
The geometry of fractals pro-
vides mathematicians with a
means for describing objects in
nature in which a pattern end-
lessly repeats itself in smaller
and smaller versions. This;
mountain scene is a computer-
generated fractal.

GEOMETRY

any objects in our lives can be described in terms of geometry. The spher-

ical basketball you dribble down a rectangular court, the cylindrical can

of soda you drink, and even the rectangular solid shape of this book are

all examples of geometric objects that affect our lives. Throughout hu-

man history, geometry has played an important role in education, technology, and com-

merce. This role continues in modern times.

Albert Einstein's use of non-Euclidean geometry in his theory of relativity has enabled

mathematicians and scientists to model the universe more accurately. Benoit Mandelbrot's

work in fractal geometry has led scientists to discover ways to describe such intricate and

detailed objects as weather systems, air passages in our lungs, and earthquake frequency

patterns. A recently discovered form of pure carbon naturally forms molecules whose struc-

ture involves hexagons and pentagons in a pattern similar to those found on a soccer ball. As

the human mind continues to uncover and interact with nature's secrets, geometry undoubt-

edly will continue to playa vital role.



9.1 POINTS, LINES, PLANES, AND ANGLES

Euclid (320-275 B.C.) lived in
Alexandria, Egypt, and was a

teacher and scholar at Alexandria's
school called the Museum. It was
here that Euclid collected and

I arranged many of the mathematical
results known at the time. This col- I
lection of works became his 13-
volume masterpiece known as Ele-
ments. Beginning with a list of
definitions, postulates, and axioms,
Euclid proved one theorem after
another, using only previouslyI proven results. This method of I
proof became a model of mathe-
matical and scientific investigation
that survives today. Remarkably,
the geometry in Elements does not
rely on making exact geometric
measurements using a ruler or pro-
tractor. Rather, the work is devel-! oped using only an unmarkedI straightedge and a drawing com-
pass. Next to the Bible, Euclid's
Elements may be the most trans-
lated, published, and studied of all
the books produced in the Western
world.

L-

Human beings recognized shapes, sizes, and physical forms long before geometry
was developed. Geometry as a science is said to have begun in the Nile Valley of an-
cient Egypt. The Egyptians used geometry to measure land and to build pyramids and
other structures.

The word geometry is derived from two Greek words, ge, meaning earth, and
metron, meaning measure. Thus geometry means "earth measure" or "measurement
of the earth."

Unlike the Egyptians, the Greeks were interested in more than just the applied as-
pects of geometry. The Greeks attempted to apply their knowledge of logic to geome-
try. In about 600 B.C., Thales of Miletus was the first to be credited with using deduc-
tive methods to develop geometric concepts. Another outstanding Greek geometer,
Pythagoras, continued the systematic development of geometry that Thales had begun.

In about 300 B.C., Euclid collected and summarized much of the Greek mathe-
matics of his time. In a set of 13 books called Elements, Euclid laid the foundation for
plane geometry, which is also called Euclidean geometry.

Euclid is credited with being the first mathematician to use the axiomatic
method in developing a branch of mathematics. First, Euclid introduced undefined
terms such as point, line, plane, and angle. He related these to physical space by such
statements as "A line is length without breadth" so that we may intuitively understand
them. Because such statements play no further role in his system, they constitute
primitive or undefined terms.

Second, Euclid introduced certain definitions. The definitions are introduced
when needed and are often based on the undefined terms. Some terms that Euclid in-
troduced and defined include triangle, right angle, and hypotenuse.

Third, Euclid stated certain primitive propositions called postulates (now called
axioms*) about the undefined terms and definitions. The reader is asked to accept
these statements as true on the basis of their "obviousness" and their relationship with
the physical world. For example, the Greeks accepted all right angles as being equal,
which is Euclid's fourth postulate.

Fourth, Euclid proved, using deductive reasoning (see Section 1.1), other propo-
sitions called theorems. One theorem that Euclid proved is known as the Pythagorean
theorem: "The sum of the areas of the squares constructed on the arms of a right trian-
gle is equal to the area of the square constructed on the hypotenuse." He also proved
that the sum of the angles of a triangle is 1800

•

Using only 10 axioms, Euclid deduced 465 propositions (or theorems) in plane
and solid geometry, number theory, and Greek geometric algebra.

Three basic terms in geometry are point, line, and plane. These three terms are not
given a formal definition, but we recognize points, lines, and planes when we see them.

*The concept of the axiom has changed significantly since Euclid's time. Now any statement may be des-
ignated as an axiom, whether it is self-evident or not. All axioms are accepted as true. A set of axioms
forms the foundation for a mathematical system.



Let's consider some properties of a line. Assume that a line means a straight line
unless otherwise stated.

I. A line is a set of points. Each point is on the line and the line passes through each
point. When we wish to refer to a specific point, we will label it with a single cap-
ital letter. For example, in Figure 9.1(a) three points are labled A, B, and C, re-
spectively.

2. Any two distinct points determine a unique line. Figure 9.1(a) illustrates a line.
The alTows at both ends of the line indicate that the line continues in each direc-
tion. The line in Fig. 9.1 (a) may be symbolized with any two points on the line
by placing a line with a double-sided arrow above the letters that correspond to

+----':l>~~~~ ~
the points-for example, AB, BA , Ae, CA, Be, or CB.

3. Any point on a line separates the line into three parts: the point itself and two haLf
Lines (neither of which includes the point). For example, in Fig. 9.1(a) point B
s~arates the line into the point B and two half lines. Half line BA, symbolized
liA, is illustrated in Fig. 9.1(b). The open circle above the B indicates that point B
is not included in the half line. Figure 9.1(c) illustrates half line BC, symbolized
BC.
Look at the half line AS in Fig. 9.2(b). If the end point, A, is included with the

set of points on the half line, the result is called a ray. Ray AB, symbolized AB, is il-
lustrated in Fig. 9.2(c). Ray BA, symbolized EA, is illustrated in Fig. 9.2(d).

A Line segment is that part of a line between two points, including the end points.
Line segment AB, symbolized AB, is illustrated in Fig. 9.2(e).

Description Diagram Symbol

(a) Line AB • • ~
A B AB

(b) Half line AB 0 • 0---7

A B AB

(e) Ray AB • • ~
A B AB

(d) Ray BA • • ~
A B BA

(e) Line segment AB • •A B AB

(f) Open line segment AB 0 0 <>,;vfA B{~ 0 --0
(g) Half open line segments AB B AB

0 • 'AsA B

Figure 9.2

An open line segment is the set of points on a line between two points, excluding
the end points. Open line segment AB, symbolized Ail, is illustrated in Fig. 9.2(f).

Figure 9.2(g) illustrates two half open line segments, symbolized AB and AB.



DID YOU KNOW

Geometric constructions were central to ancient Greek mathematics. Although these con-
structions are often referred to as ~uclidean constructions, they were used centuries be-

fore Euclid wrote his classic work, Elements. The tools allowed in geometric constructions
are a pencil, an unmarked straightedge, and a drawing compass. The straightedge is used to
draw line segments, and the compass is used to draw circles and arcs. One example of a con-
struction using these tools is shown below. The Internet has many sites devoted to classic geo-
metric constructions.

To construct a triangle with sides of equal length (i.e., an equilateral triangle) do the
following:

1. Use the straightedge to draw a line segment of any length and label the end points A and B.

2. Place one end of the compass at point A and the other end on point B and draw an arc as shown.
3. Now turn the compass around and draw another arc as shown. Label the point of intersection of the two arcs e.
4. Draw line segments AC and Be. This completes the construction of equilateral triangle ABe.

In Chapter 2 we discussed intersection of sets. Recall that the intersection
(symbolized n ) of two sets is the set of elements (points in this case) common to
both sets .

Consider the rays AB and BA in Fig. 9.3(a). The intersection of AB and BA is AS.
Thus, AB nBA = AB.

We also discussed the union of two sets in Chapter 2. The union (symbolized U )
of two sets is the set of elements (points in this case) that belong to either of the sets or
both sets. The union of AB and BA is Ai! (Fig. 9.3b). Thus, AB U BA = Ai!.

•
4 ••A

• •••B
(a)

--7
AB
--7
BA

) Solution: AB

•• •(.. .
A

--7
AB
--7
BA ~

• ) Solution: AB

• •••B
(b) rEXAMPLE 1 Unions and Intersections of Parts of a Line

Using line AD, determine the solution to each part.
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AKodak Camera advertisement
appeared in the first issue of

the Photographic Herald and Ama-
teur Sportsman, in November 1889.
The slogan "You press the button,
we do the rest" summed up George
Eastman's groundbreaking snapshot
camera system.
Sunlight travels in straight Jines, or
rays.When these rays pass through a
small hole of a darkened room, they
converge and then spread out to
form an inverted image of the sun on
the opposite wall. In the sixteenth
century, artists used lenses to focus
images on paper, which could then
be traced to create a reproduction. In
the eighteenth century, chemists dis-
covered that certain salts of silver
would darken when exposed to light,
effectively creating a negative im-
age. For the population at large, it all
came together in 1888 when 23-
year-old George Eastman, using ba-
sic geometric concepts, developed
the first modern camera intended for
the "casual millions," which sold for
$25 apiece. J

..,-, .. , ,.- -- ..,.--_ _.- - - - ..,-

SOLUTION:
a) AB noc
Ray AB and ray DC are shown below. The intersection of these two rays is that part
of line AD that is a part of both ray AB and ray DC. The intersection of ray AB and
ray DC is line segment AD.

~
AB~DC _

) Solution: AD

Once again ray AB and ray DC are shown below. The union of these two rays is that
part of line AD that is part of either ray AB or ray DC. The union of ray AB and ray
DC is the entire line AD.

~
AB~DC <->

• ) Solution: AD

Line segment AB and ray CD have no points in common, so their intersection is
empty.

• • AB~• • • CD
I I I I ) Solution: </>

A B C D

ABnCl5 = 0

I d) ADU 6tIThe union of line segment AD and half line CA is ray DA (or DB or OC).

AD~
CA ~

) Solution: DA
o
I •
C D

The term plane is one of Euclid's undefined terms. For our purposes, we can think of
a plane as a two-dimensional surface that extends infinitely in both directions, like an
infinitely large blackboard. Euclidean geometry is called plane geometry because it is
the study of two-dimensional figures in a plane.

Two lines in the same plane that do not intersect are called parallel lines. Figure
9.4(a) on page 478 illustrates two parallel lines in a plane (AJ1 is parallel to CD).
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Properties of planes include the following:

1. Any three points that are not on the same line (noncollinear points) determine a
unique plane (Fig. 9.4b).

2. A line in a plane divides the plane into three parts, the line and two half planes
(Fig.9.4c).

3. Any line and a point not on the line determine a unique plane.
4. The intersection of two planes is a line (Fig. 9.4d).

Two planes that do not intersect are said to be parallel planes. For example, in
Fig. 9.5 plane ABE is parallel to plane GHF.

Two lines that do not lie in the same plane and do not intersect are called skewed
lines. Figure 9.5 illustrates many skewed lines (for example, Ai! and CD).

Angles

An angle can be formed by the rotation of a ray about a point. An angle has an initial
side and a terminal side. The initial side indicates the position of the ray prior to rota-
tion; the terminal side indicates the position of the ray after rotation. The point com-
mon to both rays is called the vertex of the angle. The letter designating the vertex is
always the middle one of the three letters designating an angle. The rays that make up
the angle are called its sides.

There are several ways to name an angle. The angle in Fig. 9.6 may be denoted

An angle divides a plane into three distinct parts: the angle itself, its interior, and
its exterior. In Fig. 9.6 the angle is represented by the blue lines, the interior of the an-
gle is shaded pink, and the exterior is shaded green.

The measure of an angle, symbolized m, is the amount of rotation from its initial
side to its terminal side. In Fig. 9.6, the letter x represents the measure of MBC;
therefore, we may write mMBC = x.

Angles can be measured in degrees, radians, or gradients. In this text we will discuss
only the degree unit of measurement. The symbol for degrees is the same as the symbol
for temperature degrees. An angle of 45 degrees is written 45°. A protractor is used to
measure angles. The angle shown being measured by the protractor in Fig. 9.8 on page
479 is 50°.

Refer to Fig. 9.7. Determine the following.

a) BG U BF b) MBG nt.DBC c) DE n4CBE d) Bl5 U BC
I SOLUTION:

a) BGUBF = OF
b) MBGn4DBC = {B}

I c) DE n4CBE = BE
• d) Bl5 U BC = 4DBC (or 4CBD)



DID YOU KNOW

Have you ever spent several
hours trying to solve a difficult

homework problem? Can you imag-
ine studying the same problem for
your entire life? Entire generations
of mathematicians throughout his-
tory spent their entire lives studying
three geometry construction prob-
lems that originated in ancient
Greece. The three problems are (1)
trisecting an angle, (2) squaring the
circle, and (3) doubling the cube. All
three problems involve using only an
unmarked straightedge and a com-
pass to construct geometric figures.
Trisecting an angle refers to dividing
a given angle into three equal angles.
Squaring the circle refers to con-
structing a square that has the exact
same area as the area of a given cir-
cle. Doubling the cube refers to con-
structing a cube that has exactly
double the volume of a given cube.
Although these problems are easily
stated, they puzzled mathematicians
for thousands of years. The solutions
were never found, but in the process
of studying these problems, mathe-
maticians were able to expand their
knowledge about mathematics.
Eventually, mathematicians came to
realize that if one is limited to using
only an unmarked straightedge and a
compass, then these constructions
are impossible. Finally, in 1837
Pierre Wantzel proved the impossi-
bility of the first two constructions,
and in 1882 Carl Lindemann proved
the impossibility of the third con-
struction.

Consider a circle whose circumference is divided into 360 equal parts. If we draw
a line from each mark on the circumference to the center of the circle, we get 360
wedge-shaped pieces. The measure of an angle formed by the straight sides of each
wedge-shaped piece is defined to be 1°.

Angles are classified by their degree measurement, as shown in the following
summary. A right angLe is 90°, an acute angLe is less than 90°, an obtuse angle is
greater than 90° but less than 180°, and a straight angle is 180°.

x = 90°
The symbol 6- is
used to indicate
right angles.

Two angles in the same plane are adjacent angLes when they have a common ver-
tex and a common side but no common interior points. In Fig. 9.9, 4DBC and 4CBA
are adjacent angles, but 4DBA and 4CBA are not adjacent angles.

Two angles are called compLementary angLes if the sum of their measures is 90°.
Two angles are called supplementary angles if the sum of their measures is 180°.
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Figure 9.10

,~
D B

Figure 9.12

EXAMPLE 3 Determining Complementary and Supplementary Angles

I In Fig. 9.10 we see that m4ABC = 40°.
a) 4ABC and 4CBD are complementary angles. Determine m4CBD.Ib) 4ABC and 4CBE are supplementary angles. Determine m4CBE.

SOLUTION:

a) The sum of two complementary angles must be 90°, so

m4ABC + m4CBD = 90°

40° + m4CBD = 90°

m4C BD = 90° - 40° = 50° Subtract 40' from each side of the equation,

b) The sum of two supplementary angles must be 180°, so

l m4ABC + m4CBE = 180°

40° + m4CBE = 180°
m4CBE = 180° - 40° = 1400 Subtract 40' from each side of the

equation,

EXAMPLE 4 Determining Complementary Angles

I If MBC and 4CBD are complementary angles and mMBC is 26° less than
m4CBD, determine the measure of each angle (Fig. 9.11).

SOLUTION: Let m4CBD = x. Then mMBC = x - 26 since it is 26° less than
I m4CBD. Because these angles are complementary, we have

m4CBD + mMBC = 90
x + (x - 26) = 90

2x - 26 = 90

2x = 116

x = 58

Therefore, m4CBD = 58° and mMBC = 58° - 26°, or 32°. Note that
58° + 32° = 90°, which is what we expected .•...

EXAMPLE 5 Determining Supplementary Angles

If MBC and MBD are supplementary and mMBC is five times larger than
, mMBD, determine mMBC and mMBD (Fig. 9.12).

SOLUTION: Let mMBD = x, then mMBC = 5x. Since these angles are supple-
mentary, we have

mMBC + mMBD = 180°

5x + x = 180°

6x = 180°

x = 30°

Thus, mMBD = 30° and mMBC = 5(30°) = 150°. Note that 30° + 150° =
180°, which is what we expected.



When two straight lines intersect, the nonadjacent angles formed are called
vertical angles. In Fig. 9.13, 41 and 43 are vertical angles, and 42 and 44 are verti-
cal angles. We can show that vertical angles have the same measure, that is, they are
equal. For example, Fig. 9.13 shows that

m41 + m42 = 180°.

m42 + m43 = 180°.

Why?

Why?

A line that intersects two different lines, II and 12, at two different points is called
a transversal. Figure 9.14 illustrates that when two parallel lines are cut by a transver-
sal, eight angles are formed. Angles 3, 4, 5, and 6 are called interior angles, and an-
gles I, 2, 7, and 8 are called exterior angles. Eight pairs of supplementary angles are
formed. Can you list them?

Special names are given to the angles formed by a transversal crossing two paral-
lel lines.

Pairs of Angles
Figure 9.14 Name Description lIIustration Meeting Criteria

Alternate Interior angles on 43 and 46
interior angles opposite sides of the 7 44 and 453 4

transversal
5 6

7 8

Alternate Exterior angles on 41 and 48
exterior angles opposite sides of the 7 42 and 47

transversa] 3 4

5 6
7 8

Corresponding One interior and one 41 and 45
angles exterior angle on the 7 42 and 46

same side of the 3 4
43 and 47

transversal 5 6 44 and 48
7 8

When two parallel lines are cut by a transversal
1. alternate interior angles have the same measure.
2. alternate exterior angles have the same measure.
3. corresponding angles have the same measure.



rEXAMPLE 6 Finding Angle Measures

Figure 9.15 shows two parallel lines cut by a transversal. Determine the measure of
41 through 47.

SOLUTION:

m46 = 53°

m45 = 127°

m47 = 127°

m41 = 127°

m44 = 53°

m42 = 53°

m43 = 127°

48 and 46 are vertical angles.

48 and 45 are supplementary angles.

45 and 47 are vertical angles.

41 and 47 are alternate exterior angles.

44 and 46 are alternate interior angles.

46 and 42 are corresponding angles.

43 and 41 are vertical angles.

In Example 6, the angles could have been determined in alternate ways. For Example,
we mentioned m41 = 127° because 41 and 47 are alternate exterior angles. We could
have also stated that m41 = 127° because 41 and 45 are corresponding angles.

Concept/Writing Exercises
1. a) What are the four key parts in the axiomatic method

used by Euclid?
b) Discuss each of the four parts.

2. What is the difference between an axiom and a theorem?
3. What are parallel lines?
4. What are skewed lines?
S. What are adjacent angles?
6. What are supplementary angles?
7. What are complementary angles?
8. What is a straight angle?
9. What is an obtuse angle?

10. What is an acute angle?
11. What is a right angle?
12. Draw two intersecting lines. Identify the two pairs of verti-

cal angles.

Practice the Skills
In Exercises 13-20, identify the figure as a line, half line,
ray, line segment, open line segment, or half open line seg-
ment. Denote it by its appropriate symbol.

