉 and the line ℓ with parameters 〈𝑟, 𝜙〉 is the difference 
𝑑𝑖 = 𝑟𝑖 − 𝑟, because both lines have the same 𝜙 (see Figure
2). So the desired distance, called orthogonal distance, is  

 
𝑑⊥(𝑧𝑖, ℓ) = 𝑥𝑖 cos 𝜙 + 𝑦𝑖 sin 𝜙 − 𝑟 (6) 

 
Fig. 2. Orthogonal distance 𝑑𝑖 from point 𝑧𝑖  to line ℓ. 

III. THE TOTAL LEAST SQUARES REGRESSION

A.  The problem definition 

In the literature, the problem of fitting a straight line to
data with errors in both coordinates was first formulated by
Pearson as early as in 1901 [3]. Deming in 1943 [1] suggests 
to minimize the sum

𝜒2(ℓ, 𝑧1, … , 𝑧𝑛) = ��
(𝑥𝑘 − 𝑋𝑘)2

𝑢𝑥,𝑘
2 +

(𝑦𝑘 − 𝑌𝑘)2

𝑢𝑦,𝑘
2 �

𝑛

𝑖=1

 (7) 

where (𝑥𝑘,𝑦𝑘) are the points coordinates with corresponding
uncertainties (𝑢𝑥,𝑘, 𝑢𝑦,𝑘) and (𝑋𝑘, 𝑌𝑘) denote its corresponding
point of the straight line ℓ. The best line minimizes 𝜒2. In the
case 𝑢𝑥,𝑘 = 𝑢𝑦,𝑘 = 𝜎, 𝑘 = 1, … , 𝑛, the problem is reduced to 
the so-called total least-squares problem and minimizing (7) is
equivalent to minimizing the orthogonal distance of the
measured points (𝑥𝑘, 𝑦𝑘) to the fitting line. Therefore, this is
also often referred to as orthogonal regression [3]. In this case,
the best line minimizes 

𝜒2(ℓ; 𝑍) = �
𝑑⊥
2(𝑧𝑖, ℓ)
𝜎2

𝑛

𝑖=1

 (8) 

B.  Finding the best line 

Replacing eq. (6) into (8), the best line ℓ minimizes

𝜒2(ℓ; 𝑍) =
1
𝜎2

�(𝑥𝑖 cos 𝜙 + 𝑦𝑖 sin 𝜙 − 𝑟)2
𝑛

𝑖=1

 (9) 

A condition for a minimum is that the partial derivatives of
𝜒2 with respect to the parameters of the line (𝑟 and 𝜙) vanish:
𝜕𝜒2

𝜕𝑟
= 𝜕𝜒2

𝜕𝜙
=0.

Lets do 
𝜕𝜒2

𝜕𝑟
= 0 first

 𝜕( 1
𝜎2

∑ (𝑥𝑖 cos 𝜙 + 𝑥𝑖 sin 𝜙 − 𝑟)2)𝑛
𝑖=1

𝜕𝑟
= 0 

−2
𝜎2

�(𝑥𝑖 cos 𝜙 + 𝑦𝑖 sin 𝜙 − 𝑟) = 0

𝑛

𝑖=1

 

cos 𝜙 �(𝑥𝑖)

𝑛

𝑖=1

+ sin 𝜙 �(𝑦𝑖)

𝑛

𝑖=1

− �(𝑟) = 0

𝑛

𝑖=1

 

cos 𝜙 �(𝑥𝑖)

𝑛

𝑖=1

+ sin 𝜙 �(𝑦𝑖)

𝑛

𝑖=1

− 𝑛𝑟 = 0 

cos 𝜙 �
1
𝑛
�(𝑥𝑖)

𝑛

𝑖=1

� + sin 𝜙 �
1
𝑛
�(𝑦𝑖)

𝑛

𝑖=1

� − 𝑟 = 0 
(10) 

 
Expressions in square brackets are the well known means

of 𝑥 and 𝑦, defined as follows

𝑥̅ = 1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 ,      𝑦� = 1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1  (11) 

Equation (10) reduces to 
 

cos 𝜙 𝑥̅ + sin 𝜙𝑦� − 𝑟 = 0 
𝑟 = 𝑥̅ cos 𝜙 + 𝑦� sin 𝜙 

(12) 

 
Comparing equations (3) and (12), we get an important

result:
 

The centroid of points given by 〈𝑥̅, 𝑦�〉 is a point of the line
ℓ with parameters 〈𝑟, 𝜙〉 which minimizes eq. (9).

