import numpy as np import cv2 cap = cv2.VideoCapture(0) # take first frame of the video ret,frame = cap.read() # setup initial location of window r,h,c,w = 250,90,300,125 # simply hardcoded the values track_window = (c,r,w,h) # set up the ROI for tracking roi = frame[r:r+h, c:c+w] hsv_roi = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.))) roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180]) cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX) print mask.shape # Setup the termination criteria, either 10 iteration or move by atleast 1 pt term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 ) while(1): ret ,frame = cap.read() if ret == True: hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1) # apply meanshift to get the new location ret, track_window = cv2.meanShift(dst, track_window, term_crit) print track_window # Draw it on image x,y,w,h = track_window cv2.rectangle(frame, (x,y), (x+w,y+h), 255,2) cv2.imshow('hsv',hsv) cv2.imshow('dst',dst) cv2.imshow('frame',frame) cv2.imshow('roi',roi) k = cv2.waitKey(60) & 0xff if k == 27: break else: cv2.imwrite(chr(k)+".jpg",frame) else: break cv2.destroyAllWindows() cap.release()