15. ( • •A 8

16. ( • • •
A 8

17. ( ~ • • •
A 8

18. ( • • $
A 8

19. ( $ $
A 8

20. ( • • •A 8

In Exercises 21-32, use the figure tofind thefollowing:

21. i:;.GBDnAi5
23.1fC U ED
25. MCA n EO
27. Xn nfiC
29. AD n BC

31. BD U tB

22. FEUFG
24. AD U BC

26. i:;.HCDn MCF
28. BDn tB
30. BC U CF U FB
32. {C} n CH



In Exercises 33-44, use the figure to find each of the
following:

33. !iF nBE
35. 4GBC n 4CBE
37. MBE U JJj
39. 4CBE n 4EBC
41. XC nAC
43. EiJ n BE

34. BDUBE
36. DE U BE
38. !iF U BE
40. {B} nBA
42. XC n BE
44. GFnAB

In Exercises 45-52, classify the angle as acute, right,
straight, obtuse, or none of these.

45.~

47. I
49.~

S1.~

48./

S··r
S2.~

In Exercises 53-58, find the complementary angle of the
given angle.

55. 32r
58. 0.01°

54. 89°
57. 64.7°

In Exercises 59-64, find the supplementary angle of the
given angle.

59. 91°
62. 179.99°

61. 20.so

64. 64i;t

In Exercises 65-70, match the names of the angles with the
corresponding figure in parts (a)-(f).

65. Corresponding angles
67. Supplementary angles
69. Alternate interior angles

66. Vertical angles
68. Complementary angles
70. Alternate exterior anglesb)><I 2

Problem Solving
71. MODELING - Complementary Angles If 41 and 42 are

complementary angles and if the measure of 41 is four
more than the measure of 42, determine the measures of
41 and 42.

72. MODELING - Complementary Angles The difference be-
tween the measures of two complementary angles is 62°.
Determine the measures of the two angles.

73. MODELING - Supplementary Angles The difference be-
tween the measures of two supplementary angles is 88°.
Determine the measures of the two angles.

74. MODELING - Supplementary Angles If 41 and 42 are sup-
plementary angles and if the measure of 42 is 17 times the
measure of 41, determine the measures of the two angles.

In Exercises 75-78, parallel lines are cut by the transversal
shown. Determine the measures of4l through 47.



In Exercises 79-82, the angles are complementary angles.
Find the measures of I<J and 1<2.

k
82. L8x-9

~

81.~
x

'2 2x-9

In Exercises 83-86, the angles are supplementary angles.
Find the measures of41 and 42.

83. 84. 4x+ '0

~
(~

x 2 ,

85. 5Xfb4 86.
~( 2, x ) 2 , x)

87. a) How many lines can be drawn through a given point?
b) How many planes can be drawn through a given point?

88. What is the intersection of two distinct nonparallel planes?

89. How many planes can be drawn through a given line?

90. a) Will three noncollinear points A, B, and C always deter-
mine a plane? Explain.

b) Is it possible to determine more than one plane with
three noncollinear points? Explain.

c) How many planes can be constructed through three
collinear points?

The figure suggests a number of lines and planes. The lines
may be described by naming two points, and the planes
may be described by naming three points. In Exercises
91-98, use thejigure to name thefol/owing:

91. Two parallel planes

92. Two parallel lines

93. Two lines that intersect at right angles

94. Two planes that intersect at right angles

95. Three planes whose intersection is a single point

96. Three planes whose intersection is a line

97. A line and a plane whose intersection is a point

98. A line and a plane whose intersection is a line

In Exercises 99-104, determine whether the statement is
always true, sometimes true, or never true. Explain your
answer.

99. Two lines that are both parallel to a third line must be
parallel to each other.

100. A triangle contains two acute angles.

101. Vertical angles are complementary angles.

102. Alternate exterior angles are supplementary angles.

103. Alternate interior angles are complementary angles.

104. A triangle contains two obtuse angles.

Challenge Problems/Group Activities
105. If lines land m are parallel lines and if lines land n are

skewed lines, is it true that lines m and n must also be
skewed? (Hint: Look at Fig. 9.5 on page 478.) Explain
your answer and include a sketch to support your answer.

106. Two lines are perpendicular if they intersect at right an-
gles. If lines land m are perpendicular and if lines m and
n are perpendicular, is it true that lines land n must also
be perpendicular? Explain your answer and include a
sketch to support your answer.

107. Suppose you have three distinct lines, all lying in the
same plane. Find all the possible ways in which the three
lines can be related. Sketch each case (four cases).

108. If two straight lines intersect at a point, determine the
sum of the measures of the 4 angles formed.

109. 4ABC and 4CBD are complementary and m4CBD is
twice the m4ABC. 4ABD and 4DBE are supplementary
angles.
a) Draw a sketch illustrating 4ABC, 4CBD, and 4DBE.
b) Determine m4ABC.
c) Determine m4CBD.
d) Determine m4DBE.



112. Search the Internet or other sources such as a geometry
textbook to study the geometric constructions that use a
straightedge and a compass only. Prepare a poster
demonstrating five of these basic constructions.

Internet/Research Activities
110. Using the Internet and other sources, write a research pa-

per on Euclid's contributions to geometry.

111. Using the Internet and other sources, write a research
paper on the three classic geometry problems of Greek
antiquity (see Did You Know on page 479).
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Mathematics plays a key role in
the animation you see in

movies such as those in the Jurassic
Park series. The images you see on
the movie screen are created using
software that combines pixels (the
smallest piece of a screen image)
into geometric shapes including
polygons. These shapes are then
stored in a computer and manipu-
lated using various mathematical
techniques so that the new shapes
formed (from the original geometric
shapes) approximate curves. Each
movie frame has over 2 million pix-
els and can have over 40 mjllion
polygons. With such a huge amount
of data, computers are used to carry
out the mathematics needed to cre-
ate animation. One computer anima-
tion specialist stated that "it's all
controlled by math .... All those lit-
tle X's, Y's, and Z's that you had in
school-oh my gosh, suddenly they
all apply."

A polygon is a closed figure in a plane determined by three or more straight line seg-
ments. Examples of polygons are given in Fig. 9.16.

The straight line segments that form the polygon are called its sides and a point
where two sides meet is called a vertex (plural vertices). The union of the sides of a
polygon and its interior is called a polygonal region. A regular polygon is one whose
sides are all the same length and whose interior angles all have the same measure.
Figures 9.16(b) and (d) are regular polygons.

Polygons are named according to their number of sides. The names of some poly-
gons are given in Table 9.1.

TABLE 9.1

Number of Number of
Sides Name Sides Name

3 Triangle 8 Octagon
4 Quadrilateral 9 Nonagon
5 Pentagon 10 Decagon
6 Hexagon 12 Dodecagon
7 Heptagon 20 Icosagon

One of the most important polygons is the triangle. The sum of the measures of
the interior angles of a triangle is 1800

. To illustrate, consider triangle ABC given in
Fig. 9.17. The triangle is formed by drawing two transversals through two parallel
lines i) and i2 with the two transversals intersecting at a point on il'



1(180°) = 180°
2(180°) = 360°
3( 180°) = 540°
4( 180°) = 720°

In Fig. 9.17, notice that 4A and 4A' are corresponding angles. Recall from
Section 9.1 that corresponding angles are equal, so m4A = m4A'. Also, 4C and 4C'
are corresponding angles; therefore, m4C = m4C'. Next, we notice that 4B and 4B'
are vertical angles. In Section 9.1 we learned that vertical angles are equal; therefore,
m4B = m4B'. Figure 9.17 shows that 4A', 4B', and 4C' form a straight angle;
therefore, m4A' + m4B' + m4C' = 180°. Since m4A = m4A', m4B = m4B',
and m4C = m4C', we can reason that mM + m4B + m4C = 180°. This illustrates
that the sum of the interior angles of a triangle is 180°.

Consider the quadrilateral ABCD (Fig. 9.18a). Drawing a straight line segment
between any two vertices forms two triangles. Since the sum of the measures of the
angles of a triangle is 180°, the sum of the measures of the interior angles of a quadri-
lateral is 2 . 180°, or 360°.

Now let's examine a pentagon (Fig. 9.18b). We can draw two straight line seg-
ments to form three triangles. Thus, the sum of the measures of the interior angles of a
five-sided figure is 3.180°, or 540°. Figure 9.18(c) shows that four triangles can be
drawn in a six-sided figure. Table 9.2 summarizes this information.

c

P\A D
(a)

!S})!
\ !
\ !
\ !

(b)

Sum of the Measures
of the Interior Angles

If we continue this procedure, we can see that for an n-sided polygon the sum of
the measures of the interior angles is (n - 2) 180°.

The sum of the measures of the interior angles of an n-sided polygon is
(n - 2) 180°.

rEXAMPLE 1 Angles of a Hexagon

I Crispy Hexagons is a breakfast cereal whose pieces are in the shape of regular
hexagons. A regular hexagon is a six-sided figure with all the sides the same length
and all interior angles with the same measure. See Fig. 9.19. DetermineI a) the measure of an interior angle.
b) the measure of exterior 41.

SOLUTION:

a) Using the formula (n - 2) 180°, we can determine the sum of the measures of
the interior angles of a hexagon as follows.

Sum = (6 - 2)180°

= 4(180°)

= 720°
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The measure of an interior angle of a regular polygon can be determined by divid-
ing the sum of the interior angles by the number of angles.

The measure of an interior angle of a regular hexagon is determined as follows:

7200

Measure = -- = 1200

6

In order to discuss area in the next section, we must be able to identify various
types of triangles and quadrilaterals. The following is a summary of certain types of
triangles and their characteristics.

Triangles

Acute Triangle Obtuse Triangle Right Triangle

L ~
~enuse

All angles are acute One angle is obtuse. One angle is a right
angles. angle.

Isosceles Triangle Equilateral Triangle Scalene Triangle

~
6 ~

Two equal sides Three equal sides No two sides are
Two equal angles Three equal angles equal in length.

(600 each)

Similar Figures
. In everyday living we often have to deal with geometric figures that have the "same
shape" but are of different sizes. For example, an architect will make a small-scale
drawing of a floor plan or a photographer will make an enlargement of a photograph.
Figures that have the same shape but may be of different sizes are called similar fig-
ures. Two similar figures are illustrated in Fig. 9.20.

Similar figures have corresponding angles and corresponding sides. In Fig. 9.20
triangle ABC has angles A, B, and C. Their respective corresponding angles in triangle
DEF are angles D, E, and F. Sides AB, BC, and AC in triangle ABC have correspon-
ding sides DE, EF, and DF, respectively, in triangle DEF.

Two polygons are similar if their corresponding angles have the same measure and
their corresponding sides are in proportion.



In Figure 9.20, 4A and 4D have the same measure, 4B and 4E have the same
measure, and 4C and 4F have the same measure. Also, the con'esponding sides of
similar triangles are in proportion:

AB
DE

8 A

E~B

D x C

Determine
a) the length of side CD.

I SOLUTION:

a) We will represent the length of side CD with the variable x. Because the corre-
sponding sides of similar figures must be in proportion, we can write a propor-
tion (as explained in Section 6.2) to find the length of side CD. Corresponding
sides AE and MQ are known, so we use them as one ratio in the proportion. The
corresponding side of CD is OP.

AE CD
MQ OP

8 x
-
JO 15

8'J5=JO'x
120 = lOx

J2 = x

Thus, the length of side CD is J 2 units.
I b) We will represent the length of side PQ with the variable y. We will work part

(b) in a similar manner to part (a).

AE DE
MQ PQ

8 3
10 Y

8'y=1O'3
8y = 30

30 15
y = - = - = 3.758 4
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Figure 9.23
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EXAM.PLE 3 Using Similar Triangles to Find the Height of a Tree

Saraniti Walker plans to remove a tree from her back yard. She needs to know the
height of the tree. Saraniti is 5 ft tall and determines that when her shadow is 8 ft
long, the shadow of the tree is 50 ft long (see Fig. 9.22). How tall is the tree?

"-,,-

"- "-
"-,,-

1-----""""""
"-,,-

"- "- "-
"-,,-

"- "- "-r
5 ft
-l-

SOLUTION: We will let x represent the height of the tree. From Fig. 9.22 we can see
I that the triangle formed by the sun's rays, Saraniti, and her shadow is similar to the

triangle formed by the sun's rays, the tree, and its shadow. To find the height of the
tree we will set up and solve the following proportion:

Height of the tree
Height of Saraniti

length of tree's shadow

length of Saraniti' s shadow

x 50
5 8

8x = 250
x = 31.25

Congruent Figures
If the corresponding sides of two similar figures are the same length, the figures are
called congruent figures. Corresponding angles of congruent figures have the same
measure, and the corresponding sides are equal in length. Two congruent figures coin-
cide when placed one upon the other.

EXAMP LE 4 Congruent Triangles

Triangles ABC and DEF in Fig. 9.23 are congruent. Determine
I a) the length of side DF. b) the length of side AB.

c) !nit-FDE. d) !nit-ACB.
e) !nit-ABC.



SOLUTION: Because !1ABC is congruent to !1DEF, we know that the correspon-
ding sides and angles are equal.
a) DF = AC = 12

- -
b) AB = DE = 7
c) mi;PDE = mt+CAB = 65°
d) mi;ACB = mt+DFE = 34°
e) The sum of the angles of a triangle is 180°. Since mt+BAC = 65 ° and

mt+ACB = 34°, mt+ABC = 180° - 65° - 34° = 81°. .••

Earlier we learned that quadrilaterals are four-sided polygons, the sum of whose
interior angles is 360°. Quadrilaterals may be classified according to their characteris-
tics, as illustrated in the summary box below.

Quadrilaterals

Trapezoid o
Two sides are
parallel.

Both pairs of
opposite sides are
parallel. Both pairs
of opposite sides
are equal in length.

Both pairs of
opposite sides are
parallel. The four
sides are equal in
length.

D
Both pairs of
opposite sides are
parallel. Both pairs
of opposite sides are
equal in length. The
angles are right angles.

Both pairs of
opposite sides are
parallel. The four
sides are equal in
length. The angles
are right angles.

A B

• £130' 1l0'~

E D C

Find the measure of the exterior angle, x, of the trapezoid in Fig. 9.24.

SOLUTION: By the definition of a trapezoid, sides AB and CD must be parallel.
Therefore, side AD may be considered a transversal and t+BAD and t+ADE are al-
ternate interior angles. Recall from Section 9.1, that alternate interior angles are
equal. Thus, mt+BAD = mt+ADE and mt+x = 130°. .••



DID YOU KNOW

The molecular structure of C60

resembles the patterns found on
a soccer ball.

Buckminsterfullerenes, also known as fullerenes
and affectionately known as buckyballs, are a

class of pure carbon molecules. Along with
graphite and diamond, buckyballs are the only nat-
urally occurring forms of pure carbon. Named after
American architect-engineer F. Buckminster Fuller,
who designed hemispherical geodesic domes from
hexagonal and pentagonal faces, fullerenes are the
most spherical molecules known. Discovered in
1985 by Robert Curl, Harold Kroto, and Richard
Smalley at Rice University, buckyballs are only
now beginning to see a wide range of applications.
Used primarily as microscopic lubricant, bucky-
balls have potential applications in molecular
medical engineering, electrical superconductivity,
and computer chip design. The most common
form of buckminsterfullerene contains 60 carbon
atoms and has the chemjcal symbol C60. The molecular structure of C60 contllins 12 pentagons and
20 hexagons arranged in a pattern similar to that found on a soccer ball.

Sketch of a C60 molecule (also known as a
buckyball)

Concept/Writing Exercises
1. What is a polygon?

2. What distinguishes regular polygons from other poly-
gons?

3. List six different types of triangles and in your own words
describe the characteristics of each.

4. List five different types of quadrilaterals and in your own
words describe the characteristics of each.

S. What are congruent figures?

6. What are similar figures?

In Exercises 7-14, (a) name the polygon. If the polygon is a
quadrilateral, give its specific name. (b) State whether or
not the polygon is a regular polygon.

7. b 8. 69'0 10. e )

"'0
13.~

12'0

In Exercises 15-22, identify the triangle as (a) scalene,
isosceles, or equilateral and as (b) acute, obtuse, or right.
The parallel markings (the two small parallel lines) on two
or more sides indicate that the marked sides are of equal
length.

16'~



~ "'6
21'~

22·V
In Exercises 23-28, identify the quadrilateral.

23. \ \ 24.

b
25. 0 26. / \
27'0 28. 0

In Exercises 33-34, lines I] and 12are parallel. Determine
the measures of41 through 412.

33.

In Exercises 35-40, determine the sum of the measures of
the interior angles of the indicated polygon.

35. Pentagon
37. Hexagon
39. Icosagon

36. Nonagon
38. Decagon
40. Dodecagon

In Exercises 41-46, (a) determine the measure of an inte-
rior angle of the named regular polygon. (b) If a side of the
polygon is extended, determine the supplementary angle of
an interior angle. See Example 1.

41. Triangle
43. Octagon
45. Dodecagon

42. Quadrilateral
44. Nonagon
46. Icosagon



In Exercises 47-52, the figures are similar. Find the length
of side x and side y.

B'

2.4~

C' y A'

B

~
A 10 C

B'Y"Z,.
A' x C'

49. 4 10AD: A' B'

D x C

6

A 5 D
~1

B C

A'~2 D'
5 y

B' 4 C'

51. A

~B 2 C

A'

Y~
B'~~~----~C'

1.25

A' B'E'C] 0.875
0.7

D' 1.75 C'

A B~c=Jx
D C

In Exercises 53-56, triangles ABC and DEC are similar
figures. Find the length of

53. side BC.

55. side AD.

54. side DC.

56. side BE.

In Exercises 57-62, find the length of the sides and the
measures of the angles for the congruent triangles ABC and
A'B'C'.

B

~
o

14
84°

A C

C'

2801\.LJ28
57. The length of side A' B'

58. The length of side B' C'
59. The length of side AC

60. 4B' A'e'
61. 4ACB

62·4ABC

In Exercises 63-68, find the length of the sides and the
measures of the angles for the congruent quadrilaterals
ABCD and A' B' C' D'.

A 8 B

~D 70° C

C' D'

~6
B' A'

63. The length of side A I B'

64. The length of side AD

65. The length of side B IC'

66·4BCD
67. 4A' D'e'
68·4DAB



Problem Solving
In Exercises 69-72, determine the measure of the angle. In
the figure, 4ABC makes an angle of 125° with the floor
and l, and l2 are parallel.

69.4GBC 70.4EDF

71.4DFE 72.4DEC

73. Height of a Silo Steve Runde is buying a farm and needs
to determine the height of a silo on the farm. Steve, who is
6 ft tall, notices that when his shadow is 9 ft long, the
shadow of the si 10 is 105 ft long (see diagram). How tall is
the silo? Note that the diagram is not to scale.

'05 fl -------;)1
74. Angles on a Picnic Table The legs of a picnic tqble form

an isosceles triangle as indicated in the figure. If
4ABC = 80°, determine m4x and m4Y so that the top of
the table will be parallel to the ground.

75. Distances in Texas A triangle can be formed by drawing
line segments on a map of Texas connecting the cities of
Dallas, Houston, and San Antonio (see figure). If the ac-
tual distance from San Antonio to Houston is approxi-
mately 197 miles, use the lengths of the line segments in-
dicated in the figure along with similar triangles to
approximate
a) the actual distance from Dallas to Houston.
b) the actual distance from Dallas to San Antonio.

76. Distances in Minnesota A triangle can be formed by
drawing line segments on a map of Minnesota connecting
the cities of Austin, Rochester, and St. Paul (see figure). If
the actual distance from Austin to Rochester is approxi-
mately 44 miles, Lise the lengths of the line segments indi-
cated in the figure along with similar triangles to approxi-
mate
a) the actual distance from St. Paul to Austin.
b) the actual distance from St. Paul to Rochester.



