#Ricardo Hernanadez import numpy as np import cv2 cap = cv2.VideoCapture(0) # take first frame of the video ret,frame = cap.read() # setup initial location of window refPt = [] cropping = False cont = 0 r = 0 c = 0 def draw_rect(event,x,y,flags,param): global cont, r,c if event == cv2.EVENT_LBUTTONDOWN: cont = cont + 1 r = y c = x #elif event == cv2.EVENT_LBUTTONUP: cv2.namedWindow('image') cv2.setMouseCallback('image',draw_rect) r1 = 0 c1 = 0 while(cont < 3): ret ,frame = cap.read() print cont #print r, c if cont == 1: r1 = r c1 = c elif cont == 2: h = r - r1 w = c - c1 cv2.imshow('image',frame) #cv2.imshow('dst',dst) k = cv2.waitKey(60) & 0xff if k == 27: break #r,h,c,w = 250,90,400,125 # simply hardcoded the values c = c1 r = r1 print c, r, w, h track_window = (c,r,w,h) # set up the ROI for tracking roi = frame[r:r+h, c:c+w] hsv_roi = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.))) roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180]) cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX) # Setup the termination criteria, either 10 iteration or move by atleast 1 pt term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 ) while(1): ret ,frame = cap.read() if ret == True: hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1) # apply meanshift to get the new location ret, track_window = cv2.meanShift(dst, track_window, term_crit) # Draw it on image x,y,w,h = track_window img2 = cv2.rectangle(frame, (x,y), (x+w,y+h), 255,2) cv2.imshow('image',frame) #cv2.imshow('dst',dst) k = cv2.waitKey(60) & 0xff if k == 27: break else: cv2.imwrite(chr(k)+".jpg",img2) else: break cv2.destroyAllWindows() cap.release()