 
Replacing eq. (12) into (9), 𝜒2(ℓ; 𝑍) can be expressed as 

𝜒2(ℓ; 𝑍) =
1
𝜎2

�[(𝑥𝑖 − 𝑥̅) cos 𝜙 + (𝑦𝑖 − 𝑦�)

𝑛

𝑖=1

sin 𝜙]2 (13) 

In eq. (13) the only unknown parameter is 𝜙. So, lets do 
𝜕𝜒2

𝜕𝜙
= 0, in order to find the right 𝜙. 

𝜕( 1
𝜎2

∑ [(𝑥𝑖 − 𝑥̅) cos 𝜙 + (𝑦𝑖 − 𝑦�) sin 𝜙]2)𝑛
𝑖=1

𝜕𝜙
= 0 

1
𝜎2

� 2

𝑛

𝑖=1

[(𝑥𝑖 − 𝑥̅) cos 𝜙 + (𝑦𝑖 − 𝑦�) sin 𝜙] × 

[−(𝑥𝑖 − 𝑥̅) sin 𝜙 + (𝑦𝑖 − 𝑦�) cos 𝜙] = 0

�−(𝑥𝑖 − 𝑥̅)2
𝑛

𝑖=1

2 cos𝜙 sin 𝜙 + 2(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦�) cos2𝜙 
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−2(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦�) sin2 𝜙 + (𝑦𝑖 − 𝑦�)22 cos𝜙 sin 𝜙 = 0

� 2 cos𝜙 sin 𝜙 [(𝑦𝑖 − 𝑦�)2 − (𝑥𝑖−𝑥̅)2] +

𝑛

𝑖=1
2(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦�)(cos2𝜙 − sin2 𝜙) = 0 

(14)
Using the following trigonometric identities 

sin 2𝜙 = 2 cos𝜙 sin 𝜙 ,    cos 2𝜙 = cos2 𝜙 − sin2 𝜙 (15) 
 
Equation (14) reduces to 
 

� sin 2 𝜙[(𝑦𝑖 − 𝑦�)2 − (𝑥𝑖 − 𝑥̅)2] +
𝑛

𝑖=1

 

2(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦�) cos 2𝜙 = 0 

sin 2𝜙�[(𝑦𝑖 − 𝑦�)2 − (𝑥𝑖 − 𝑥̅)2] +

𝑛

𝑖=1

 

2 cos 2𝜙 �[(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦�)

𝑛

𝑖=1

= 0 

tan 2𝜙 =
sin 2𝜙
cos 2𝜙

=
−2 ∑ [(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦�)]𝑛

𝑖=1

∑ [(𝑦𝑖 − 𝑦�)2 − (𝑥𝑖 − 𝑥̅)2]𝑛
𝑖=1

 

𝜙 =
1
2

arctan �
−2 ∑ [(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦�)]𝑛

𝑖=1

∑ [(𝑦𝑖 − 𝑦�)2 − (𝑥𝑖 − 𝑥̅)2]𝑛
𝑖=1

� 
(16) 

 
Equations (16) and (12) get the desired line parameters

〈𝑟, 𝜙〉. In practice, equation (16) uses the four quadrant arc
tangent (atan2). 𝑎𝑡𝑎𝑛2(𝑦, 𝑥) computes arctan (𝑦 𝑥⁄ ) but uses 
the signs of both 𝑥 and 𝑦 to determine the quadrant in which 
the resulting angle lies. For example 𝑎𝑡𝑎𝑛2(−2,−2) =
−135°, whereas 𝑎𝑡𝑎𝑛2(2,2) = 45°, a distinction which
would be lost with a single-argument arc tangent function.
Another practical consideration must be done when eq. (12) 
gives an 𝑟 < 0. In that case, the line 〈𝑟′, 𝜙′〉, where 𝑟′ = −𝑟
and 𝜙′ = 𝜙 + 𝜋, represents the same line 〈𝑟, 𝜙〉, but in this
representation 𝑟′ > 0. 