Challenge Problems/Group Activities
Scaling Factor Examine the similar triangles ABC and
A' B'C' in the figure below.

AB BC CA
IF we calculate the ratios -=-, -=-, and =, we see
J A'B' B'C CA'
that each of these ratios is equal to 2. We call this common
ratio the scaling factor of D.ABC with respect to D.A' B'C'.

A'B' B'C' CA'IF WE calculate the reciprocal ratios -=-, -=-, and-=-'
AB BC CA

we see that each of these ratios is equal to ~. We call this
common ratio the scaling factor of D.A' B' C' with respect to
D.ABC. Every pair of similar figures has two scaling fac-
tors that show the relationship between the corresponding
side lengths. Notice that the length of each side of D.ABC is
two times the length of the corresponding side in D.A' B'C'.
We can also state that the length of each side of D.A' B'C' is
one-half the length of the corresponding side of D.ABC.

77. In the figure, D.DEF is similar to D.D' E' F'. The length
of the sides of D. DE F is shown in the figure. If the scaling
factor of D.DE F with respect to b. D' E' F' is 3, determine
the length of the sides of triangle D.D' E' F'.

F' /'\.

~E'

78. In the figure, quadrilateral EFGH is similar to quadrilateral
E' F'G' H'. The length of the sides of quadrilateral EFGH
is shown in the figure. If the scaling factor of quadrilateral
E' F'G' H' with respect to quadrilateral EFGH is~, deter-
mine the length of the sides of quadrilateral E' F' G' H'.

£'
~F'

H' G'

79. Height of a WallYou are asked to measure the height of
an inside wall of a warehouse. No ladder tall enough to
measure the height is available. You borrow a mirror from
a salesclerk and place it on the floor. You then move away
from the mirror until you can see the reflection of the top
of the wall in it, as shown in the figure.

a) Explain why triangle HFM is similar to triangle TBM.
(Hint: In the reflection of light the angle of incidence
equals the angle of reflection. Thus, "4HMF = "4TMB.)

b) If your eyes are 5 ~ft above the floor, you are 2 ~ft from
the min'or, and the mirror is 20 ft from the wall, how
high is the wall?

T
/

/
/

/
/

/
/

H /
/

/
/

/
/

/
/

M

80. Distance Across a Lake
a) In the figure m"4CE D = m"4ABC. Explain why trian-

gles ABC and DEC must be similar.
b) Determine the distance across the lake, DE.

D

Internet/Research Activities
81. Using the Internet and history of mathematics texts, write

a paper on the history and use of the theodolite, a survey-
ing instrument.

82. Using the Internet and other sources, write a paper on the
use of geometry in the photographic process. Include dis-
cussions on the use of similar figures.



9.3 PERIMETERAND AREA

o Geometric shapes abound in the natural world and the world made by human beings.
For example, a basketball court is a rectangle, a basketball is a sphere, a can of food is
a cylinder, and a ream of paper is a rectangular solid.

The perimeter, P, of a two-dimensional figure is the sum of the lengths of the
sides of the figure. In Figs. 9.25 and 9.26 the sums of the red lines are the perimeters.
Perimeters are measured in the same units as the sides. For example, if the sides of a
figure are measured in feet, the perimeter will be measured in feet.

The area, A, is the region within the boundaries of the figure. The blue color in
Figs. 9.25 and 9.26 indicates the areas of the figures. Area is measured in square units.
For example, if the sides of a figure are measured in inches, the area of the figure will
be measured in square inches (in.2). (See Table 8.7 on page 461 for common units of
area in the U.S. customary and metric systems.)

Consider the rectangle in Fig. 9.26. Two sides of the rectangle have length l, and
two sides of the rectangle have width w. Thus, if we add the lengths of the four sides
to get the perimeter, we find P = l + w + l + w = 2l + 2w.

+l±mJf--- 5 units~

Figure 9.27

Consider a rectangle of length 5 units and width 3 units (Fig. 9.27). Counting the
number of I-unit by I-unit squares within the figure we obtain the area of the rectan-
gle, 15 square units. The area can also be obtained by multiplying the number of units
of length by the number of units of width, or 5 units X 3 units = 15 square units. We
can find the area of a rectangle by the formula area = length X width.

Using the formula for the area of a rectangle, we can determine the formulas for
the areas of other figures.

A square (Fig. 9.28) is a rectangle that contains four equal sides. Therefore, the
length equals the width. If we call both the length and the width of the square s, then
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I( b )1 I( b )1
(a) (b)

Figure 9.29

If we were to cut off the red portion of the parallelogram on the left, Fig. 9.29(a),
and attach it to the right side of the figure, the resulting figure would be a rectangle,
Fig. 9.29(b). Since the area of the rectangle is b X h, the area of the parallelogram is
also b X h.

Consider the triangle with height, h, and base, b, shown in Fig. 9.30(a). Using this
triangle and a second identical triangle, we can construct a parallelogram, Fig. 9.30(b).
The area of the parallelogram is bh. The area of the triangle is one-half that of the par-
allelogram. Therefore, the area of the triangle is ~(base) (height).

Now consider the trapezoid shown in Fig. 9.31(a). We can partition the trapezoid
into two triangles by drawing diagonal DB, as in Fig. 9.31(b). One triangle has base
AB (called b2) with height DE, and the other triangle has base DC (called bl) with
height F B. Note that the line used to measure the height of the triangle need not be in-
side the triangle. Because heights DE and F B are equal, both triangles have the same
height, h. The area of triangles DCB and ADB are ~bl h and ~b2h, respectively. The
area of the trapezoid is the sum of the areas of the triangles, ~b Ih + ~b2h, which can
be written ~h(bl + b2).



DID YOU KNOW

Which geographic area, Italy or
New Mexico, do you think

has the larger land area? As a matter
of fact, the land areas of Italy and
New Mexico are very simjlar: Italy's
area is I 16,304 mi2 and New Mex-
ico's area is 121,593 mi2 Italy's
perimeter, 5812 mi, is almost five
times greater than New Mexico's
1200 mi, however.

Perimeters and Areas
Triangle Square

s

D
P = SI + s2 + s3 (S3 = b)

A = ~bh

P = 4s
A = s2

P = 2l + 2w
A = lw

Trapezoid
blsit \2

b

P = 2b + 2w
A = bh

b2

P = S\ + S2 + bj + b2

A = ~h(bj + b2)

EXAMPLE 1 Resurfacing a Restaurant Roof

Richard McMenamy recently purchased the Lazy Lobster Restaurant and needs to
resurface the roof of the sun porch with aluminum roof coating. One can of Kopper's
Aluminum roof coating costs $10.99 and covers 330 ft2. If the roof of the sunporch
is 40 ft long and 16 ft wide, determine
a) the area of the roof.
b) how many cans of roof coating he needs.

I c) the cost of resurfacing the roof of the sunporch.

SOLUTION:

a) The area of the roof is

The area of the roof is in square feet because both the length and width are meas-
ured in feet.
b) To determine the number of cans of roof coating Richard needs, divide the area

of the roof by the area covered by one can of roof coating.

Area of roof 640 31
-------- = - = 1- ""1.94
Area covered by one can 330 33

The roof coating must be purchased in whole cans, so Richard needs to buy two
cans of roof coating.
c) The cost of two cans of the roof coating is 2 X $10.99, or $21.98. Ira.



The Pythagorean theorem is one
of the most famous theorems of

all time. One book, Pythagorean
Propositions, contains 370 different
proofs of the Pythagorean theorem.
U.S. President James A. Garfield
gave one notable proof. The
Pythagorean theorem has found its :
way into popular culture as well. Tn
the movie The Wizard of Oz, the
scarecrow incorrectly recites the
Pythagorean theorem once the wizard
grants him his diploma. In the play
The Pirates of Penzance, the Major
General refers to the Pythagorean
theorem when he sings ''I'm teeming
with a lot 0' news, with many cheer-
ful facts about the square of the hy-
potenuse." Lewis Carroll, author of
Through the Looking Glass and
Alice's Adventures in Wonderland,
stated that the Pythagorean theorem
"is as dazzlingly beautiful now as it
was in the day when Pythagoras dis-
covered it." Actually, the Pythagorean
theorem was known to the ancient
Babylonians in about 1600 B.C., 1000
years before Pythagoras, and it con-
tinues to playa huge role in mathe-
matics.

Pythagorean Theorem
We introduced the Pythagorean theorem in Chapter 5. Because this theorem is an im-
portant tool for finding the perimeter and area of triangles, we restate it here.

Pythagorean Theorem
The sum of the squares of the lengths of the legs of a right triangle equals the
square of the length of the hypotenuse.

Symbolically, if a and b represent the lengths of the legs and c represents the
length of the hypotenuse (the side opposite the right angle), then

The moat sunounding a castle is 18 ft wide and the wall by the moat of the castle is
24 ft high (see Figure 9.32). If an invading army wishes to use a ladder to cross the

I moat and reach the top of the wall, how long must the ladder be?

SOLUTION: The moat, the castle wall, and the ladder form a right triangle. The
moat and the castle wall form the legs of the triangle (sides ([ and b), and the ladder
forms the hypotenuse (side c). By the Pythagorean theorem,

c2 = ([2 + b2

c2 = (18)2 + (24)2

c2 = 324 + 576

c2 = 900

W = V900
c = 30

Takethe square root of
both sides of the equation.



Area
A = 1tr2

A commonly used plane figure that is not a polygon is a circle. A circle is a set of
points equidistant from a fixed point called the center. A radius, r, of a circle is a line
segment from the center of the circle to any point on the circle (Fig. 9.33). A
diameter, d, of a circle is a line segment through the center of a circle with both end
points on the circle. Note that the diameter of the circle is twice its radius. The cir-
cumference is the length of the simple closed curve that forms the circle. The formu-
las for the area and circumference of a circle are given in Fig. 9.33. The symbol pi, 7T,

was introduced in Chapter 5. Recall that 7T is approximately 3.14. If your calculator
contains a 0 key, you should use that key when working calculations involving pi.

EXAMPLE 3 Comparing Pizzas

IVictoria Montoya wishes to order a large cheese pizza. She can choose among three
pizza parlors in town: Antonio's, Brett's, and Dorsey's. Antonio's large cheese pizza
is a round 16-in.-diameter pizza that sells for $15. Brett's large cheese pizza is a
round 14-in.-diameter pizza that sells for $12. Dorsey's large cheese pizza is a

I square 12-in. by 12-in. pizza that sells for $10. All three pizzas have the same thick-
ness. To get the most for her money, from which pizza parlor should Victoria order
her pizza?

I SOLUTION: To determine the best value, we will calculate the cost per square inch
of pizza for each of the three pizzas. To do so we will divide the cost of each pizza
by its area. The areas of the two round pizzas can be determined using the formula
for the area of a circle, A = 7Tr2.Since the radius is half the diameter, we will use

I r = 8 and r = 7 for Antonio's and Brett's large pizzas, respectively. The area for
the square pizza can be determined using the formula for the area of a square,
A = s2. We will use s = 12.

Area of Antonio's pizza = 7Tr2:::; (3.14)(8)2:::; 3.14(64):::; 200.96in.2*
Area of Brett's pizza = 7Tr2:::; (3.14)(7?:::; 3.14(49) :::; 153.86in.2*

Area of Dorsey's pizza = s2 = (12)2 = 144in.2

INow, to find the cost per square inch of pizza, we will divide the cost of the pizza
by the area of the pizza.

Cost per square inch of Antonio's pizza :::; $15 2:::; $0.0746
200.96 in.

C . h f B ,. $12 $00780ost per square mc a rett s pIzza :::; 2:::;.
153.86 in.

$10
Cost per square inch of Dorsey's pizza = 2 :::; $0.0694

144 in.



DID YOU KNOW

In1637 Pierre de Fermat, an amateur French mathematician,
scribbled a note in the margin of the book Arithmetiea by

Diophantus. The note would haunt mathematicians for cen-
turies. Fermat stated that the generalized form of the
Pythagorean theorem, an + bn

= en, has no positive integer
solutions where n > 2. Fermat's note concluded, "I have a
truly marvelous demonstration of this proposition, which this
margin is too narrow to contain." This conjecture became
known as Fermat's last theorem. A formal proof of this con-
jecture escaped mathematicians until on September 19,
1994, Andrew J. Wiles of Princeton University announced he
had found a proof. It took Wiles over 8 years of work-in-
cluding fixing a flaw in an earlier announced solution-to
accomplish the task. Wiles was awarded the Wolfskehl prize
at Gottingen University in Germany in acknowledgement of
his achievement.

Thus, Dorsey's pizza costs about $0.0694, or about 6.9 cents, per square inch.

l Since the cost per square inch of pizza is the lowest for Dorsey's pizza, Victoria
would get the most pizza for her money by ordering her pizza from Dorsey's. .•.

Steve May plans to fertilize his lawn. The shapes and dimensions of his lot, house,
driveway, pool, and rose garden are shown in Fig. 9.34. One bag of fertilizer costs
$29.95 and covers 5000 ft2. Determine how many bags of fertilizer Steve needs and
the total cost of the fertilizer.

20 ft Pool

( 60 ft )

House

Driveway
~

Rose
Garden



DID YOU KNOW

The Roman poet Virgil tells the I
story of Queen Dido, who fled

to Africa after her brother murdered
her husband. There, she begged for I
some land from King Iarbus, telling
him she only needed as much land
as the hide of an ox would enclose'j
Being very clever, she decided that
the greatest area would be enclosed
if she tore the hide into thin strips
and formed the strips into a circle.
On this land she founded the city of I
Byrsa (the Greek word for "hide"),
later known as Carthage in present-
day Tunisia.

ISOLUTION: The total area of the lot is 150· 180, or 27,000 ft2. To determine the
area to be fertilized, subtract the area of house, driveway, pool, and rose garden
from the total area.

Area of house = 60· 40 = 2400 ft2

Area of driveway = 40·16 = 640 ft2

Area of pool = 20· 30 = 600 ft2

The total area of the house, driveway, pool, and rose garden is approximately
2400 + 640 + 600 + 452.16, or 4092.16 ft2. The area to be fertilized is
27,000 - 4092.16 fe, or 22,907.84 ft2. The number of bags of fertilizer is found by
dividing the total area to be fertilized by the number of square feet covered per bag.

22,907.84
The number of bags of fertilizer is , or about 4.58 bags. Therefore,

5000
Steve needs five bags. At $29.95 per bag, the total cost is 5 X $29.95, or $149.75.

rEXAMPLE 5 Converting between Square Feet and Square Inches

a) Convert 1 ft2 to square inches.
b) Convert 86 ft2 to square inches.
c) Convert 288 in.2 to square feet.
d) Convert 1836 in.2 to square feet.

SOLUTION:
a) 1 ft = 12 in. Therefore, 1 ft2 = 12 in. X 12 in. = 144 in.2

I b) From part (a) we know that 1 fe = 144 in.2 Therefore, 86 ft2 = 86 X 144 in.2 =

12,384 in.2

c) In part (b) we converted from ft2 to in.2 by multiplying the number of square feet
by 144. Now, to convert from square inches to square feet we will divide the

288
number of square inches by 144. Therefore, 288 in.2 = 144 ft2 = 2 ft2.

ld)As in part (c), we will divide the number of square inches by

1836
1836 in.2 = --ft2 = 12.75 ft2.

144

rEXAMPLE 6 Installing Ceramic Tile

I
Debra Levy wishes to purchase ceramic tile for her family room, which measures
30 ft X 27 ft. The cost of the tile, including installation, is $2 I per square yard.
a) Find the area of Debra's family room in square yards.
b) Determine Debra's cost of the ceramic tile for her family room.

I SOLUTION:
a) The area of the family room in square feet is 30·27 = 810 ft2.



Since 1 yd = 3 ft, 1 yd2 = 3 ft X 3 ft = 9 ft2. To find the area of the family
room in square yards, divide the area in square feet by 9 ft2.

810
Area in square yards = 9 = 90

Therefore, the area is 90 yd2
.

b) The cost of 90 yd2 of ceramic tile, including installation, is 90· $21 $1890 .
.A

When multiplying units of length, be sure that the units are the same. You can
multiply feet by feet to get square feet or yards by yards to get square yards. However,
you cannot get a valid answer if you multiply numbers expressed in feet by numbers
expressed in yards.

1. a) Describe in your own words how to determine the
perimeter of a two-dimensional figure.

b) Describe in your own words how to determine the area
of a two-dimensional figure.

c) Draw a rectangle with a length of 6 units and a width of
2 units. Determine the area and perimeter of this
rectangle.

2. What is the relationship between the radius and the
diameter of a circle?

3. a) How do you convert an area from square feet into
square inches?

b) How do you convert an area from square inches into
square feet?

4. a) How do you convert an area from square yards into
square feet?

b) How do you convert an area from square feet into
square yards?

s. ~

~

7'scm~

f--7 cm--7/

In Exercises 9-14, find the area and perimeter of the
quadrilateral.

9·1 17 ft

C-
IS ft

1ft.Ii /Zis in.

n
7 in.

11. I'oem t7cm
12. D2Ydb

3m 6 ft

13. 5 in. 14.



In Exercises 15-18,Jind the area and circumference of the
circle.

In Exercises 19-22, (a) use the Pythagorean theorem to de-
termine the length of the unknown side of the triangle, (b)
determine the perimeter of the triangle, and (c) determine
the area of the triang le.

10CI~

C

Problem Solving
In Exercises 23-32, find the shaded area. Round your an-
swers to hundredths.

25. I+--- 4 in. -----7J

I
4 in.

1
20 in.

\(37

----T
28cm

_____J



One square yard equals 9 ft2. Use this information to con-
vert the following.

33. 107 ft2 to square yards

35. 14.7 yd2 to square feet

34. l5.2 ft2 to square yards

36. 18.3 yd2 to square feet

One square meter equals 10,000 cm2. Use this information
to convert the following.

37. 23.4 m2 to square
centimeters

39. 1075 cm2 to square
meters

38. 14.7 m2 to square
centimeters

40. 608 cm2 to square
meters

Nancy Wallin has just purchased a new house that is in
need of new flooring. In Exercises 4J-46, use the measure-
ments given on the floor plans of Nancy's house to obtain
the answel:

I+--- 20'-----1

I
28'

1 Bedroom
10'x 14'

Bedroom
10'x20'

\:== 42'20'-----1

I
28'

1
Kilchen
J2'x 14'

Living/Dining
25'x22'

'..J

Bedroom <
10'x 14'

41. Cost of Laminate Flooring The cost of Pergo Select
Helsinki Birch laminate flooring is $5.89 per square foot if
Nancy installs the flooring herself or $8.89 per square foot
if shc has the flooring installed by the flooring company.
Determine the cost for the flooring in the living/dining
room if
a) Nancy installs it herself.
b) Nancy has it installed by the flooring company.

42. Cost of Hardwood Flooring The cost of Mannington
Chestnut hardwood flooring is $10.86 per square foot if
Nancy in~(alls the flooring herself or $13.86 per square
foot if she has the flooring installed by the flooring COI11-

pany. Determine the cost for hardwood flooring in the liv-
ing/dining 1'00111 if
a) Nancy installs it herself.
b) Nancy has it installed by the flooring company.

43. Cost of Linoleum The cost of Armstrong Solarian Wood-
cut linoleum is $5.00 per square foot. This price includes
the cost of installation. Determine the cost for Nancy to
have this linoleum installed in the kitchen and in both
bathrooms.

