rem INVERSION DE MATRICES CON NUMEROS COMPLEJOS {Shipley} CLEAR : CLS LOCATE 3, 12: PRINT "Inversion de matrices con numeros complejos" LOCATE 12, 15: INPUT " Orden de la matriz a invertir =", N DIM a(N, N), c(N), d(N) CLS : X = 0 LOCATE 10, 20: PRINT "Real Imaginaria" FOR I = 1 TO N FOR J = 1 TO N X = X + 1 LOCATE 12, 5: PRINT "("; I; ","; J; ")" LOCATE 12, 20: INPUT "", a(I, J) LOCATE 12, 35: INPUT "", b(I, J) LOCATE 12, 1: PRINT " " NEXT J, I FOR k = 1 TO N t = (a(k, k) ^ 2) + (b(k, k) ^ 2) e = a(k, k) / t: f = -b(k, k) / t FOR I = 1 TO N IF k = 1 THEN 1 FOR J = 1 TO N IF J = k THEN 2 a = (a(I, k) * a(k, J)) - (b(I, k) * b(k, J)) b = (a(I, k) * b(k, J)) + (b(I, k) * a(k, J)) a(I, J) = a(I, J) - ((a * e) - (b * f)) b(I, J) = b(I, J) - ((a * f) + (b * e)) 1 : NEXT J 2 : NEXT I FOR I = 1 TO N a = -((a(k, I) * e) - (b(k, I) * f)) b(k, I) = -((a(k, I) * f) + (b(k, I) * e)) a(k, I) = a a = -((a(I, k) * e) - (b(k, I) * f)) b(k, I) = -((a(I, k) * f) + (b(I, k) * e)) a(I, k) = a NEXT I a(k, k) = -e: b(k, k) = f NEXT k FOR I = 1 TO N: FOR J = 1 TO N b(I, J) = -1 * b(I, J): a(I, J) = -1 * a(I, J) NEXT J, I CLS : y = 0 LOCATE 4, 20: PRINT "La inversion queda asi": PRINT : PRINT FOR I = 1 TO N: FOR J = 1 TO N PRINT "("; I; ","; J; ")="; a(I, J); "+j"; b(I, J) d$ = INPUT$(1) NEXT J, I END