C. Example 

Consider the data given in Table I. We want to determine
the line of total least squares for these points. 

 
TABLE I

AN EXAMPLE WITH 7 POINTS. 

point 𝑧1 𝑧2 𝑧3 𝑧4 𝑧5 𝑧6 𝑧7 
𝑥 3 4 5 6 7 8 9
𝑦 7 7 11 11 15 16 19 

To calculate the line parameters, we use equations (11), 
(16) and (12), 

 𝑛 = 7 

𝑥̅ =
3 + 4 + ⋯ + 8 + 9

7
= 6

𝑦� =
7 + 7 + ⋯ + 16 + 19

7
= 12.286 

𝜙 =
1
2

arctan �
−116

97.429
� = −0.4361

𝑟 = 0.24889 

Figure 3 shows the line as well as the points and their
orthogonal distances. For reference, Figure 4 shows the line
obtained using the classical Least Square Method. In the same 
Figure the vertical distances from points to the line are shown.

 

D.  Matrix form to obtain the angle 𝜙
Equation 13 can be rewritten in the matrix form 

𝜒2(ℓ; 𝑍) =
1
𝜎2

‖𝐌𝐩‖2 (17) 

 
 

 
Fig. 3. Line fitting minimizing orthogonal distances from points to line (TLS). 

 
Fig. 4. Line fitting minimizing vertical distances from points to line (LS).

where 𝐌 is a matrix of dimension 𝑛 × 2, 𝐩 is a vector,
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𝐌 = �

𝒙𝟏 − 𝒙� 𝒚𝟏 − 𝒚�
𝒙𝟐 − 𝒙� 𝒚𝟐 − 𝒚�

⋮ ⋮
𝒙𝒏 − 𝒙� 𝒚𝒏 − 𝒚�

� , 𝐩 = �
cos 𝜙
sin 𝜙� (18) 

and ‖𝐯‖ denotes the Euclidean norm of vector 𝐯 with
coordinates [𝑣1𝑣2 … 𝑣𝑘]𝑡, defined as 

‖𝐯‖ = �𝑣1
2 + 𝑣2

2 + ⋯ + 𝑣𝑘
2 (19) 

Now the goal is to find a vector 𝐩 which minimizes eq.
(17). In other words, a vector 𝐭 which minimizes the norm of
the linear map: 𝐌𝐩. Note that 𝐭 is a unit vector, because
‖𝐩‖ = �cos2𝜙 + sin2 𝜙 = 1. 

To achieve this goal, the Euclidean norm also can be 
expressed using de inner product of the vector and itself, 

 

‖𝐯‖ = �𝐯𝑡𝐯 (20) 

where 𝐯𝑡 denotes the transpose of vector 𝐯. Using the inner
product to compute the norm, eq. (17) can be written as

𝜒2(ℓ;Z)=
1

𝜎2 (𝐌𝐩)𝑡(𝐌𝐩) (21) 
 

From this expression, using the properties of the transpose
and the associative law for the matrix product, we get a 
quadratic form

𝜒2(ℓ; 𝑍) =
1
𝜎2

(𝐩𝑡𝐌𝑡)(𝐌𝐩)

𝜒2(ℓ; 𝑍) =
1
𝜎2

𝐩𝑡(𝐌𝑡𝐌)𝐩 

𝜒2(ℓ; 𝑍) =
1
𝜎2

𝐩𝑡𝐀𝐩 (22) 

Let see the form of the matrix 𝐀 = 𝐌𝑡𝐌, of dimension 2 × 2,

𝐀 =

⎣
⎢
⎢
⎢
⎡ � (𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1
�(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦�)

𝑛

𝑖=1

� (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦�)
𝑛

𝑖=1
� (𝑦𝑖 − 𝑦�)2

𝑛

𝑖=1 ⎦
⎥
⎥
⎥
⎤

(23)

Because matrix 𝐀 has real elements, is symmetric (𝑨𝑡 =
𝑨) and is positive semidefinite (𝐯𝑡𝐴𝐯 ≥ 0 for 𝐯 ≠ 0), matrix
𝐀 has two real eigenvalues: 𝜆1 ≥ 0, 𝜆2 ≥ 0; and two 
orthonormal eigenvectors (unit vectors with inner product
equal to zero).