44. Cost of Ceramic Tile The cost of Mohawk Porcelain ce-
ramic tile is $8.50 per square foot. This price includes the
cost of installation. Determine the cost for Nancy to have
this ceramic tile installed in the kitchen and in both bath-
rooms.

45. Cost of Berber Carpeting The cost of Bigelow Com-
modore Berber carpeting is $6.06 per square foot. This
price includes the cost of installation. Determine the cost
for Nancy to have this carpeting installed in all three bed-
rooms.

46. Cost of Saxony Carpeting The cost of DuPont Stainmas-
tel' Saxony carpeting is $5.56 per square foot. This price
includes the cost of installation. Determine the cost for
Nancy to have this carpeting installed in all three bed-
rooms.

47. Cost of a Lawn Service Jim and Wendy Scott's home lot
is illustrated here. The Scotts wish to hire a lawn service to
cut their lawn. M&M Lawn Service charges $0.02 per
square yard of lawn. How much will it cost the Scotts to
have their lawn cut?

@
Pool

200 ft -----~)I

I
100 ft

1
Shed

10 ftO
10 rl 8 fl

25 ft

lOft

48. Cost of a Lawn Service Clarence and Rose Cohen's home
lot is illustrated here. Clarence and Rose wish to hire Pic-
ture Perfect Lawn Service to cut their lawn. How much
will it cost Clarence and Rose to have their lawn cut if Pic-
ture Perfect charges $0.02 per square yard?

~Oli

,,'~

~ House

-10 flo
Goldfish pond 1

300fl

I20 ft t IF"""":": 200 fL------=iI
Privacy hedge

Garauc
70ll~

30fl!1i
251~ (---,

-InrI
Driveway



49. Area of a Garden Gaetano Cannata's rectangular garden is
11.5 m by 15.4 m.
a) How large is his garden in square meters?
b) If I hectare (a measurement of area in the metric sys-

tem) equals 10,000 m2, how large is his garden in
hectares?

50. Hamburger Comparison Which hamburger has the larger
surface area: a square hamburger 3 in. on a side from
Wendy's or a 3 ~-in.-diameter round hamburger from
Burger King? Explain your answer and give the difference
in their surface areas.

51. Anchoring a Radio Signal Tower A 100 ft radio signal
tower is being constructed. To steady the tower, guy wires
are attached to the tower. One end of the highest guy wire is
attached to the tower at a point 90 ft above the ground (see
figure). The other end is anchored into the ground at a point
52 ft from the base of the tower. How long is this guy wire?

r!(~\
( J;

52. Ladder on a Wall Lorrie Morgan places a 29 ft ladder
against the side of a building with the bottom of the ladder
20 ft away from the building (see figure). How high up on
the wall does the ladder reach?

~
53. Docking a Boat Brian Murphy is bringing his boat into a

dock that is 9 ft above the water level (see figure). If a 41 ft
rope is attached to the dock on one side and to the boat on
the other side, determine the horizontal distance from the
dock to the boat.

Challenge Problems/Group Activities
54. Plasma Television The screen of a plasma television is in

the shape of a rectangle with a diagonal of length 43 in.
If the height of the screen is 21 in., determine the width of
the screen.

55. Doubling the Sides of a Square In the figure below, an
original square with sides of length s is shown. Also shown
is a larger square with sides double in length, or 2s.

s

I'D~]
1

I I I
I I I
I I I

_ ~ I J

a) Express the area of the original square in terms of s.
b) Express the area of the larger square in terms of s.
c) How many times larger is the area of the square in part

(b) than the area of the square in part (a)?
56. Doubling the Sides of a Parallelogram In the figure be-

low, an original parallelogram with base b and height h is
shown. Also shown is a larger parallelogram with base and
height double in length, or 2b and 2h, respectively.

};! ~ ----/1
-If-- b-----7/ -----~I
I I I

I I I1 L _

I( 2b )1

a) Express the area of the original parallelogram in terms
of band h.

b) Express the area of the larger parallelogram in terms of
band h.

c) How many times larger is the area of the parallelogram
in part (b) than the area of the parallelogram in part (a)?

57. Heron's Formula A second formula for determining the
area of a triangle (called Heron's formula) is

A = Vs(s - a)(s - b)(s - c)

where s = Ha + b + c) and a, b, and c are the lengths
of the sides of the triangle. Use Heron's formula to deter-
mine the area of right triangle ABC and check your answer
using the formula A = ~ab.

58. Expansion of (a + bi In the figure on page 507, one side
of the largest square has length a + b. Therefore, the area



of the largest square is (a + b)2. Answer the following
questions to find a formula for the expansion of (a + b)2.

a+b___ A _
( a b '\

a) What is the area of the square marked CD ?
b) What is the area of the rectangle marked a>?
c) What is the area of the rectangle marked ® ?
d) What is the area of the square marked @ ?
e) Add the four areas found in parts (a) through (d) to

write a formula for the expansion of (a + b) 2.

Recreational Mathematics
59. Scarecrow's Error In the movie The Wizard ofOz, once

the scarecrow gets his diploma he states the following: "In
an isosceles triangle, the sum of the square roots of the two
equal sides is equal to the square root of the third side."
Discuss why this statement is incorrect.

For Exercises 60-62, references include the Internet, his-
tory of mathematics textbooks, and encyclopedias.

60. Research the proof of the Pythagorean theorem provided
by President James Garfield. Write a brief paper and make
a poster of this proof and the associated diagrams.

61. The early Babylonians and Egyptians did not know about
7f and had to devise techniques to approximate the area of
a circle. Do research and write a paper on the techniques
these societies used to approximate the area of a circle.

62. Write a paper on the contributions of Heron of Alexandria
to geometry.

When discussing a one-dimensional figure, such as a line, we can find its length. When
discussing a two-dimensional figure, such as a rectangle, we can find its area. When
discussing a three-dimensional figure, such as a sphere, we can find its volume.
Volume is a measure of the capacity of a figure. The measure of volume may be con-
fusing because we use different units to measure different types of volumes. For ex-
ample, water and other liquids may be measured in ounces, quarts, or gallons. A vol-
ume of topsoil may be measured in cubic yards. In the metric system, liquid may be
measured in liters or milliliters, and topsoil may be measured in cubic meters .

.Solid geometry is the study of three-dimensional solid figures (also called space
figures). Volumes of three-dimensional figures are measured in cubic units such as cu-
bic feet or cubic meters.

We will begin our discussion with the rectangular solid. If the length of the solid
is 5 units, the width is 2 units, and the height is 3 units, the total number of cubes is 30
(Fig. 9.35). Thus, the volume is 30 cubic units. The volume of a rectangular solid can
also be found by multiplying its length times width times height; in this case,
5 units X 2 units X 3 units = 30 cubic units. In general, the volume of any rectan-
gular solid (shown in part a in the box on page 508), is V = l X w X h.

T~
3 units

~
~.
5 unJts~nits

Figure 9.35



A cube is a rectangular solid with the same length, width, and height (part b in
the box below). If we call the side of a cube 5 and use the formula for a rectangular
solid, substituting 5 for t, w, and h, we obtain V = 5' 5' 5 = 53.

Now consider the right circular cylinder (part c in the box below). The base is a
circle with area 7Tr

2
. When we add height, h, the figure becomes a cylinder. For the

same circular base, the greater the height, the greater is the volume. The volume of the
right circular cylinder is found by multiplying the area of the base, 7Tr

2
, by the height

h. In this book, when we use the term cylinder we mean a right circular cylinder.

A cone is illustrated in part (d) in the box below. Imagine a cone inside a cylinder,
sharing the same circle as the base. The volume of the cone is less than the volume of
the cylinder that has the same base and the same height (Fig. 9.36). In fact, the vol-
ume of the cone is one-third the volume of the cylinder.

Volumes

Rectangular Solid

The next shape we will discuss in this section is the sphere (part e in the box be-
low). Basketballs, golf balls, and so on have the shape of a sphere. The formula for the
volume of a sphere is as follows.

V=tXwXh
(a)

v = 53

(b)



18 in.

~

~
60 ft

~ ~30f~

Linda Nelson is the manager at the Colony Apartments and needs to replace the
sand in the rectangular sand volleyball court. The court is 30 ft wide by 60 ft long,
and the sand has a uniform depth of 18 in., see Fig. 9.37. Volleyball court sand sells
for $15 per cubic yard.
a) How many cubic yards of sand does Linda need?
b) How much will the sand cost?

SOLUTION:
a) Since we are asked to find the volume in cubic yards, we will convert each

measurement to yards. There are 3 ft in a yard. Thus, 30 ft equals ~ or 10 yd,
and 60 ft equals ~ or 20 yd. There are 36 in. in a yard, so 18 in. equals ~ or
~yd. The amount of sand needed is determined using the formula for the volume
of a rectangular solid, V = [. W • h. In this case the height of the rectangular
solid can be considered the depth of the sand.

Note that since the measurements for length, width, and height are each in terms
of yards, the answer is in terms of cubic yards.

b) One cubic yard of sand costs $15, so 100 yd3 will cost 100 X $15, or $1500.

Gordon Langeneger has three silos on his farm. The silos are each in the shape of a
right circular cylinder (see Fig. 9.38). One silo has a 12 ft diameter and is 40 ft tall.
The second silo has a 14 ft diameter and is 50 ft tall. The third silo has an 18 ft di-
ameter and is 60 ft tall.

a) What is the total capacity of the three silos in cubic feet?
b) If Gordon fills all three of his silos and then feeds his cattle 150 ft3 of silage per

day, in how many days will all three silos be empty?

SOLUTION:
a) The capacity of each silo can be determined using the formula for the volume of

a right circular cylinder, V = 7Tr
2h. Since the radius is half of the diameter, the



Picasso, Pablo. Les Demoiselles d'Avi-

gnon. Paris (June-July 1907). Oil on

canvas, 8 ft X 7 ft 8 in. (243.9 cm X

233.7 cm). The Museum of Modern Art,
New York. Acquired through the Lillie P.

Bliss Bequest. Photograph © 1996 The

Museum of Modern Art, New York. ©
Estate of Pablo Picasso.

The cubist painters of the early
twentieth century sought to ana-

lyze forms as geometric shapes.
They were greatly influenced by
Paul Cezanne who, in a famous let-
ter, wrote of treating nature in terms
of the cylinder, sphere, and cone. In
one of the first paintings of the cu-
bist period, Les Demoiselles d'Avi-
gnon, Pablo Picasso dismissed the
idea of the human figure as a dy-
namic unity and instead fractured
volumes and planes to present them
from multiple angles of vision at one
time.

radii for the three silos are 6 ft, 7 ft, and 9 ft, respectively. Now let's determine
the volumes.

Volume of the first silo = 7Tr2h = 7T' 62• 40
;:::;3.14·36·40 ;:::;4521.6 ft3

Volume of the second silo = 7Tr2h = 7T' 72• 50
;:::;3.14·49·50 ;:::;7693.0 ft3

Volume of the third silo = 7Tr2h = 7T' 92 • 60
;:::;3.14·81·60 ;:::;15,260.4 ft3

Therefore, the total capacity of all three silos is about 4521.6 + 7693.0 +
15,260.4 ;:::;27,475.0 ft3.

b) To find how long it takes to empty all three silos, we will divide the total capac-
ity by 150 ft3, the amount fed to Gordon's cattle every day.

27,475
--;:::; 183.17.

150

Now let's discuss polyhedrons. A polyhedron is a closed surface formed by the
union of polygonal regions. Figure 9.39 illustrates some polyhedrons.

Each polygonal region is called a face of the polyhedron. The line segment
formed by the intersection of two faces is called an edge. The point at which two or
more edges intersect is called a vertex. In Fig. 9.39(a) there are 6 faces, 12 edges, and
8 vertices. Note that



EXAMPLE 3 Using Euler's Polyhedron Formula

A certain polyhedron has 6 vertices and 9 edges. Determine the number of faces on
this polyhedron.

SOLUTION: Since we are seeking the number of faces, we will let x represent the
number of faces on the polyhedron. Next, we will use Euler's polyhedron formula
to set up an equation:

-3 + x = 2

x=5

A regular polyhedron is one whose faces are all regular polygons of the same
size and shape. Figure 9.39(a) and (b) on page 510 are regular polyhedrons.

A prism is a special type of polyhedron whose bases are congruent polygons and
whose sides are parallelograms. These parallelogram regions are called the lateral
faces of the prism. If all the lateral faces are rectangles, the prism is said to be a right
prism. Some right prisms are illustrated in Fig. 9.40. In this book, whenever we use
the word prism we are referring to a right prism.

Bottom
base

The volume of any prism can be found by multiplying the area of the base, B, by
the height, h, of the prism.
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E~PLE 4 Volume of a Hexagonal Prism Fish Tank

Frank Nicolzaao's fish tank is in the shape of a hexagonal prism as shown in Fig.
9.41. Use the dimensions shown in the figure and the fact that 1 gal = 231 in.3 to
a) determine the volume of the fish tank in cubic inches.
b) determine the volume of the fish tank in gallons (round your answer to the near-

est gallon).

SOLUTION:

a) First we will need to calculate the area of the hexagonal base of the fish tank.
Notice from Fig. 9.41 that by drawing a diagonal as indicated, the base can be
divided into two identical trapezoids. To find the area of the hexagonal base, we
will calculate the area of one of these trapezoids and then multiply by 2.

Area of one trapezoid = ~h(bl + b2)

= ~(8)(16 + 8) = 96 in.2

Area of the hexagonal base = 2(96) = 192 in.2

Now to determine the volume of the fish tank, we will use the formula for the
volume of a prism, V = Bh. We already determined that the area of the base, B,
is 192 in.2

In the above calculation, the area of the base, B, was measured in square inches,
and the height was measured in inches. The product of in.l and in. is cubic
inches, or in.3.

b) To determine the volume of the fish tank in gallons, we will divide the volume of
the fish tank in cubic inches by 231.

4608
V = ill ~19.95 gal

r
EXAMPLE 5 Volumes Involving Prisms

Find the volume of the remaining solid after the cylinder, triangular prism, and
square prism have been cut from the solid (Fig. 9.42).

Tr
3 in.-.L

20in·------ .••)1

~ ~in.

~6in.-?J

T
4il).

1
jf-4 in.-7\



SOLUTION: To find the volume of the remaining solid, first find the volume of the
rectangular solid. Then subtract the volume of the two prisms and the cylinder that
were cut out.

Volume of rectangular solid = l· w • h
= 20·3·8 = 480 in.3

Volume of circular cylinder = n-r2h

~ (3.14)(22)(3)

~ (3.14)(4)(3) ~ 37.68 in.3

Volume of triangular prism = area of the base' height

= ~(6)(4)(3) = 36 in.3

Volume of square prism = s2. h

=42'3 = 48in.3

Volume of solid ~ 480 - 37.68 - 36 - 48

~ 358.32 in.3

Another special category of polyhedrons is the pyramid. Unlike prisms, pyramids
have only one base. Some pyramids are illustrated in Fig. 9.43. Note that all but one
face of a pyramid intersect at a common vertex.

If a pyramid is drawn inside a prism, as shown in Fig. 9.44, the volume of the
pyramid is less than that of the prism. In fact, the volume of the pyramid is one-third
the volume of the prism.
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E~PLE 6 Volume of a Pyramid

Find the volume of the pyramid shown in Fig. 9.45.

SOLUTION: First find the area of the base of the pyramid. Since the base of the
pyramid is a square,

Now use this information to find the volume of the pyramid.

V=~·B·h
= ~. 64·12

= 256 m3

In certain situations converting volume from one cubic unit to a different cubic
unit might be necessary. For example, when purchasing topsoil you might have to
change the amount of topsoil from cubic feet to cubic yards prior to placing your
order. Example 7 shows how this may be done.

r
E~PLE 7 Cubic Yards and Cubic Feet

a) Convert 1 yd3 to cubic feet. (See Fig. 9.46.)
b) Convert 8.3 yd3 to cubic feet.

SOLUTION:

l
a)We know that 1 yd = 3ft. Thus,
1 yd3 = 3 ft . 3 ft . 3 ft = 27 ft3.

b) In part a) we learned that 1 yd3 = 27ft3. Thus,
8.3 yd3 = 8.3 X 27 = 224.1 ft3.

r
E~PLE 8 Filling in a Swimming Pool

Julianne Peterson recently purchased a home with a rectangular swimming pool.
The pool is 30 ft long, 15 ft wide, and has a uniform depth of 4.5 ft. Julianne lives
in a cold climate and so she plans to fill the pool in with dirt to make a flower gar-
den. How many cubic yards of dirt will Julianne have to purchase to fill in the
swimming pool?

SOLUTION: To find the amount of dirt, we will use the formula for the volume of a
rectangular solid:

v = lwh

= (30)(15)(4.5)
= 2025 ft3

l
NOW'we must convert this volume from cubic feet to cubic yards. In Example 7, we

learned that 1 yd3 = 27 ft3. Therefore, 2025 ft3 = 2~;5= 75 yd3. Thus, Julianne
needs to purchase 75 yd3 of dirt to fill in her swimming pool.



Concept/Writing Exercises
1. In your own words, define volume.
2. What is solid geometry?
3. What is the difference between a polyhedron and a regular

polyhedron?
4. What is the difference between a prism and a right prism?
S. In your own words, explain the difference between a prism

and a pyramid.
6. In your own words, state Euler's polyhedron formula.

Practice the Skills
In Exercises 7-20, find the volume of the solid. When
necessary, round your answer to hundredths.

8.~

~3ft

3 ft

I
I
I
: I ft.
1
I
I

.- 1- ....

I
I
I
I
12ft
I
1
I.......-l_
~ ~

6 in.

1
14cm

j

8· >-
In. I'-«'

1
24 in.

1



Problem Solving
In Exercises 21-28,jind the volume of the shaded area.
Round your answers to hundredths.
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In Exercises 29-32, use the fact that 1 yd3 equals 27 ft3 to
make the conversion.

29. 7 yd3 to cubic feet
31. 153 ft3 to cubic yards

30. 3.8 yd3 to cubic feet
32. 2457 ft3 to cubic yards

In Exercises 33-36, use the fact that 1 m3 equals
1,000,000 cm3 to make the conversion.

33.5.9 m3 to cubic 34. 17.6 m3 to cubic
centimeters centimeters

35.3,000,000 cm3 to cubic 36. 7,300,000 cm3 to cubic
meters meters

37. Volume of a Freezer The dimensions of the interior of an
upright freezer are height 46 in., width 25 in., and depth 25
in. Determine the volume of the freezer
a) in cubic inches. b) in cubic feet.

38. Ice Cream Comparison The Louisburg Creamery pack-
ages its homemade ice cream in tubs and in boxes. The
tubs are in the shape of a right cylinder with a radius of
3 in. and height of 5 in. The boxes are in the shape of a
cube with each side measuring 5 in. Determine the volume
of each container.

39. Volume of a Bread Pan A bread pan is
12 in. X 4 in. X 3 in. How many quarts does it hold, if
1 in.3 "'" 0.01736 qt?

40. Hamburger Comparison The dimensions of a square
Wendy's hamburger are length and width 4 in. and thick-
ness 16 in. The dimensions of a Magic Burger circular
hamburger are diameter 4 ~in. and thickness ±in. Which
hamburger has the greater volume? What is the difference
in their volumes?

41. Gasoline Containers Mark Russo has two right cylindrical
containers for storing gasoline. One has a diameter of
10 in. and a height of 12 in. The other has a diameter of
12 in. and a height of 10 in.
a) Which container holds the greater amount of gasoline,

the taller one or the one with the greater diameter?
b) What is the difference in volume?