Let 𝐮𝟏 = [𝑢1,1  𝑢2,1]𝑡 and 𝐮𝟐 = [𝑢1,2  𝑢2,2]𝑡 be the
coordinates of eigenvectors 𝐮𝟏 and 𝐮𝟐. Eigenvalues and 
eigenvectors are related by 

𝐀𝐮𝟏 = λ1𝐮𝟏 = [𝜆𝑢1,1  𝜆𝑢2,1]𝑡 (24) 
𝐀𝐮𝟐 = λ1𝐮𝟐 = [𝜆𝑢1,2 𝜆𝑢2,2]𝑡 (25) 

Equations (24) and (25) can be joined into a single relation 

𝐀 �
𝑢1,1 𝑢1,2
𝑢2,1 𝑢2,2

� = �
𝜆1𝑢1,1 𝜆2𝑢1,2

𝜆1𝑢2,1 𝜆2𝑢2,2
� 

𝐀 �
𝑢1,1 𝑢1,2
𝑢2,1 𝑢2,2

� = �
𝑢1,1 𝑢1,2
𝑢2,1 𝑢2,2

� �
𝜆1 0
0 𝜆2

�

Let 𝐔 be a matrix which first column is 𝐮𝟏 and second 
column is 𝐮𝟐; and let 𝐃 be a diagonal matrix with elements 𝜆1

and 𝜆2. Using these matrices we can write last equation in a
simpler form

𝐀𝐔 = 𝐔𝐃 (26)
The orthonormal matrix 𝐔 has an interesting property: its

inverse is its transpose (𝐔𝐔−1 = 𝐔𝐔𝑡 = 𝐈, where 𝐈 is the
identity matrix). Using this property and equation (26), the
matrix 𝐀 can be expressed in terms of 𝐔 and 𝐃, 

𝐀 = 𝐔𝐃𝐔𝑡 (27) 
Replacing the matrix 𝐀, given by the equation (27), into

equation (22),

𝜒2(ℓ; 𝑍) =
1
𝜎2

𝐩𝑡(𝐔𝐃𝐔𝑇)𝐩

𝜒2(ℓ; 𝑍) =  
1
𝜎2

(𝐔𝑡𝐩)𝑡𝐃(𝐔𝑡𝐩)

𝜒2(ℓ; 𝑍) =  
1
𝜎2

[𝐮𝟏
𝑡𝐩    𝐮𝟐

𝑡 𝐩] �
𝜆1 0
0 𝜆𝟐

� �
𝐮1

𝑡𝐩
𝐮2

𝑡 𝐩
�

𝜒2(ℓ; 𝑍) =
1
𝜎2

{𝜆1(𝐮1
𝑡𝐩)2 + 𝜆2(𝐮2

𝑡𝐩)2} (28) 
To see the maximum and minimum value of 𝜆2, suppose

that 𝜆1 < 𝜆2. Taking into account that the inner product of
two vectors with coordinates 𝐯𝟏 and 𝐯𝟐 is defined as
 

𝐯𝟏
𝐭𝐯𝟐 = ‖𝐯𝟏‖‖𝐯𝟐‖ cos 𝛾 (29)

 

where 𝛾 is the angle between both vectors. Given that 𝐮𝟏, 𝐮𝟐
and 𝐩 are the coordinates of unit vectors and 𝐮𝟏 and 𝐮𝟐 are 
orthogonal vectors, we have 

𝐮𝟏
𝑡𝐩 = cos 𝛼 (30) 

𝐮𝟐
𝑡𝐩 = cos(𝛼 ± 𝜋 2⁄ ) = ± sin 𝛼 (31) 

where 𝛼 is the angle between vector 𝐮𝟏 and 𝐭. Replacing these
results into equation (28), 

𝜒2(ℓ; 𝑍) =
1
𝜎2

{𝜆1 cos2 𝛼 +𝜆2 sin2 𝛼} 

𝜒2(ℓ; 𝑍) =
1
𝜎2

{𝜆1 cos2 𝛼 +𝜆2(1 − cos2 𝛼)} (32) 