42. A Swimming Pool
a) What is the volume of water in a rectangular swimming

pool that is 15 m long and 9 m wide and has an average
depth of 2 m? Give your answer in cubic meters.

b) If 1 m3 = 1 ke, how many kiloliters of water will the
pool hold?

43. The Pyramid of Cheops The Pyranild of Cheops in Egypt
has a square base measuring 720 ft on a side. Its height is
480 ft. What is its volume?

44. A Fish Tank
a) How many cubic centimeters of water will a rectangu-

lar fish tank hold if the tank is 80 cm long, 50 cm wide,
and 30 cm high?

b) If 1 cm3 holds 1 me of liquid, how many milliliters
will the tank hold?

e) If 1e = 1000 me, how many liters will the tank hold?

45. Engine Capacity The engine in a 1957 Chevrolet Corvette
has eight cylinders. Each cylinder is a right cylinder with a
bore (diameter) of 3.875 in. and a stroke (height) of 3 in.
Determine the total displacement (volume) of this engine.

46. Rose Garden Topsoil Marisa Raffaele wishes to plant a
rose garden in her backyard. The rose garden will be in the
shape of a 9 ft by 18 ft rectangle. Marisa wishes to add a 4
in. layer of organic topsoil on top of the rectangular area.
The topsoil sells for $32.95 per cubic yard. Determine
a) how many cubic yards of topsoil Marisa will need.
b) how much the topsoil will cost.

47. Pool Toys A Wacky Noodle Pool Toy, frequently referred
to as a "noodle," is a cylindrical flotation device made
from cell foam (see photo). One style of noodle is a cylin-
der that has a diameter of 2.5 in. and a length of 5.5 ft. De-
termine the volume of this style of noodle in
a) cubic inches.
b) cubic feet.

48. Keeping Soda Cold Tobi Moore and Tacinto Lopez and
their friends are at a picnic at the town park. They have
brought a children's wading pool in the shape of a right
circular cylinder with a radius of 2 ft and a height of 1 ft
into which they will put cold water to keep the soda cold.
See figure (a). They carry the water from the faucet to the
pool in a bucket that is also in the shape of a right circular
cylinder, with a diameter of I ft and a height of 1 ft. See
figure (b).
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(b)

a) How many buckets of water are needed to fill the pool
to a height of ~ft?

b) If 1 ft3 of water weighs 62.5 Ib, what is the weight of
the water in the pool?

e) If there are 7.5 gal of water per cubic foot, how many
gallons of water are in the pool?

49. Comparing Cake Pans When baking a cake you can
choose between a round pan with a 9 in. diameter and a
7 in. X 9 in. rectangular pan.
a) Determine the area of the base of each pan.
b) If both pans are 2 in. deep, determine the volume of

each pan.
e) Which pan has the larger volume?



50. Cake Icing A bag used to apply icing to a cake is in the
shape of a cone with a diameter of 3 in. and a height of 6
in. How much icing will this bag hold when full?

51. Flower Box A flower box is 4 ft long, and its ends are in
the shape of a trapezoid. The upper and lower bases of the
trapezoid measure 12 in. and 8 in., respectively, and the
height is 9 in. Find the volume of the flower box
a) in cubic inches.
b) in cubic feet.

52. The Leaning Tower of Pisa The Leaning Tower of Pisa
was designed to be a vertical bell tower for a cathedral. If
the tower were vertical, it would be 60 meters hjgh with a
diameter of about 19.6 meters roughly in the shape of a
cylinder. Use this information to find
a) the circumference of the tower.
b) the volume of tower.

/n Exercises 53-58, find the missing value indicated by the
question mark. Use the following formula.

(
Num~er Of) _ (number Of) + (number) = 2

vertIces edges of faces

Number of Number of Number of
Vertices Edges Faces

53. 8 ? 3
54. 12 16 ?
55. ? 8 4
56. 7 12 ?
57. 11 ? 5
58. ? 10 4

Challenge Problems/Group Activities
59. Packing Orange Juice A box is packed with six cans of

orange juice. The cans are touching each other and the
sides of the box, as shown. What percent of the volume of
the interior of the box is not occupied by the cans?

60. Doubling the Edges of a Cube In this exercise we will
explore what happens to the volume of a cube if we double
the length of each edge of the cube.
a) Choose a number between 1 and 10 and call this num-

ber s.
b) Calculate the volume of a cube with the length of each

edge equal to s.
c) Now double s and call this number t.
d) Calculate the volume of a cube with the length of each

edge equal to t.
e) Repeat parts (a) through (d) for a different value of s.
f) Compare the results from part (b) to the results from

part (d) and explain what happens to the volume of a
cube if we double the length of each edge.

61. Doubling the Radius of a Sphere In this exercise we will
explore what happens to the volume of a sphere if we dou-
ble the radius of the sphere.
a) Choose a number between 1 and 10 and call this num-

ber r.
b) Calculate the volume of a sphere with radius r (use theo key on your calculator).
c) Now double r and call this number t.
d) Calculate the volume of a sphere with radius t.
e) Repeat parts (a) through (d) for a different value of r.
f) Compare the results from part (b) to the results from

part (d) and explain what happens to the volume of a
sphere if we double the radius.

62. Cost of a Dripping Faucet Leah Quintero has a faucet in
her home that drips at a rate of 42 drops per minute. There
are approximately 20 drops in 1 me, 1000 me in 1 e, and
approximately 3.79 e in 1 gal. Assume water costs about
$0.11 per gallon.
a) Determine the number of drops of water wasted over a

I-year period.
b) Determine the volume of water wasted over a I-year

period in milliliters, liters, and gallons.
c) Estimate the cost of water wasted over a I-year period.

63. a) Explain how to demonstrate, using the cube shown on
page 519, that

(a + b)3 = a3 + 3a2b + 3ab2 + b3

b) What is the volume in terms of a and b of each num-
bered piece in the figure?



a) Determine the volume, in cubic inches, of a noodle that
is in the shape of a 5.5-ft-long solid octagonal prism
whose base has an area of 5 in.2

b) Determine the volume, in cubic inches, of a hollow
noodle that has the same shape as the noodle described
in part (a) except that a right circular cylinder of diame-
ter 0.75 in. has been removed from the center.

65. Air Conditioner Selection Calculate the volume of the
room in which you sleep or study. Go to a store that
sells room air conditioners and find out how many cubic
feet can be cooled by the different models available.
Describe the model that would be the proper size for
your room. What is the initial cost? How much does that
model cost to operate? If you moved to a room that had
twice the amount of floor space and the same height,
would the air conditioner you selected still be adequate?
Explain.

66. Pappus of Alexandria (ca. A.D. 350) was the last of the
well-known ancient Greek mathematicians. Write a paper
on his life and his contributions to mathematics.

Recreational Mathematics
64. More Pool Toys Wacky Noodle Pool Toys (see Exercise

47) come in many different shapes and sizes.

08
9.S TRANSFORMATIONAL GEOMETRY,

SYMMETRY, AND TESSELLATIONS
In our study of geometry, we have thus far focused on definitions, axioms, and theo-
rems that are used in the study of Euclidean geometry. We will now introduce a sec-
ond type of geometry called transformational geometry. In transformational geome-
try, we study various ways to move a geometric figure without altering the shape or
size of the figure. When discussing transformational geometry we often use the term
rigid motion.

The act of moving a geometric figure from some starting position to some ending
position without altering its shape or size is called a rigid motion (or trans-
formation).

Consider trapezoid ABCD in Figure 9.47. If we move each point on this trapezoid
4 units to the right and 3 units up, the trapezoid is in the location specified by trape-
zoid A' B' C'D'. This figure illustrates one type of rigid motion. When studying rigid
motions we are onl -£2.ncerned about the starting and ending positions of the figure
a.llilnot:-w ·at-happ@usin_be ee. When discussing rigid motions of two-dimensional
figures, there are four types of rigid motions: reflections, rotations, translations, and
glide reflections. We call these four types of rigid motions the basic rigid motions in
a plane. After we discuss the four rigid motions we will discuss symmetry of geomet-
ric figures and tessellations.
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The fIrst rigid motion we will study is reflection. In our everyday life we are quite
familiar with the concept of reflection. In transformational geometry a reflection is
an image of a geometric fIgure that appears on the opposite side of a designated
line.

A reflection is a rigid motion that moves a geometric figure to a new position such
that the fIgure in the new position is a mirror image of the fIgure in the starting po-
sition. In two dimensions the figure and its mirror image are equidistant from a line
called the reflection line or the axis of reflection.

Figure 9.48 below shows trapezoid ABCD, a reflection line l, and the reflected
trapezoid A' B' C' D'. Notice that vertex A is 6 units to the left of reflection line l
and that vertex A' is 6 units to the right of reflection line l. Next notice that vertex
B is 2 units to the left of l and that vertex B' is 2 units to the right of l. A similar re-
lationship holds true for vertices C and C' and for vertices D and D'. It is impor-
tant to see that the trapezoid is not simply moved to the other side of the reflection
line, but instead it is reflected. Notice in the trapezoid ABCD that the longer base
BC is on the right side of the trapezoid, but in the reflected trapezoid A' B' C' D' the
longer base B' C' is on the left side of the trapezoid. Finally, notice the colors of
the sides of the two trapezoids. Side AB in trapezoid ABCD and side A' B' in the
reflected trapezoid are both blue. Sides BC and sides B'C' are both red, sides CD
and C'D' are both gold, and sides DA and D' A' are both green. In this section we
will occasionally use such color coding to help you visualize the effect of a rigid
transformation on a figure.



Construct the reflection of triangle ABC, shown in Fig. 9.49, about reflection line l.

SOLUTION: The reflection of triangle ABC will be called A' B' C'. To determine the
position of the reflection, we fIrst examine vertex A in Fig. 9.49. Notice that vertex
A is 5 unjts to the left of reflection line l. Thus, in the reflected triangle A' B' C' ,
vertex A' must also be 5 units away from, but to the right of, reflection line l. Next,
notice that vertex B is 7 units to the left of l and that vertex Cis 3 units to the left of
l. Thus, in the reflection, vertex B' must be 7 units to the right of l and vertex C'
must be 3 units to the right of l. Fig. 9.50 shows vertices A', B', and C'. Finally, we
draw line segments between vertices A', B', and C' to form the sides of the reflec-
tion, triangle A' B' C', as illustrated in Fig. 9.50.

In Example I, the reflection line did not intersect the fIgure being reflected. We
now will study an example where the reflection line goes directly through the figure
to be reflected.

Construct the reflection of hexagon ABCDEF, shown in Fig. 9.51, about reflection
line l.

SOLUTION: From Figure 9.51 we see that vertex A in hexagon ABCDEF is 2 units
to the left of reflection line l. Thus, vertex A' in the reflected hexagon will be 2
units to the right of l (see Figure 9.52). Notice that vertex A' of the reflected hexa-
gon is in the same location as vertex B of hexagon ABCDEF in Figure 9.51.

We next see that vertex B in hexagon ABCDEF is 2 unjts to the right of l. Thus,
vertex B' in the reflected hexagon will be 2 units to the left of l. Notice that vertex
B' of the reflected hexagon is in the same location as vertex A of hexagon
ABCDEF. We continue thjs process to determine the locations of vertices
C', D', E', and F' of the reflected hexagon. Notice once again that each vertex of
the reflected hexagon is in the same location as a vertex of hexagon ABCDEF. Fi-
nally, we draw the line segments to complete the reflected hexagon A' B' C' D' E' F'
(see Figure 9.52). For this example, we see that other than the vertex labels, the po-
sitions of the hexagon before and after the reflection are identical.



In Example 2 the reflection line was in the center of the hexagon in the original
position. As a result, the reflection line was also in the center of the reflected hexagon.
In this particular case the reflected hexagon lies directly on top of the hexagon in its
original position. We will revisit reflections such as those in Example 2 again when
we discuss reflective symmetry later in this section.

Now consider hexagon ABCDEF in Fig. 9.53 and its reflection about line m,
hexagon A' B' C' D' E' F' in Fig. 9.54. Notice that the positions of the hexagon before
and after the reflection, relative to line m, are not the same. Furthermore, if we line up
reflection line m in Fig. 9.53 and Fig. 9.54, we would see that hexagon ABCDEF and
hexagon A' B' C' D' E' F' are in different positions.

The next rigid motion we will discuss is the translation. In a translation we simply
move a figure along a straight line to a new position.

A translation (or glide) is a rigid motion that moves a geometric figure by sliding
it along a straight line segment in the plane. The direction and length of the line
segment completely determine the translation.

After conducting a translation, we say the figure was translated to a new position.
A concise way to indicate the direction and the distance that a figure is moved

during a translation is with a translation vector. In mathematics, vectors are typically
represented with boldface letters. For example, in Fig. 9.55 we see trapezoid ABeD
and a translation vector, v, which is pointing to the right and upward. This transla-
tion vector indicates a translation of 9 units to the right and 4 units upward. Note that
in Fig. 9.55 the translated vector appears on the right side of the polygon. The place-
ment of the translation vector does not matter. Therefore, the translation vector could
have been placed to the left, above, or below the polygon, and the translation would
not change. When trapezoid ABCD is translated using v, every point on trapezoid
ABCD is moved 9 units to the right and 4 units upward. This movement is demon-
strated for vertex A in Fig. 9.56(a) on page 523. Figure 9.56(b) shows trapezoid
ABCD and the translated trapezoid A' B'C' D'. Note in Fig. 9.56(b) that every point on
trapezoid A' B' C' D' is 9 units to the right and 4 units up from its corresponding point
on trapezoid ABCD.

,},
: 4 units
: upward

--------------------_:
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9 unitS to the right
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EXAMPLE 3 A Translated Parallelogram

Given parallelogram ABCD and translation vector, v, shown in Fig. 9.57, construct
the translated parallelogram A' B'C' D'.

SOLUTION: The translated figure will be a parallelogram of the same size and shape
as parallelogram ABCD. We notice that the translation vector, v, points 7 units
downward and 3 units to the left. We next examine vertex A. To determine the loca-
tion of vertex A' of the translated parallelogram start at vertex A of parallelogram
ABCD and move down 7 units and to the left 3 units. We label this vertex A' (see
Fig. 9.58a on page 524). We determine vertices B', C', and D' in a similar manner
by moving down 7 units and to the left 3 units from vertices B, C, and D, respec-
tively. Figure 9.58(b) shows parallelogram ABCD and the translated parallelogram
A' B'C' D'. Note in Fig. 9.58(b) that every point on parallelogram A' B' C'D' is 7
units down and 3 units to the left of its corresponding point on parallelogram ABCD.



The next rigid motion we will discuss is rotation. To help visualize a rotation examine
Fig. 9.59, which shows right triangle ABC and point P about which right triangle ABC
is to be rotated.

Imagine that this page was removed from this book and attached to a bulletin
board with a single pin through point P. Next imagine rotating the page 90° in the
counterclockwise direction. The triangle would now appear as triangle A' B'C' shown
in Fig. 9.60. Next, imagine rotating the original triangle 180° in a counterclockwise
direction. The triangle would now appear as triangle A" B"C" shown in Fig. 9.61.



Now that we have an intuitive idea of how to determine a rotation, we give the defini-
tion of rotation.

A rotation is a rigid motion performed by rotating a geometric figure in the plane
about a specific point, called the rotation point or the center of rotation. The an-
gle through which the object is rotated is called the angle of rotation.

We will measure angles of rotation using degrees. In mathematics, generally,
(ounterclockwise an les have ositive de ree meas!!:!!!!.and clockwi&e al1gles have
negative degree measures.
<-.:::- -
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EXAMPLE 4 A Rotated Rectangle

Given rectangle ABCD and rotation point P, shown in Figure 9.62, construct rectan-
gles that result from rotations through
a) 90°. b) 180°. c) 270°.

SOLUTION:

a) First, since 90 is a positive number, we will rotate the figure in a counterclock-
wise direction. We also note that the rotated rectangle will be the same size and
shape as rectangle ABCD. To get an idea of what the rotated rectangle will look
like, pick up this book and rotate it counterclockwise 90°. Fig. 9.63 on page 526
shows rectangle ABCD and the rectangle rotated 90°, A' B'C' D', about point P
Notice how line segment AB in rectangle ABCD is horizontal, but in the rotated
rectangle in Fig. 9.63 line segment A' B' is vertical. Also notice that in rectangle
ABCD vertex D is 3 units to the right of rotation point P, but in the rotated rec-
tangle vertex D' is 3 units above rotation point P
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b) To gain some perspective on a 180° rotation, again pick up this book, but this
time rotate the book 180° in the counterclockwise direction. The rotated rectan-
gle A" B"C" D" is shown along with the rectangle ABCD in Fig. 9.64.

c) To gain some perspective on a 270° rotation, rotate this book 270° in the coun-
terclockwise direction. The rotated rectangle A'" B"'C'" D'" is shown along with
rectangle ABCD in Fig. 9.65.

Thus far, in our examples of rotations, the rotation point was outside the figure
being rotated. We now will study an example where the rotation point is inside the fig-
ure to be rotated.

EXAMPLE 5 A Rotation Point Inside a Polygon

Given polygon ABCDEFGH and rotation point P, shown in Fig. 9.66, construct
polygons that result from rotations through
a) 90°. b) 180°.

SOLUTION:

a) We will rotate the polygon 90° in a counterclockwise direction. The resulting
polygon will be the same size and shape as polygon ABCDEFGH. To visualize
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what the rotated polygon will look like pick up this book and rotate it counter-
clockwise 90°. Figure 9.67 shows the polygon ABCDEFGH, in pale blue, and
the rotated polygon A' B' C' D' E' F' G' H' in deeper blue. Notice how line seg-
ments AB, CD, EF, and GH in polygon ABCDEFGH are horizontal, but in the
rotated polygon A'B'C'D'E'F'G'H' line segments A' B', C' D', E' F', and G' H'
are vertical. Also notice in polygon ABCDEFGH that line segment GH is 1 unit
above rotation point P, but in the rotated polygon line segment G' H' is 1 unit to
the left of rotation point P.

b) To visualize the polygon obtained through a 180° rotation, we can pick up this
book and rotate it 180° in the counterclockwise direction. Notice from Fig. 9.68
that vertex A I of the rotated polygon is in the same position as vertex E of poly-
gon ABCDEFGH. Also notice from Fig. 9.68 that vertex B' of the rotated poly-
gon is in the same position as vertex F of polygon ABCDEFGH. In fact, each of
the vertices in the rotated polygon is in the same position as a different vertex in
polygon ABCDEFGH. From Fig. 9.68 we see that, other than vertex labels, the
position of rotated polygon A" B"C" D" E" F"G" H" is the same as the position
of polygon ABCDEFGH. .••.

The polygon used in Example 5 will be discussed again later when we discuss
rotational symmetry. The three rigid motions we have discussed thus far are reflection,
translation, and rotation. Now we will discuss the fourth rigid motion, glide reflection.

A glide reflection is a rigid motion formed by performing a translation (or glide)
followed by a reflection.

A glide reflection, as its name suggests, is a translation (or glide) followed by a
reflection. Both translations and reflections were discussed earlier in this section.
Consider triangle ABC (shown in blue), translation vector v, and reflection line l in
Fig. 9.69. The translation of triangle ABC, obtained using translation vector v, is trian-
gle A' B' C' (shown in red). The reflection of triangle A' B' C' about reflection line l is
triangle A" B"C" (shown in green). Thus, triangle A" B"C" is the glide reflection of
triangle ABC using translation vector v and reflection line l.
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EXAMPLE 6 A Glide Reflection of a Parallelogram

Construct a glide reflection of parallelogram ABCD, shown in Fig. 9.70, using
translation vector v and reflection line L.

SOLUTION: To construct the glide reflection of parallelogram ABCD, first translate
the parallelogram 2 units to the left and 5 units up as indicated by translation vector
v. This translated parallelogram is labeled A' B'C' D', shown in red in Fig. 9.71(a).
Next, we will reflect parallelogram A' B'C' D' about reflection line L.Parallelogram
A' B' C' D', shown in red, and the reflected parallelogram, labeled A" B" C" D",
shown in green, are shown in Fig. 9.71 (b). The glide reflection of the parallelogram
ABCD is parallelogram A" B"C" D".

Symmetry
We are now ready to discuss symmetry. Our discussion of symmetry involves a rigid
motion of an object.

A symmetry of a geometric figure is a rigid motion that moves the figure back
onto itself. That is, the beginning position and ending position of the figure must
be identical.

Suppose we start with a figure in a specific position and perform a rigid motion on
this figure. If the position of the figure after the rigid motion is identical to the position
of the figure before the rigid motion (if the beginning and ending positions of the figure
coincide), then the rigid motion is a symmetry and we say that the figure has symme-
try. For a two-dimensional figure there are four types of symmetries: reflective symme-
try, rotational symmetry, translational symmetry, and glide reflective symmetry. In this
textbook, however, we will only discuss reflective symmetry and rotational symmetry.

Consider the polygon and reflection line I shown in Fig. 9.72(a). If we use the
rigid motion of reflection and reflect the polygon ABCDEFGH about line I, we get
polygon A' B' C' D' E' F' G' H'. Note that the ending position of the polygon is identical
to the starting position as shown in Fig. 9.72(b). Compare Fig. 9.72(a) with Fig.
9.72(b). Although the vertex labels are different, the reflected polygon is in the same
position as the polygon in the original position. Thus, we say that the polygon has ref-
lective symmetry about line I. We refer to line I as a line of symmetry.

£ £'
I I

(a) (b)
D" C"

Figure 9.72

Recall Example 2 on page 521 in which hexagon ABCDEF was reflected about
reflection line L. Examine the hexagon in the original position (Fig. 9.51) and the
hexagon in the final position after being reflected about line I (Fig. 9.52). Other than
the labels of the vertices, the beginning and ending positions of the hexagon are iden-
tical. Therefore, hexagon ABCDEF has reflective symmetry about line I.



rEXAMPLE 7 Reflective Symmetries of Polygons
A B E F Determine whether the polygon shown in Fig. 9.73 has reflective symmetry about

each of the following lines.
a) Line [ b) Line In

C D
m SOLUTION:

a) Examine the reflection of the polygon about line [ as seen in Fig. 9.74(a). Notice
H e I that other than the vertex labels, the beginning and ending positions of the poly-

gon are identical. Thus, the polygon has reflective symmetry about line [.

Figure 9.73 • b) Examine the reflection of the polygon about line In as seen in Fig. 9.74(b). Notice

L
that the position of the reflected polygon is different from the original position of
the polygon. Thus, the polygon does not have reflective symmetry about line In.

F' E' B' A'

D' C'

H'

(a)

e'
m

C' D'

B' E' F'

(b)

We will now discuss a second type of symmetry, rotational symmetry. Consider
the polygon and rotation point P shown in Fig. 9.75(a). The rigid motion of rotation of
polygon ABCDEFGH through a 90° angle about point P gives polygon
A'B'C'D'E'F'G'H' shown in Fig. 9.75(b). Compare Fig. 9.75(a) to Fig. 9.75(b). Al-
though the vertex labels are different, the position of the polygon before and after the
rotation is identical. Thus, we say that the polygon has 90° rotational symmetry
about point P. We refer to point P as the point of symmetry.

Recall Example 5 on page 526 in which polygon ABCDEFGH was rotated 90°
about point P in part (a) and 180° in part (b). First examine the polygon in the original
position in Fig. 9.66 on page 526 and the 90° rotated polygon in Fig. 9.67 on page
527. Notice the position of the polygon after the 90° rotation is different from the
original position of the polygon. Therefore, polygon ABCDEFGH in Fig. 9.67 does
not have 90° rotational symmetry about point P. Now examine the 180° rotated poly-
gon in Fig. 9.68 on page 527. Notice that other than the vertex labels, the position of
the two polygons ABCDEFGH and A' B' C' D' E' F' G' H' is identical with regard to ro-
tation about point P. Therefore, polygon ABCDEFGH in Figure 9.66 has 180° rota-
tional symmetry about point P.

E rEXAMPLE 8 Rotational Symmetries

Determine whether the polygon shown in Fig. 9.76 has rotational symmetry about
point P for rotations through each of the following angles.
a) 90° b) 180°

ISOLUTION:

a) To determine whether the polygon has 90° counterclockwise rotational symmetry
about point P we rotate the polygon 90° as shown in Fig. 9.77(a) on page 530.
Compare Fig. 9.77(a) with Fig. 9.76. Notice that the position of the polygon after



the rotation in Fig. 9.77(a) is different than the original position of the polygon
(Fig. 9.76). Therefore, the polygon does not have 900 rotational symmetry.

b) To determine whether the polygon has 1800 counterclockwise rotational symme-
try about the point P we rotate the polygon 1800 as shown in Fig. 9.77(b). Com-
pare Fig. 9.77(b) with Fig. 9.76. Notice that other than vertex labels, the position
of the polygon after the rotation in Fig. 9.77(b) is identical to the position of the
polygon before the rotation (Fig. 9.76). Therefore, the polygon has 1800 rota-
tional symmetry. .&.

A tessellation (or tiling) is a pattern consisting of the repeated use of the same
geometric figures to entirely cover a plane, leaving no gaps. The geometric figures
used are called the tessellating shapes of the tessellation.

Figure 9.78 shows an example of a tessellation from ancient Egypt. Perhaps the
most famous person to incorporate tessellations into his work is M. C. Escher (see
Profiles in Mathematics on the next page).



PROFILE IN
MATHEMATICS

Inaddition to being wonderfully engaging art, the work ofM. C. Escher (1898-1972) also displays
some of the more beautiful and intricate aspects of mathematics. Escher's work involves Euclid-

ean, non-Euclidean (to be studied shortly), and transformational geometries. Amazingly, Escher had
no formal training in higher mathematics.

In 1936 Escher visited the Alhambra Palace in Granada, Spain, and became fascinated with Moorish
tilings. Thereafter, Escher became obsessed with creating art that used objects to cover a plane so as
to leave no gaps. Escher's brother recognized the mathematics depicted in this art and gave Escher a
list of mathematics articles he felt would be of assistance to the artist. That was Escher's first expo-
sure to formal mathematics. Among the mathematicians
whose work influenced Escher were George Polya and Don-
ald Coxeter. Polya's work with symmetry became a corner-
stone of Escher's famous tessellations. Coxeter's work with
non-Euclidean geometry was key to Escher's later work in-
volving infinity, multiple dimensions, and hyperbolic and
spherical tessellations. In 1995 Coxeter published a paper in

which he proved that the mathematics Escher displayed in the etching Circle Limit III was indeed
perfectly consistent with mathematical theory.

Another testimonial of Escher's genius is found in a notebook in which he kept background in-
formation for ills artwork. In this notebook Escher categorized all possible combinations of
shapes, colors, and symmetrical properties of polygons in the plane. By doing so, Escher had un-
wittingly developed areas of a branch of mathematics called crystallography, years before any
mathematician had done so. Escher's Circle Limit III

The simplest tessellations use one single regular polygon as the tessellating
shape. Recall that a regular polygon is one whose sides are all the same length and
whose interior angles all have the same measure. A tessellation that uses one single
regular polygon as the tessellating shape is called a regular tessellation. It can be
shown that only three regular tessellations exist: those that use an equilateral triangle,
a square, or a regular hexagon as the tessellating shape. Figure 9.79 shows each of
these regular tessellations. Notice that each of these tessellations can be obtained from
a single tessellating shape through the use of reflections, translations, or rotations.



We will now learn how to create unique tessellations. We will do so by construct-
ing a unique tessellating shape from a square. We could also construct other tessellat-
ing shapes using an equilateral triangle or a regular hexagon. If you wish to follow
along with our construction, you will need some lightweight cardboard, a ruler, cello-
phane tape, and a pair of scissors. We will start by measuring and cutting out a square
2 in. by 2 in. from the cardboard. We next cut the square into two parts by cutting it
from top to bottom using any kind of cut. One example is shown in Fig. 9.80. We then
rearrange the pieces and tape the two vertical edges together as shown in Fig. 9.81.
Next we cut this new shape into two parts by cutting it from left to right using any
kind of cut as shown in Fig. 9.82. We then rearrange the pieces and tape the two hori-
zontal edges together as shown in Fig. 9.83. This completes our tessellating shape.

~Movethi[]piece to the
right side.

We now set the cardboard tessellating shape in the middle of a blank piece of
paper (the tessellating shape can be rotated to any position as a starting point) and
trace the outline of the shape onto the paper. Next move the tessellating shape so
that it lines up with the figure already drawn and trace the outline again. Continue
to do that until the page is completely covered. Once the page is covered with the
tessellation, we can add some interesting colors or even some unique sketches to
the tessellation. Figure 9.84 shows one tessellation created using the tessellation
shape in Fig. 9.83. In Fig. 9.84 the tessellation shape was rotated about 45° coun-
terclockwise.

An infinite number of different tessellations can be created using the method de-
scribed by altering the cuts made. We could also create different tessellations using an
equilateral triangle, a regular hexagon, or other types of polygons. There are also
other, more complicated ways to create the tessellating shape. The Internet has many
sites devoted to the creation of tessellations by hand. Many computer programs that
generate tessellations are also available.

Concept/Writing Exercises
1. In the study of transformational geometry, what is a rigid

motion? List the four rigid motions studied in this section.
2. What is transformational geometry?
3. In terms of transformational geometry, describe a reflec-

tion.
4. Describe how to construct a reflection of a given figure

about a given line.

5. In terms of transformational geometry, describe a translation.
6. Describe how to construct a translation of a given figure

using a translation vector.
7. In terms of transformational geometry, describe a rotation.
8. Describe how to construct a rotation of a given figure,

about a given point, through a given angle.
9. In terms of transformational geometry, describe a glide re-

flection.



10. Describe how to construct a glide reflection of a given fig-
ure using a given translation vector and a given reflection
line.

11. Describe what it means for a figure to have reflective sym-
metry about a given line.

12. Describe what it means for a figure to have rotational sym-
metry about a given point.

13. What is a tessellation?
14. Describe one way to make a unique tessellation from a

2-in. by 2-in. cardboard square.

Practice the Skills/Problem Solving
In Exercises 15-22, use the givenfigure and lines ofreflec-
tion to construct the indicated reflections. Show the figure
in the positions both before and after the reflection.

In Exercises 15 and 16, use thefoliowingfigure. Construct

15. the reflection of rectangle ABCD about line m.
16. the reflection of rectangle ABCD about line l.

o
19. the reflection of circle C about line l.

20. the reflection of circle C about line m.

21. the reflection of trapezoid ABCD about line m.
22. the reflection of the trapezoid ABCD about line l.

In Exercises 23-30, use the translation vectors, v and w
shown below, to construct the translations indicated in the
exercises. Show the figure in the positions both before and
after the translation.
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23. the translation of parallelogram ABCD using translation
vector v (shown on page 533).

24. the translation of parallelogram ABCD using translation
vector w (shown on page 533).

25. the translation of square ABCD using translation vector w
(shown on page 533).

26. the translation of square ABCD using translation vector v
(shown on page 533).

27. the translation of polygon ABCDEF using translation
vector v.

28. the translation of polygon ABCDEF using translation
vector w.

29. the translation of polygon ABCDEFGH using translation
vector w.

30. the translation of polygon ABCDEFGH using translation
vector v.

In Exercises 31-38, use the given figure and rotation point
P to construct the indicated rotations. Show the figure in
the positions both before and after the rotation.

In Exercises 3 I and 32, use the following figure. Construct

31. a 900 rotation of square ABCD about point P.

32. a 1800 rotation of square ABCD about point P.

33. a 1800 rotation of triangle ABC about point P.

34. a 2700 rotation of triangle ABC about point P.



35. a 2700 rotation of rectangle EFGH about point P.

36. a 1800 rotation of rectangle EFGH about point P.
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37. a 900 rotation of trapezoid ABCD about point P.
38. a 2700 rotation of trapezoid ABCD about point P.

In Exercises 39-46, use the given figure, translation vectors
v and w, and reflection lines land m to construct the indi-
cated glide reflections. Show the figure in the positions be-
fore and after the glide reflection.

In Exercises 39 and 40, use the following figure. Construct

~
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39. a glide reflection of triangle ABC using vector v and re-
flection 1ine l.

40. a glide reflection of triangle ABC using vector v and re-
flection line m.

A B

DD C

41. a glide reflection of square ABCD using vector wand re-
flection line l.

42. a glide reflection of square ABCD using vector wand re-
flection line m.

f
A B

o
D C

43. a glide reflection of rectangle ABCD using vector V and
reflection line l.

44. a glide reflection of rectangle ABCD using vector v and
reflection line m.



49. a) Reflect parallelogram ABCD, shown below, about line
I. Label the reflected parallelogram A' B' C' D' .

45. a glide reflection of trapezoid ABCD using vector wand
reflection line I.

46. a glide reflection of trapezoid ABCD using vector wand
reflection line m.

47. a) Reflect triangle ABC, shown below, about line l. Label
the reflected triangle A' B' C' .

b) Other than vertex labels, is the position of triangle
A' B' C' identical to the position of triangle ABC?

c) Does triangle ABC have reflective symmetry about line
l?

48. a) Reflect trapezoid ABCD, shown below, about line I.
Label the reflected trapezoid A' B' C' D' .

b) Other than vertex labels, is the position of trapezoid
A' B' C' D' identical to the position of trapezoid ABCD?

c) Does trapezoid ABCD have reflective symmetry about
line l?

b) Other than vertex labels, is the position of parallelo-
gram A' B' C' D' identical to the position of parallelo-
gramABCD?

c) Does parallelogram ABCD have reflective symmetry
about line l?

50. a) Reflect square ABCD, shown below, about line I. Label
the reflected square A' B' C' D'.

b) Other than vertex labels, is the position of square
A' B'C' D' identical to the position of square ABCD?

c) Does square ABCD have reflective symmetry about
line l?

51. a) Rotate rectangle ABCD, shown below, 90° about point
P. Label the rotated rectangle A' B'C' D'.

A1=·=p r
b) Other than vertex labels, is the position of rectangle

A' B' C' D' identical to the position of rectangle ABCD?
c) Does rectangle ABCD have 90° rotational symmetry

about point P?
d) Now, rotate the rectangle in the original position, rec-

tangle ABCD, 180° about point P. Label the rotated rec-
tangle A" B"C" D".



e) Other than vertex labels, is the position of rectangle
A" B" C" D" identical to the position of rectangle
ABCD?

f) Does rectangle ABCD have 180° rotational symmetry
about point P?

52. a) Rotate parallelogram ABCD, shown below, 90° about
point P. Label the rotated parallelogram A' B'C' D'.

b) Other than vertex labels, is the position of parallelo-
gram A' B' C' D' identical to the position of parallelo-
gram ABCD?

c) Does parallelogram ABCD have 90° rotational symme-
try about point P?

d) Now rotate the parallelogram in the original position,
parallelogram ABCD, shown above, 180° about point P.
Label the rotated parallelogram A" B" C" D" .

e) Other than vertex labels, is the position of parallelo-
gram A" B" C" D" identical to the position of parallelo-
gram ABCD?

f) Does parallelogram ABCD have 180° rotational sym-
metry about point P?

53. Consider the following figure.

a) Insert a vertical line m through the figure so the figure
has reflective symmetry about line m.

b) Insert a horizontal line I through the figure so the figure
has reflective symmetry about line I.

c) Insert a point P within the figure so the figure has 180°
rotational symmetry about point P.

d) Is it possible to insert a point P within the figure so the
figure has 90° rotational symmetry about point P? Ex-
plain your answer.

Consider the following figure.

a) Insert a vertical line m through the figure so the figure
has reflective symmetry about line m.

b) Is it possible to insert a horizontal line I through the fig-
ure so the figure has reflective symmetry about line l?
Explain your answer.

c) Is it possible to insert a point P within the figure so the
figure has 90° rotational symmetry about point P? Ex-
plain your answer.

d) Is it possible to insert a point P within the figure so the
figure has 180° rotational symmetry about point P? Ex-
plain your answer.

Challenge Problems/Group Activities
55. Glide Reflection, Order Examine the figure below and

then do the following:

a) Determine a glide reflection of trapezoid ABCD by first
applying translation vector v and then reflecting about
the line I. Label the glide reflection A' B' C' D' .

b) In this step we will reverse the order of the translation
and the reflection. First reflect trapezoid ABCD about
the line I and then translate the reflection using vector
v. Label the resulting figure A" B"C" D".

c) Is figure A' B'C' D' in the same position as figure
A"B"C"D"?

d) What can be said about the order of the translation and
the reflection used in a glide reflection? Is the figure
obtained in part (a) or part (b) the glide reflection?



56. Tessellation with a Square Create a unique tessellation
from a square piece of cardboard by using the method de-
scribed on page 532 of the text. Be creative using color
and sketches to complete your tessellation.

57. Tessellation with a Hexagon Using the method described
on page 532, create a unique tessellation using a regular
hexagon like the one shown below. Be creative using color
and sketches to complete your tessellation.

58. Tessellation with an Octagon? a) Trace the regular octa-
gon, shown below, onto a separate piece of paper.

b) Try to create a regular tessellation by tracing this octa-
gon repeatedly. Attempt to cover the entire piece of pa-
per where no two octagons overlap each other. What
conclusion can you draw about using a regular octagon
as a tessellating shape?

59. Tessellation with a Pentagon? Repeat Exercise 58
using the regular pentagon below instead of a regular
octagon.

60. Examine each capital letter in the alphabet and determine
which letters have reflective symmetry about a horizontal
line through the center of the letter.

61. Examine each capital letter in the alphabet and determine
which letters have reflective symmetry about a vertical line
through the center of the letter.

62. Examine each capital letter in the alphabet and determine
which letters have 1800 rotational symmetry about a point
in the center of the letter.

63. In the study of biology reflective symmetry is called
bilateral symmetry and rotational symmetry is called
radial symmetry. Do research and write a report on the role
symmetry plays in the study of biology.

64. Write a paper on the mathematics displayed in the artwork
of M. C. Escher. Include such topics as tessellations, opti-
cal illusions, perspective, and non-Euclidean geometry.

9.6 THE MOBIUS STRIP, KLEIN BOTTLE, AND MAPS
The branch of mathematics called topology is sometimes referred to as "rubber sheet
geometry" because it deals with bending and stretching of geometric figures.

One of the first pioneers of topology was the German astronomer and mathemati-
cian August Ferdinand Mobius (1790-1866). A student of Gauss, Mobius was the di-
rector of the University of Leipzig's observatory. He spent a great deal of time study-
ing geometry and he played an essential part in the systematic development of
projective geometry. He is best known for his studies of the properties of one-sided
surfaces, including the one called the Mobius strip.

If you place a pencil on one surface of a sheet of paper and do not remove it from the
sheet, you must cross the edge to get to the other surface. Thus, a sheet of paper has
one edge and two surfaces. The sheet retains these properties even when crumpled
into a ball. The Mobius strip, also called a Mobius band, is a one-sided, one-edged
surface. You can construct one, as shown in Figure 9.85, by (a) taking a strip of paper,
(b) giving one end a half twist, and (c) taping the ends together.