Let 𝑠 = cos2 𝛼, where 𝑠 is a value in the range [0,1], and
𝑠 = 1 when vector 𝐩 is identical to vector 𝐮𝟏 (𝛼 = 0). Using
this new variable 𝑠 in Equation (32), we have finally 

𝜒2(ℓ; 𝑍) =
1
𝜎2

{𝜆1𝑠 + 𝜆2(1 − 𝑠)} 

𝜒2(ℓ; 𝑍) =
1
𝜎2

{(𝜆1 − 𝜆2)𝑠 + 𝜆2} (33) 

The expression (𝜆1 − 𝜆2)𝑠 + 𝜆2 corresponding to a line
〈𝑎, 𝑏〉 with a negative slope 𝑎 = 𝜆1 − 𝜆2 (because 𝜆1 < 𝜆2) 
and y-axis intersection 𝑏 = 𝜆2. The maximum value of

𝜒2(ℓ, 𝑍) is 
1

𝜎2 𝜆2 when 𝑠 = 0, and the minimum value is
1

𝜎2 𝜆1
when 𝑠 = 1. Therefore, 

 
 

Vector 𝐭 = 𝐮𝟏, the eigenvector associated to the
minimum eigenvalue 𝜆1 of matrix 𝐌𝑡𝐌, minimizes 
𝜒2(ℓ, 𝑍). 
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From 𝐮𝟏 = [u1,1, u2,1]𝑡 and 𝐩 = [cos 𝜙 sin 𝜙]𝑡 we get the 
desired angle 𝜙,

𝜙 = arctan (𝑢2,1 𝑢1,1⁄ ) (34) 
 

Using the four quadrant arc tangent (atan2) to compute 𝜙
(eq. (34)), we can get the parameter 𝑟 of the line using eq.
(12),

𝑟 = 𝑥̅𝑢1,1 + 𝑦�𝑢2,1 (35)

Using equation (3) and previous results, we can see an
interesting property of vector 𝐮𝟏,

 
𝑟 = 𝑥 cos 𝜙 + 𝑦 sin 𝜙 

𝑥̅𝑢1,1 + 𝑦�𝑢2,1 = 𝑥𝑢1,1 + 𝑦𝑢2,1

0 = (𝑥 − 𝑥̅)𝑢1,1 + (𝑦 − 𝑦�)𝑢2,1 
𝟎 = (𝐳𝑡 − 𝐂𝑡)𝐮𝟏 (36) 

 

where 𝐳 = [𝑥  𝑦]𝑡, and 𝐂 = [𝑥̅  𝑦�]𝑡 is the centroid of points.
Note that vector with coordinates 𝒛𝑡 − 𝐂𝑡 must be orthogonal
to vector 𝐮𝟏, in order to satisfy equation (36). 

E.  Example (cont.) 

Continuing the example from Section III-C, we can
compute the matrix 𝐀,

𝐀 = �28.000 58.000
58.000 125.429

� (37) 

and its eigenvalues and eigenvectors (using the function svd of
the octave program): 

𝜆1 = 0.97076, 𝜆2 = 152.45781 (38) 
𝐮𝟏 = [−0.90641  0.42241]𝑡  𝐮𝟐 = [−0.90641  0.42241]𝑡 (39) 

From eigenvector 𝐮𝟏, we can compute 𝜙 using equation (34), 

𝜙 = arctan �
0.42241
−0.90641

� = 2.7055 (40) 

Using eq. (12) with this value for 𝜙, we get a negative
value for 𝑟. In this case 𝜙′ = 𝜙 + 𝜋, and we get the same
result for 𝑟 as in section III-C. 

IV. THE LINE SEGMENT

Sometimes it is useful to know the line segment associated
to the set of points 𝑍, instead of only the infinite line
expressed by the parameters 〈𝑟, 𝜙〉. This section addresses this
problem. 

First we move the origin of coordinates to the centroid of
points 𝐂 = [𝑥̅   𝑦�]𝑡. For each point 𝐳𝐢 = [𝑥𝑖  𝑦𝑖]𝑡 ∈ 𝑍, the
translated point 𝐳𝐢′ is defined by 

 
𝐳𝐢

′ = 𝐳𝐢 − 𝐂 (41) 
 
Then we rotate points using a rotation matrix 𝐑(𝜃)
 

𝐑(𝜃) = �cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

� (42) 

The matrix 𝐑(𝜃) rotates points in the xy-Cartesian plane 

counter-clockwise through an angle 𝜃 about the origin of the
Cartesian coordinate system. To perform the rotation using a
rotation matrix 𝐑, the position of each point must be
represented by a column vector 𝐳, containing the coordinates
of the point. A rotated vector is obtained by using the matrix
multiplication 𝐑𝐳.