~ >c ~
(b) Mobius Strip



"A mathematician confided
That a Mobius band is one-sided,
And you'll get quite a laugh
If you cut one in half
For it stays in one piece when divided."

"A mathematician named Klein
Thought the Mobius band was divine.
He said, 'If you glue
the edges of two
You'll get a weird bottle like mine.'''

The Mobius strip has some very interesting properties. To better understand these
properties, perform the following experiments.

Experiment 1 Make a Mobius strip using a strip of paper and tape as illustrated
in Fig. 9.85. Place the point of a felt-tip pen on the edge of the strip (Fig. 9.86).
Pull the strip slowly so that the pen marks the edge; do not remove the pen from
the edge. Continue pulling the strip and observe what happens.
Experiment 2 Make a Mobius strip. Place the tip of a felt-tip pen on the surface
of the strip (Fig. 9.87). Pull the strip slowly so that the pen marks the surface.
Continue and observe what happens.
Experiment 3 Make a Mobius strip. Use scissors to make a small slit in the mid-
dle of the strip. Starting at the slit, cut along the strip, keeping the scissors in the
middle of the strip (Fig. 9.88). Continue cutting and observe what happens.
Experiment 4 Make a Mobius strip. Make a small slit at a point about one-third
of the width of the strip. Cut along the strip, keeping the scissors the same dis-
tance from the edge (Fig. 9.89). Continue cutting and observe what happens.
If you give a strip of paper several twists, you get variations on the Mobius strip.

To a topologist the important distinction is between an odd number of twists, which
leads to a one-sided surface, and an even number of twists, which leads to a two-sided
surface. All strips with an odd number of twists are topologically the same as a
Mobius strip, and all strips with an even number of twists are topologically the same
as an ordinary cylinder, which has no twists.

Another topological object is the punctured Klein bottle; see Fig. 9.90. This object,
named after Felix Klein (1849-1925), resembles a bottle but only has one side.

A punctured Klein bottle can be made by stretchjng a hollow piece of glass tub-
ing. The neck is then passed through a hole and joined to the base.

Look closely at the model of the Klein bottle shown in Fig. 9.90. The punctured
Klein bottle has only one edge and no outside or inside because it has just one side.
Figure 9.91 shows a Klein bottle blown in glass by Alan Bennett of Bedford, England.

Figure 9.91 Klein bottle, a one-sided surface,
blown in glass by Alan Bennett.
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The Life, the Times, and the Art of
.1 Branson Graves Stevenson, by
Herbert C. Anderson Jr. (Janher
Publishing, 1979), reports that "in
response to a challenge from his son,
Branson made his first Klein bottle.
... He failed in his first try, until the
famous English potter, Wedgwood,
came to Branson in a dream and
showed him how to make the Klein
bottle." That was around 50 years
ago. Branson's study of claywork
and pottery eventually led to the for-
mation of the Archie Bray Founda-
tion in Helena, Montana.
People have made Klein bottles
from all kinds of materials. There is
a knitting pattern for a woolly Klein
bottle and even a paper Klein bottle
with a hole.

Imagine trying to paint a Klein bottle. You start on the "outside" of the large part
and work your way down the narrowing neck. When you cross the self-intersection,
you have to pretend temporarily that it is not there, so you continue to follow the neck,
which is now inside the bulb. As the neck opens up, to rejoin the bulb, you find that
you are now painting the inside of the bulb! What appear to be the inside and outside
of a Klein bottle connect together seamlessly since it is one-sided.

It is interesting to note that if a Klein bottle is cut along a curve, the results are
two (one-twist) Mobius strips, see Fig. 9.92. Thus, a Klein bottle could also be made
by gluing together two Mobius strips along the edges.

Figure 9.92 Two Mobius strips result
from cutting a Klein bottle along a
curve.

Maps
Maps have fascinated topologists for years because of the many challenging problems
they present. Mapmakers have known for a long time that regardless of the complex-
ity of the map and whether it is drawn on a flat surface or a sphere, only four colors
are needed to differentiate each country (or state) from its immediate neighbors. Thus,
every map can be drawn by using only four colors, and no two countries with a com-
mon border will have the same color. Regions that meet at only one point (such as the
states of Arizona, Colorado, Utah, and New Mexico) are not considered to have a
common border. In Fig. 9.93(a) no two states with a common border are marked with
the same color.

The "four-color" problem was first suggested by a student of Augustus DeMor-
gan in 1852. In 1976 Kenneth Appel and Wolfgang Haken of the University of
Illinois-using their ingenuity, logic, and 1200 hours of computer time-succeeded
in proving that only four colors are needed to draw a map. They solved the four-color
map problem by reducing any map to a series of points and connecting line segments.



They replaced each country with a point. They connected two countries having a com-
mon border with a straight line; see Fig. 9.93(b). They then showed that the points of
any graph in the plane could be colored by using only four colors in such a way that
no two points connected by the same line were the same color.

Mathematicians have shown that, on different surfaces, more than four colors
may be needed to draw a map. For example, a map drawn on a Mobius strip requires a
maximum of six colors as in Fig. 9.94(a). A map drawn on a torus (the shape of a
doughnut) requires a maximum of seven colors as in Fig. 9.94(b).

A Jordan curve is a topological object that can be thought of as a circle twisted out of
shape; see Fig. 9.95 (a)-(d). Like a circle, it has an inside and an outside. To get from
one side to the other at least one line must be crossed. Consider the Jordan curve in
Fig. 9.95(d). Are points A and B inside or outside the curve?

A quick way to tell whether the two dots are inside or outside the curve is to draw
a straight line from each dot to a point that is clearly outside the curve. If the straight
line crosses the curve an even number of times, the dot is outside. If the straight line
crosses the curve an odd number of times, the dot is inside the curve. Can you explain
why this procedure works? Determine whether point A and point B are inside or out-
side the curve (see Exercises 21 and 22 at the end of this section).



Topological Equivalence
Someone once said that a topologist is a person who does not know the difference be-
tween a doughnut and a coffee cup. Two geometric figures are said to be topologically
equivalent if one figure can be elastically twisted, stretched, bent, or shrunk into the
other figure without puncturing or ripping the original figure. If a doughnut is made of
elastic material, it can be stretched, twisted, bent, shrunk, and distorted until it resem-
bles a coffee cup with a handle, as shown in Fig. 9.96. Thus, the doughnut and coffee
cup are topologically equivalent.

In topology figures are classified according to their genus. The genus of an object
is determined by the number of holes in the object. A cup and a doughnut each have
one hole and are of genus I. A kettle and scissors each have two holes and are of
genus 2. Figure 9.97 illustrates this type of classification.

Concept/Writing Exercises
1. Explain why topology is sometimes referred to as "rubber

sheet geometry."

2. What is a Mobius strip?

3. Explain how to make a Mobius strip.

4. What is a Klein bottle?

S. What is the maximum number of colors needed to create a
map on a flat surface if no two regions colored the same
are to share a common border?

6. What is the maximum number of colors needed to create a
map if no two regions colored the same are to share a com-
mon border if the surface is a
a) Mobius strip?
b) torus?

7. What is a Jordan curve?
8. When testing to determine whether a point is inside or out-

side a Jordan curve, explain why if you count an odd num-
ber of lines, the point is inside the curve, and if you
count an even number of lines, the point is outside the
curve.



9. How is the genus of a figure determined?
10. When are two figures topologically equivalent?

Practice the Skills
In Exercises 11-16, color the map by using a maximum of
four colors so that no two regions with a common border
have the same color.

16'~
2 I 4
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Using the Four-Color Theorem In Exercises 17-20, maps
show certain areas of the United States, Canada, and Mex-
ico. Shade in the states (or provinces) using a maximum of
four colors so that no two states (or provinces) with a com-
mon border hal'e the same color.

21. Determine whether point A in Fig. 9.95(d) on page 541 is
inside or outside the Jordan curve.

22. Determine whether point B in Fig. 9.95(d) is inside or out-
side the Jordan curve.

At right is a Jordan
curve. In Exercises
23-28, determine if the
point is inside or out-
side of the curve.

23. Point A

24. PointB
25. Point C
26. Point D

27. Point E
28. Point F



In Exercises 29-40, give the genus of the object. If the ob-
ject has a genus larger than 5, write "larger than 5."

40. (;;;:\
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41. Name at least three objects not mentioned in this section
that have
a) genus O.
b) genus 1.
e) genus 2.
d) genus 3 or more.

42. Use the result of Experiment I on page 539 to find the
number of edges on a Mobius strip.

43. Use the result of Experiment 2 on page 539 to find the
number of surfaces on a Mobius strip.

44. How many separate strips are obtained in Experiment 3 on
page 539?

45. How many separate strips are obtained in Experiment 4 on
page 539?

46. a) Take a strip of paper, give it one full twist, and connect
the ends. Is the result a Mobius strip with only one
side? Explain.

b) Determine the number of edges, as in Experiment 1.
e) Determine the number of surfaces, as in Experiment 2.
d) Cut the strip down the middle. What is the result?

47. Make a Mobius strip. Cut it one-third of the way from the
edge, as in Experiment 4. You should get two loops, one
going through the other. Determine whether either (or
both) of these loops is itself a Mobius strip.

48. Take a strip of paper, make one whole twist and another
half twist, and then tape the ends together. Test by a
method of your choice to determine whether this has the
same properties as a Mobius strip.

Challenge Problems/Group Activities
49. Can you see any advantage in a Mobius conveyor belt?

Explain.
50. Using clay (or glazing compound) make a doughnut. With-

out puncturing or tearing the doughnut, reshape it into a
topologically equivalent figure, a cup with a handle.

51. Using at most four colors, color the map of South Amer-
ica. Do not use the same color for any two countries that
share a common border.



52. Using at most four colors, color the following map of the
counties of Arizona. Do not use the same color for any two
counties that share a common border.

a) How many sides does this surface have?
b) How many edges does this surface have?
c) Attempt to cut the surface "in half' by making a small

slit in the middle of the paper sUlface. Then cut along
the surface (see dashed line in the figure), keeping the
scissors the same distance from the edge. In your own
words, describe what happens.

It is interesting to note that although the sUliace shown in the
figure above shares some o/the same traits as a Mobius
strip, this suiface is not topologically equivalent to the
Mobius strip.

Recreational Mathematics
53. An Interesting Surface Construct the following surface

using two strips of paper, scissors, and tape, then answer
the following questions.

Internet/Research Activity
54. Use the Internet to find a map of your state that shows the

outline of all the counties within your state. Print this map
and, using at most four colors, color it. Do not use the same
color for any two counties that share a common border.

9.7 NON-EUCLIDEAN GEOMETRY
AND FRACTAL GEOMETRY

Non-Euclidean Geometry
In Section 9.1 we stated postulates or axioms are statements to be accepted as true. In
his book Elements, Euclid's fifth postulate was, "If a straight line falling on two
straight lines makes the interior angles on the same side less than two right angles, the
two straight lines, if produced indefinitely, meet on that side on which the angles are
less than the two right angles."

Euclid's fifth axiom may be better understood by observing Fig. 9.98. The sum of
angles A and B is less than the sum of two right angles (180°). Therefore, the two lines
will meet if extended.

John Playfair (1748-1819), a Scottish physicist and mathematician, wrote a
geometry book that was published in 1795. In his book Playfair gave a logically
equivalent interpretation of Euclid's fifth postulate. This version is often referred to as
Playfair's postulate or the Euclidean parallel postulate.
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Given a line and a point not on the line, one and only one line can be drawn
through the given point parallel to the given line (Fig. 9.99)

The Euclidean parallel postulate may be better understood by looking at Fig. 9.99.
Many mathematicians after Euclid believed that this postulate was not as self-evident
as the other nine. Others believed this postulate could be proved from the other nine
postulates and therefore was not needed at all. Of the many attempts to prove that the
fifth postulate was not needed, the most noteworthy one was presented by Girolamo
Saccheri (1667-1733), a Jesuit priest in Italy. In the course of his elaborate chain of
deductions, Saccheri proved many of the theorems of what is now called hyperbolic
geometry. However, Saccheri did not realize what he had done. He believed that Eu-
clid's geometry was the only "true" geometry and concluded that his own work was in
error. Thus, Saccheri narrowly missed receiving credit for a great achievement: the
founding of non-Euclidean geometry.

Over time, geometers became more and more frustrated at their inability to prove
Euclid's fifth postulate. One of them, a Hungarian named Farkos Bolyai, in a letter to
his son, Janos Bolyai, wrote, "I entreat you leave the science of parallels alone .... I
have traveled past all reefs of this infernal dead sea and have always come back with a
broken mast and torn sail." The son, refusing to heed his father's advice, continued to
think about parallels until, in 1823, he saw the whole truth and enthusiastically de-
clared, "I have created a new universe from nothing." He recognized that geometry
branches in two directions, depending on whether Euclid's fifth postulate is applied.
He recognized two different geometries and published his discovery as a 24-page ap-
pendix to a textbook written by his father. The famous mathematician George Bruce
Halsted called it "the most extraordinary two dozen pages in the whole history of
thought." Farkos Bolyai proudly presented a copy of his son's work to his friend Carl
Friedrich Gauss, then Germany's greatest mathematician, whose reply to the father
had a devastating effect on the son. Gauss wrote, "I am unable to praise this work ....
To praise it would be to praise myself. Indeed, the whole content of the work, the path
taken by your son, the results to which he is led, coincides almost entirely with my
meditations which occupied my mind partly for the last thirty or thirty-five years." We
now know from his earlier correspondence that Gauss had indeed been familiar with
hyperbolic .geometry even before Janos was born. In his letter Gauss also indicated
that it was his intention not to let his theory be published during his lifetime, but to
record it so that the theory would not perish with him. It is believed that the reason
Gauss did not publish his work was that he feared being ridiculed by other prominent
mathematicians of his time.

At about the same time as Bolyai's publication, Nikolay Ivanovich Lobachevsky,
a Russian, published a paper that was remarkably like Bolyai's, although it was quite
independent of it. Lobachevsky made a deeper investigation and wrote several books.
In marked contrast to Bolyai, who received no recognition during his lifetime,
Lobachevsky received great praise and became a professor at the University of Kazan.

After the initial discovery, little attention was paid to the subject until 1854, when
G. F. Bernhard Riemann (1826-1866), a student of Gauss, suggested a second type of
non-Euclidean geometry, which is now called sphericaL, ellipticaL, or Riemannian
geometry. The hyperbolic geometry of his predecessors was synthetic; that is, it was
not based on or related to any concrete model when it was developed. Riemann's
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Medical researchers and mathe-
maticians are currently at-

tempting to capture an image of the
three-dimensional human brain on a
two-dimensional map. In some re-
spects the task is like capturing the
image of Earth on a two-dimen-
sional map, but because of the many
folds and fissures on the surface of
the brain, the task is much more
complex. Points of the brain that are
at different depths can appear too
close in a flat image. Therefore, to
develop an accurate mapping, re-
searchers use topology, hyperbolic
geometry, and elliptical geometry to
create an image known as a
conformal mapping. Researchers
use conformal mappings to precisely
identify the parts of the brain that
correspond to specific functions.

Photograph courtesy of Dr. Monica K.
Hurdal (mhurdal@math.fsu.edu) Dept.
of Mathematics, Florida State University

geometry was closely related to the theory of surfaces. A model may be considered a
physical interpretation of the undefined terms that satisfies the axioms. A model may
be a picture or an actual physical object.

The two types of non-Euclidean geometries we have mentioned are elliptical
geometry and hyperbolic geometry. The major difference among the three geometries
lies in the fifth axiom. The fifth axiom of the three geometries is summarized here.

The Fifth Axiom of Geometry
Euclidean

Given a line and a point
not on the line, one and
only one line can be
drawn parallel to the
given line through the
given point.

Elliptical
Given a line and a point
not on the line, no line
can be drawn through
the given point parallel
to the given line.

Hyperbolic
Given a line and a point
not on the line, two or
more lines can be drawn
through the given point
parallel to the given
line.

To understand the fifth axiom of the two non-Euclidean geometries, remember
that the term line is undefined. Thus, a line can be interpreted differently in different
geometries. A model for Euclidean geometry is a plane, such as a blackboard (Fig.
9.100a). A model for elliptical geometry is a sphere (Fig. 9.100b). A model for hyper-
bolic geometry is a pseudosphere (Fig. 9.100c). A pseudosphere is similar to two trum-
pets placed bell to bell. Obviously, a line on a plane cannot be the same as a line on ei-
ther of the other two figures. The curved red lines in Fig. 9.101(a) and both colored
lines in Fig. 9.102, on page 548, are examples of lines in elliptical and hyperbolic
geometry, respectively.

D
Elliptical Geometry
A circle on the surface of a sphere is called a great circle if it divides the sphere into
two equal parts. If we were to cut through a sphere along a great circle, we would
have two identical pieces. If we interpret a line to be a great circle, we can see the fifth
axiom of elliptical geometry is true. Two great circles on a sphere must intersect;
hence, there can be no parallel lines (Fig. 9.101a).

If we were to construct a triangle on a sphere, the sum of its angles would be
greater than 180° (Fig. 9.101 b). The theorem, "The sum of the measures of the angles
of a triangle is greater than 180°," has been proven by means of the axioms of ellipti-
cal geometry. The sum of the measures of the angles varies with the area of the trian-
gle and gets closer to 180° as the area decreases.



Hyperbolic Geometry
The lines in hyperbolic geometry are represented by geodesics on the surface of the
pseudosphere. A geodesic is the shortest and least-curved arc between two points on a
surface. Figure 9.102 illustrates two lines on the surface of a pseudosphere.

Figure 9.103(a) illustrates the fifth axiom of hyperbolic geometry. * Note that,
through the given point, two lines are drawn parallel to the given line. If we were to
construct a triangle on a pseudosphere, the sum of the measures of the angles would
be less than 180° (Fig. 9 .103b). The theorem, "The sum of the measures of the angles
of a triangle is less than 180°," has been proven by means of the axioms of hyperbolic
geometry.

Given point

Line2

We have stated that the sum of the measures of the angles of a triangle is 180°, is
greater than 180°, and is less than 180°. Which statement is correct? Each statement is
correct in its own system. Many theorems hold true for all three geometries; vertical
angles still have the same measure, we can uniquely bisect a line segment with a
straightedge and compass alone, and so on.

The many theorems based on the fifth postulate may differ in each geometry. It is
important for you to realize each theorem proved is true in its own system because
each is logically deduced from the given set of axioms of the system. No one system
is the "best" system. Euclidean geometry may appear to be the one to use in the class-
room, where the blackboard is flat. In discussions involving Earth as a whole, how-
ever, elliptical geometry may be the most useful, since Earth is a sphere. If the object
under consideration has the shape of a saddle or pseudosphere, hyperbolic geometry
may be the most useful.



DID YOU KNOW

Albert Einstein's general theory of relativity, published in 1916, approached space and time differ-
ently from our everyday understanding of them. Einstein's theory unites the three dimensions of

space with one of time in a four-dimensional space, time continuum. His theory dealt with the path that
light and objects take while moving through space under the force of gravity. Einstein conjectured that
mass (such as stars and planets) caused space to be curved. The greater the mass, the greater the curva-

ture. Also, in the region nearer to the mass,
the curvature of the space is greater.

To prove his conjecture, Einstein exposed
himself to Riemann's non-Euclidean geom-
etry. Einstein believed that the trajectory of
a particle in space represents not a straight
line but the straightest curve possible, a
geodesic.

Space-time is now thought to be a combi-
nation of three different types of curvature:
spherical (described by Riemannjan geom-
etry), flat (described by Euclidean geome-
try), and saddle-shaped (described by hy-
perbolic geometry).

You can visualize Einstein's theory by thinking of space as a
rubber sheet pulled taut on which a mass is placed, causing
the rubber sheet to bend.

"The Great Architect of the universe
now appears to be a great mathemati-
cian."

Fractal Geometry

Einstein's theory was confirmed
by the solar eclipses of 1919 and
1922.

We are familiar with one-, two-, and three-dimensional figures. Many objects, how-
ever, are difficult to categorize as one-, two-, or three-dimensional. For example, how
would you classify the irregular shapes we see in nature such as a coastline, or the
bark on a tree, or a mountain, or a path followed by lightning? For a long time mathe-
maticians assumed that making realistic geometric models of natural shapes and fig-
ures was almost impossible, but the development of fractal geometry now makes it
possible. Both color photos on this page were made by using fractal geometry. The
discovery and study of fractal geometry has been one of the most popular mathemati-
cal topics in recent times.

The word fractal (from the Latin word fractus, "broken up, fragmented") was
first used in the mid-1970s by mathematician Benoit Mandelbrot to describe shapes
that had several common characteristics, including some form of "self-similarity," as
will be seen shortly in the Koch snowflake.

Typical fractals are extremely irregular curves or surfaces that "wiggle" enough
so that they are not considered one-dimensional. Fractals do not have integer dimen-
sions; their dimensions are between 1 and 2. For example, a fractal may have a di-
mension of 1.26. Fractals are developed by applying the same rule over and over
again, with the end point of each simple step becoming the starting point for the next
step, in a process called recursion.

Using the recursive process, we will develop a famous fractal called the Koch
snowflake named after Helga von Koch, a Swedish mathematician who first discov-
ered its remarkable characteristics. The Koch snowflake illustrates a property of all
fractals called self-similarity; that is, each smaller piece of the curve resembles the
whole curve.



To develop the Koch snowflake:

I. Start with an equilateral triangle (step 1, Fig. 9.104).
2. Whenever you see an edge -- replace it with ~ (steps 2-4).

What is the perimeter of the snowflake in Fig. 9.104, and what is its area? A portion of
the boundary of the Koch snowflake known as the Koch curve or the snowflake curve
is represented in Fig. 9.105.

Because the Koch curve consists of infinitely many pieces of the form ~,
the perimeter is also infinite. The area of the Koch snowflake is 1.6 times the area of
the starting equilateral triangle. Thus, the area of the snowflake is finite. The Koch
snowflake has a finite area enclosed by an infinite boundary! This fact may seem
difficult to accept, but it is true. However, the Koch snowflake, like other fractals, is
not an everyday run-of-the-mill geometric shape.

Let us look at a few more fractals made using the recursive process. We will now
construct what is known as afractal tree. Start with a tree trunk (Fig. 9.106a on page
551). Draw two branches, each one a bit smaller than the trunk (Fig. 9.106b). Draw
two branches from each of those branches, and continue; see Figs. 9.106c and Fig.
9.106d. Ideally we continue the process forever.

DID YOU KNOW

Fractal triangle can act as a miniatur-
ized antenna.

Recently researchers have begun to use antennas made
using fractal designs. Many antennas that look like a

simple unit, including most radar antennas, are actually ar-
rays of up to thousands of small antennas. Scientists have
discovered that a fractal arangement can result in antennas
being as powerful as traditional antennas, using only a
quarter of the number of elements. Dwight Jasserd of the
University of Pennsylvania says, "Fractals bridge the gap;
they have short-range disorder and long-range order."Frac-
tal antennas are 25% more efficient than the rubbery
"stubby" antennas found on most phones. Why do fractal
antennas work so well? It has been proven mathematically
that for an antenna to work equally well at all frequencies,
it must be self-similar, having the same basic appearance at
every scale. That is, it has to be fractal!

Hidden inside a cordless phone, a
square fractal antenna (center board)
replaces the usual rubbery stalk.
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If you take a little piece of any branch and zoom in on it, it will look exactly like
the original tree. Fractals are scale independent, which means that you cannot really
tell whether you are looking at something very big or something very small because
the fractal looks the same whether you are close to it or far from it.

In Figs. 9.107 and 9.108 we develop two other fractals through the process of re-
cursion. Figure 9.107 shows a fractal called the Sierpinski triangle, and Fig. 9.108
shows a fractal called the Sierpinski carpet. Both fractals are named after Waclaw
Sierpinski, a Polish mathematician who is best known for his work with fractals and
space-filling curves.

Fractals provide a way to study natural forms such as coastlines, trees, moun-
tains, galaxies, polymers, rivers, weather patterns, brains, lungs, and blood supply.
Fractals also help explain that which appears chaotic. The blood supply in the body is
one example. The branching of arteries and veins appear chaotic, but closer inspection
reveals the same type of branching occurs for smaller and smaller blood vessels, down
to the capillaries. Thus, fractal geometry provides a geometric structure for chaotic
processes in nature. The study of chaotic processes is called chaos theory .

Fractals nowadays have a potentially important role to play in characterizing
weather systems and in providing insight into various physical processes such as the
occurrence of earthquakes or the formation of deposits that shorten battery life. Some
scientists view fractal statistics as a doorway to unifying theories of medicine, offer-
ing a powerful glimpse of what it means to be healthy.

Fractals lie at the heart of current efforts to understand complex natural phe-
nomena. Unraveling their intricacies could reveal the basic design principles at
work in our world. Until recently, there was no way to describe fractals. Today, we
are beginning to see such features everywhere. Tomorrow, we may look at the entire
universe through a fractal lens.



Concept/Writing Exercises
In Exercises 1-6, describe the accomplishments of the
mathematician.

1. Girolamo Saccheri

2. Janos Bolyai

3. Carl Friedrich Gauss

4. Nikolay Ivanovich Lobachevsky
S. G. F. Bernhard Riemann

6. Benoit Mandelbrot

7. State the fifth axiom of
a) Euclidean geometry. b) hyperbolic geometry.
c) elliptical geometry.

8. State the theorem concerning the sum of the measures of
the angles of a triangle in
a) Euclidean geometry. b) hyperbolic geometry.
c) elliptical geometry.

9. What model is often used in describing and explaining
Euclidean geometry?

10. What model is often used in describing and explaining
elliptical geometry?

11. What model is often used in describing and explaining
hyperbolic geometry?

12. What do we mean when we say that no one axiomatic sys-
tem of geometry is "best"?

13. List the three types of curvature of space and the types of
geometry that correspond to them.

14. List at least five natural forms that appear chaotic that we
can study using fractals.

Practice the Skills
In the following we show a fractal-like figure made using a
recursive process with the letter "M." Use this fractal-like
figure as a guide in constructing fractal-like figures with
the letter given in Exercises 15-18. Show three steps, as is
done here.

M

19. a) Develop a fractal by beginning with a square and re-
placing each side -- with a SL. Repeat this
process twice.

b) If you continue this process, will the fractal's perimeter
be finite or infinite? Explain.

c) Will the fractal's area be finite or infinite? Explain.

Problem Solving/Group Activity
20. In forming the Koch snowflake in Figure 9.104 on page

550 the perimeter becomes greater at each step in the
process. If each side of the original triangle is I unit, a
general formula for the perimeter, L, of the snowflake at
any step, n, may be found by the formula

(4)"-1L = 3 -
3

For example, at the first step when n = I, the perimeter is
3 units, which can be verified by the formula as follows:

(4)1-1 (4)0
L=33 =33 =3'1=3

At the second step, when n = 2, we find the perimeter as
follows:

(4)2-1 (4)L=33 =33 =4
Thus, at the second step the perimeter of the snowflake is
4 units.
a) Use the formula to complete the following table.

Step Perimeter

b) Use the results of your calculations to explain why the
perimeter of the Koch snowflake is infinite.

c) Explain how the Koch snowflake can have an infinite
perimeter, but a finite area.

Internet/Research Activities
In Exercises 21-23, references include the Internet, books
on art, encyclopedias, and history of mathematics books.

21. To complete his masterpiece Circle Limit Ill, (see page
531) M. C. Escher studied a model of hyperbolic geometry



called the Poincare disk. Write a paper on the Poincare
disk and how it was used in Escher's art. Include represen-
tations of infinity and the concepts of point and line in hy-
perbolic geometry.

22. To transfer his two-dimensional tiling known as Symmetry
Work 45 to a sphere, M. C. Escher used the spherical
geometry of Bernhard Riemann. Write a paper on Escher's
use of geometry to complete this masterpiece (see the
figures below and to the right).

23. Go to the website Fantastic Fractals and study the infor-
mation about fractals given there. Print copies, in color if a
color printer is available, of the Mandlebrot set and the
Julia set.

~~~

CHAPTER 9 SUMMARY

The sum of the measures of the angles of a triangle is 180°.

The sum of the measures of the angles of a quadrilateral is
360°.

The sum of the measures of the interior angles of an
n-sided polygon is (n 2) 180°.

Triangle Square
A = ibh A = s2

p = 4s

Parallelogram
A = bh

p = 2b + 2w

p = Sl + S2 + S3

Rectangle
A = lw

p = 21 + 2w

Trapezoid
A = ih(bl + b2)

p = Sl + S2 + bl + b2

Pythagorean theorem
a2 + b2 = c2

Circle
A = 7Tr2; C = 27Tr or C = 7Td

Cube
V = s3

Cylinder
V = 7Tr2h

Sphere
V = ~7Tr3

Prism
V = Bh, where B is the area of the base

Pyramid

V = k Bh, where B is the area of the base

Fifth postulate in Euclidean geometry
Given a line and a point not on the line, only one line can
be drawn through the given point parallel to the given line.

Fifth postulate in elliptical geometry
Given a line and a point not on the line, no line can be
drawn through the given point parallel to the given line.

Fifth postulate in hyperbolic geometry
Given a line and a point not on the line, two or more lines
can be drawn through the given point parallel to the given
line.

Rectangular solid
V = lwh

Cone
V = k7Tr2h



In Exercises 1-6, use the figure shown to determine thefol-
lowing.

1. 4EFI n 4BFC
2. BFUFCU BC
3. Al1 U BC
4. B"HU fiB
5. HI n EG
6. an CG

7. m4A = 51.2°. Determine the measure of the complement
of4A.

8. m4B = 124.7°. Determine the measure of the supple-
ment 4B.

In Exercises 9-12, use the similar triangles ABC and
A' B'C shown to determine the following.

B

A A' C
~8 in.---+-4 in'-4

9. The length of BC

10. The length of A I B I

1l.m4BAC
12. m4ABC

13. In the following figure, It and l2 are parallel lines.
Determine m41 through m46.

14. Determine the sum of the measures of the interior angles
of a hexagon.

~
t4 in.

15'07cm

4 in.3.2712 in.
n

9 in.

18'11
9 in. i 7 in.

b
12 in.

~in.

20. Cost of Kitchen Tile Determine the total cost of covering
a 14 ft by 16 ft kitchen floor with ceramic tile. The cost of
the tile selected is $2.75 per square foot.

In Exercises 21-26, determine the volume of the figure.
Round your answers to hundredths.



I
16mm

1
27. Water Trough Steven Dale has a water trough whose ends

are trapezoids and whose sides are rectangles, as illus-
trated. He is afraid that the base it is sitting on will not
support the weight of the trough when it is filled with wa-
ter. He knows that the base will support 4800 lb.

a) Find the number of cubic feet of water contained in the
trough.

b) Find the total weight, assuming that the trough weighs
375 lb and the water weighs 62.5 lb per cubic foot. Is
the base strong enough to support the trough filled with
water?

c) If I gal of water weighs 8.3 lb, how many gallons of
water will the trough hold?

In Exercises 28 and 29, use the given triangle and lines of
reflection to construct the indicated reflections. Show the
triangle in the positions both before and after the reflection.
Construct

28. the reflection of triangle ABC about line I.
29. the reflection of triangle ABC about line m.

In Exercises 30 and 31, use translation vectors v and w to
construct the indicated translations. Show the parallelo-
gram in the positions both before and after the translation.
Construct

1
D

tc
30. the translation of parallelogram ABCD using translation

vector v.
31. the translation of parallelogram ABCD using translation

vector w.

In Exercises 32-34, use the given figure and rotation point P
to construct the indicated rotations. Show the trapezoid in
the positions both before and after the rotation. Construct

32. a 90° rotation of trapezoid ABCD about point P.
33. a 180° rotation of trapezoid ABCD about point P.

34. a 270° rotation of trapezoid ABCD about point P.



In Exercises 35 and 36, use the given figure, translation
vector v, and reflection lines land m to construct the
indicated glide reflections. Show the triangle in the posi-
tions both before and after the glide reflection. Construct

35. a glide reflection of triangle ABC using vector v and re-
flection line t.

36. a glide reflection of triangle ABC using vector V and re-
flection line m.

In Exercises 37 and 38, use the following figure to answer
the following questions.

37. Does triangle ABC have reflective symmetry about line l?
Explain.

38. Does triangle ABC have reflective symmetry about line m?
Explain.

In Exercises 39 and 40, use the following figure to answer
the following questions.

39. Does rectangle ABCD have 90° rotational symmetry about
point P? Explain.

40. Does rectangle ABCD have 180° rotational symmetry
about point P? Explain.

42. The map shows the states of Germany. Shade in the states
using a maximum of four colors so that no two states with
a common border have the same color.

43. Determine whether point A is inside or outside the Jordan
curve.

44. State the fifth axiom of Euclidean, elliptical, and hyper-
bolic geometry.

45. Develop a fractal by beginning with a square and replacing
each side -- with a SL. Repeat this process twice.
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CHAPTER 9 TEST
In Exercises 1-4, use the figure to describe the follow-
ing sets ofpoints:

1. l"F n IfF
2. BCU CD UBD

3. z.EDF n 4BDC

4. ACUBA
5. m4A = 36.9°. Determine

the measure of the complement of 4A.
6. m4B = 101.5°. Determine the measure of the sup-

plement of 4B.
7. In the figure, determine the measure of 4x.

8. Determine the sum of the measures of the interior an-
gles of an octagon.

9. Triangles ABC and A' B' C' are similar figures. Deter-
mine the length of side B'C'.

B

~
A 13 CIll C

10. Right triangle ABC has one leg of length 5 in. and a
hypotenuse of length 13 in.
a) Determine the length of the other leg.
b) Determine the perimeter of the triangle.
c) Determine the area of the triangle.

-~
) 111.

11. Determine the volume of a sphere of diameter 16 cm.

12. Building a Pier The sketch shows the dimensions of
the base of a pier for a bridge with semicircular ends.
How many cubic yards of concrete are needed to
build a pier 6 ft high?

14. Construct a reflection of square ABCD, shown below,
about line I. Show the square in the positions both be-
fore and after the reflection.

15. Construct a translation of quadrilateral ABCD, shown
below, using translation vector v. Show the quadrilat-
eral in the positions both before and after the transla-
tion.



16. Construct a 1800 rotation of triangle ABC, shown be-
low, about rotation point P. Show the triangle in the
positions both before and after the rotation.

.OA. 8

~ °

A C

17. Construct a glide reflection of rectangle ABCD,
shown below, using translation vector v and reflection
line I. Show the rectangle in the positions both before
and after the glide reflection.

18. Use the figure below to answer the following ques-
tions.

A B

~==/ ~D C

a) Does rectangle ABCD have reflective symmetry
about line l? Explain.

b) Does rectangle ABCD have 1800 rotational sym-
metry about point P? Explain.

19. What is a Mobius strip?
20. a) Sketch an object of genus 1.

b) Sketch an object of genus 2.
21. Explain how the fifth axiom in Euclidean geometry,

elliptical geometry, and hyperbolic geometry differ.



GROUP PROJECTS

1. Samantha Saraniti is thinking of buying a circular hot
tub 12 ft in diameter, 4 ft deep, and weighing 475 lb.
She wants to place the hot tub on a deck built to sup-
port 30,000 lb.
a) Determine the volume of the water in the hot tub in

cubic feet.
b) Determiue the number of gallons of water the hot

tub will hold. Note 1 ft3 ;:::;7.5 gal.
c) Determine the weight of the water in the hot tub.

(Hint: Fresh water weighs about 52.4 Ib/ft3.)

d) Will the deck support the weight of the hot tub and
water?

e) Will the deck SUpp0l1the weight of the hot tub, water,
and four people, whose average weight is liS Ib?

Designing a Ramp
2. David and Sandra lessee are planning to build a ramp

so that their front entrance is wheelchair accessible.
The ramp will be 36 in. wide. It will rise 2 in. for each
foot of length of horizontal distance. Where the ramp
meets the porch, the ramp must be 2 ft high. To provide
stability for the ramp, the lessees will install a slab of
concrete 4 in. thick and 6 in. longer and wider than the
ramp (see accompanying figure). The top of the slab
will be level with the ground. The ramp may be con-
structed of concrete or pressure-treated lumber. You are
to estimate the cost of materials for constructing the
slab, the ramp of concrete, and the ramp of pressure-
treated lumber.

Slab
a) Determine the length of the base of the ramp.
b) Determine the dimensions of the concrete slab on

which the ramp will set.
c) Determine the volume of the concrete in cubic

yards needed to construct the slab.
d) If ready-mix concrete costs $45 per cubic yard, de-

termine the cost of the concrete needed to construct
the slab.

Concrete Ramp
e) To build the ramp of concrete a form in the shape of

the ramp must be framed. The two sides of the form
are triangular, and the shape of the end, which is
against the porch is rectangular. The form will be
framed from ~in. plywood, which comes in
4 ft X 8 ft sheets. Determine the number of sheets
of plywood needed. Assume that the entire sheet(s)
will be used to make the sides and the end of the
form and that there is no waste.

f) If the plywood costs $18.95 for a 4 ft X 8 ft sheet,
determine the cost of the plywood.

g) To brace the form, the lessees will need two boards
2 in. X 4 in. X 8 ft (referred to as 8 ft 2 X 4's)
and six pieces of lumber 2 in. X 4 in. X 3 ft.
These six pieces of lumber will be cut from
8 ft 2 X 4 boards. Determine the number of
8 ft 2 X 4 boards needed.

h) Determine the cost of the 8 ft 2 X 4 boards needed
in part (g) if one board costs $2.14.

i) Determine the volume, in cubic yards, of concrete
needed to fill the form.

j) Determine the cost of the concrete needed to fill the
form.

k) Determine the total cost of materials for building
the ramp of concrete by adding the results in parts
(d), (f), (h), and 0).

Wooden Ramp
I) Determine the length of the top of the ramp.

m) The top of the ramp will be constructed of
~in. X 6 in. X 10 ft pressure-treated lumber. The
boards will be butted end to end to make the neces-
sary length and will be supported from underneath
by a wooden frame. Determine the number of
boards needed to cover the top of the ramp. The
boards are laid lengthwise on the ramp.

11) Determine the cost of the boards to cover the top of
the ramp if the price of alOft length is $6.47.

0) To support the top of the ramp, the lessees will
need] 0 pieces of 8 ft 2 X 4' s. The price of a pres-
sure-treated 8 ft 2 X 4 is $2.44. Determine the cost
of the supports.

p) Determine the cost of the materials for building a
wooden ramp by adding the amounts from parts (d),
(n), and (0).

q) Are the materials for constructing a concrete ramp
or a wooden ramp less expensive?