If we rotate all points 𝐳𝒊′ an angle −𝜙, the rotated points
𝐳𝒊′′ follows a vertical line,

𝐳𝒊
′′ = 𝐑(−𝜙)𝐳𝒊′ (43) 

Let 𝑦𝑚𝑎𝑥
′′  and 𝑦𝑚𝑖𝑛

′′  be the maximum and minimum values
respectively of all coordinates 𝑦𝑖

′′, in 𝐳𝐢
′′ = [𝑥𝑖

′′ 𝑦𝑖
′′]𝑡, 𝑖 =

1, … , 𝑛. The points 𝐞𝟏
′′ = [0 𝑦𝑚𝑎𝑥

′′ ] and 𝐞𝟐
′′ = [0 𝑦𝑚𝑖𝑛

′′ ] are the 
ending points of the desired line segment, corresponding to the
highest and the lowest point. The final steps are to undo the
rotation and translation made, 

𝐞𝟏
′ = 𝐑(𝜙)𝒆𝟏

′′    ,    𝐞𝟐
′ = 𝐑(𝜙)𝒆𝟐

′′      (44) 
𝐞𝟏 = 𝐞𝟏

′ + 𝐂   ,    𝐞𝟐 = 𝐞𝟐
′ + 𝐂     (45)

 

The line segment is the line between points 𝐞𝟏 and 𝐞𝟐.
As an example, Figure 5 shows five line segments

computed from a set of points given by measurements of an
Infrared sensor of a small mobile robot, using the Line
Tracking algorithm [6] (with TLS). The robot rotates 360°
taking measurements. 

 

 
Fig. 5. Finding the best lines of a set of points given by an IR sensor of a small
mobile robot. 

V. SOME EXTENSIONS

A.  Weighted total least squares 

In section III-A we consider the same uncertainty 𝜎 for all
points. If we consider an uncertainty 𝜎𝑖 for point 𝑧𝑖 𝑖 =
1, … , 𝑛, the best line minimizes 

𝜒2(ℓ; 𝑍) = �
𝑑⊥
2(𝑧𝑖, ℓ)
𝜎𝑖
2

𝑛

𝑖=1

 (46) 

Following a procedure similar to section III-B, we can get
the solution

 

𝑟 = 𝑥̅ cos 𝜙 + 𝑦� sin 𝜙 (47) 

𝜙 =
1
2
𝑎𝑟𝑐𝑡𝑎𝑛

−2 ∑ 𝑤𝑖(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦�)𝑛
𝑖=1

∑ 𝑤𝑖[(𝑦𝑖 − 𝑦�)2 − (𝑥𝑖 − 𝑥̅)2]𝑛
𝑖=1

(48)



REVISTA DE CIENCIA E INGENIERÍA DEL INSTITUTO TECNOLÓGICO SUPERIOR DE COATZACOALCOS 
Año 1, No. 1, Enero-Diciembre 2014 pp. 167-173. ISSN: En trámite.

A tutorial on the total least squares method for fitting a straight line and a plane 172

 

where

𝑥̅ = ��𝑤𝑖𝑥𝑖

𝑛

𝑖=1

� ��𝑤𝑖

𝑛

𝑖=1

�� (49)

𝑦� = ��𝑤𝑖𝑦𝑖

𝑛

𝑖=1

� ��𝑤𝑖

𝑛

𝑖=1

�� (50) 

are the weighted means; with individual weights 𝑤𝑖 = 1 𝜎𝑖
2⁄

for each measurement. This approach is known as weighted
least squares.

B. Fitting a set of points to a plane

The method to find the best line in the total least squares
sense, can be extended easily to find the best plane of a set of
points in three dimensions. 

A plane 𝜋 is represented by four parameters 𝜋 =
〈𝑟, 𝛼, 𝛽, 𝛾〉, where 𝑟, 𝛼, 𝛽 and 𝛾 are the length of the normal,
and the angle between the normal and the x-axis, y-axis and z-
axis respectively. The normal is the shortest line segment
between the plane 𝜋 and the origin. 

A point 𝑧 = 〈𝑥, 𝑦, 𝑧〉 that is on the plane 𝜋 satisfy

𝑟 = 𝑥 cos 𝛼 + 𝑦 cos 𝛽 + 𝑧 cos 𝛾 (51) 

The orthogonal distance from a point 𝑧𝑖 to plane 𝜋 is given
by 

𝑑⊥(𝑧𝑖, 𝜋) = 𝑥𝑖 cos 𝛼 + 𝑦𝑖 cos 𝛽 + 𝑧𝑖 cos 𝛾 − 𝑟 (52)

In this case, the best line minimize 

𝜒2(𝜋; 𝑍) = �
𝑑⊥
2(𝑧𝑖, 𝜋)
𝜎2

𝑛

𝑖=1

 (53) 

Doing 
𝜕𝜒2

𝜕𝑟
= 0, as before, we get a similar result: the 

centroid of points given by 〈𝑥̅, 𝑦�, 𝑧̅〉 is a point of the plane 𝜋
which minimizes eq. (53),

𝑟 = 𝑥̅ cos 𝛼 + 𝑦� cos 𝛽 + 𝑧̅ cos 𝛾 (54)
where 

𝑥̅ =
1
𝑛
�𝑥𝑖  ,   

𝑛

𝑖=1

𝑦� =
1
𝑛
�𝑦𝑖   ,  

𝑛

𝑖=1

𝑧̅ =
1
𝑛
�𝑧𝑖 

𝑛

𝑖=1

 (55) 

To find the angles 𝛼, 𝛽 and 𝛾 we use a similar procedure to
the matrix formulation. Replacing equations (52) and (54) into  
(53), 

𝜒2(𝜋; 𝑍) =
1
𝜎2

‖𝐌𝐩‖2 (56)

where 𝐌 is a matrix of dimension 𝑛 × 3, 𝐩 is a vector,

𝐌 = �

𝑥1 − 𝑥̅ 𝑦1 − 𝑦� 𝑧1 − 𝑧̅
𝑥2 − 𝑥̅ 𝑦2 − 𝑦� 𝑧2 − 𝑧̅

⋮ ⋮ ⋮
𝑥𝑛 − 𝑥̅ 𝑦𝑛 − 𝑦� 𝑧𝑛 − 𝑧̅

�    ,    𝑝 =  �
cos 𝛼
cos 𝛽
cos 𝛾

� (57) 

Note that 𝐩 is a unit vector, because  

||𝐩||=�cos2 𝛼 + cos2 𝛽 + cos2 𝛾 = 1. 
The best plane is given by 𝐩 = 𝐮𝟏 = [𝑢1,1  𝑢2,1  𝑢3,1]𝑡, the

eigenvector associated to the smallest eigenvalue 𝜆1 of matrix
𝐌𝑡𝐌. From 𝐩 = 𝐮𝟏 we can obtain 𝑟, using equation (54),

𝑟 = 𝑥̅𝑢1,1 + 𝑦�𝑢2,1 + 𝑧̅𝑢3,1 (58) 

Therefore the plane can be expressed by

𝑟 = 𝑥𝑢1,1 + 𝑦𝑢2,1 + 𝑧𝑢3,1 (59)
𝟎 = (𝐳𝑡 − 𝐂𝑡)𝐮𝟏 (60) 

where 𝑧 = [𝑥  𝑦  𝑧]𝑡, and 𝐂 = [𝑥̅  𝑦�  𝑧̅]𝒕 is the centroid of
points.

VI.  CONCLUSION 

This article presents a tutorial about the method of Total Least
Squares to fit a line, developing a closed formula for
calculating the line parameters; and also the matrix
formulation, which can be easily extended to the case of fitting
a Cartesian plane to points in three dimensions. 

It is written in a simple form which should be easy to
understand, even for students with a basic knowledge of
calculus and linear algebra. Also, the closed formulation is
useful for low computational resources, such as
microcontrollers for small mobile robots. 
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